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In this paper we assess the impact of climate shocks on futures markets
for agricultural commodities and a set of macroeconomic quantities for mul-
tiple high-income economies. To capture relations among countries, markets,
and climate shocks, this paper proposes parsimonious methods to estimate
high-dimensional panel vector autoregressions. We assume that coefficients
associated with domestic lagged endogenous variables arise from a Gaussian
mixture model while further parsimony is achieved using suitable global-
local shrinkage priors on several regions of the parameter space. Our results
point toward pronounced global reactions of key macroeconomic quantities
to climate shocks. Moreover, the empirical findings highlight substantial link-
ages between regionally located shocks and global commodity markets.

1. Introduction. A projected increase in extreme climate events and an increasingly in-
terdependent food supply chain pose a threat to global food security. Increasing trade flows
and the rising complexity of economic networks may lead to higher vulnerability and sys-
temic disruptions (Puma et al. (2015)). Isolating the effects of climate-related production
shocks on agricultural commodity markets, food prices, and the globalized economy is thus
of special interest to policy makers and the wider public in general. For instance, major cen-
tral banks, such as the European Central Bank, now explicitly address climate change in the
conduct of their monetary policies.

Global commodity markets play a crucial role in establishing a relationship between agri-
cultural production and the economy. Due to increased demand and limited production ca-
pabilities, volatilities associated with agricultural prices are expected to rise over the next
decades (FAO (2017), IFPRI (2008)). Among the key drivers of increasing volatility in re-
lated prices are exogenous weather and production shocks as well as influences from other
economic sectors (e.g., demand, energy market, and exchange rate market shocks, see, for
instance, Gilbert (2010), Nazlioglu (2011), Nazlioglu and Soytas (2012), Serra et al. (2011)).
Relatedly, changes in fiscal and monetary policies affect food price volatility (Akram (2009),
Baffes and Haniotis (2010)).

Besides an overall trend toward increased volatilities in commodity prices, linkages across
agricultural and energy markets strengthened in recent years, for instance, due to the rising
importance of biofuels. The literature shows that this results in intensified competition for
food production resources (see Enders and Holt (2014), Harri, Nalley and Hudson (2009),
Nazlioglu and Soytas (2011), Saghaian (2010), Havlík et al. (2011)). And such linkages are
expected to strengthen further as a consequence of climate change. This in turn calls for
research on the effects of climate shocks and their respective impact on real and financial
economic sectors across economies, with a special focus on food prices, and feedback and
spillover effects between countries (Gilbert (2010), Jebabli, Arouri and Teulon (2014)).
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International trade is not only generally perceived as an important mitigation mechanism
of economic fluctuations but also as another potential source of volatility (Gaupp et al. (2017),
Hirsch, Krisztin and See (2020), Huang, von Lampe and van Tongeren (2011), Janssens
et al. (2020), Sandström et al. (2018)). Addressing cross-country interdependencies on the
macrolevel is crucial, especially when aiming to capture the international effects of climate
shocks in highly globalized markets. The vast majority of the literature on volatility transmis-
sions from climate change on agricultural markets and food security, however, neglects such
notions and, instead, focuses solely on the nexus between global commodity markets and cli-
mate shocks (see, e.g., Enders and Holt (2014), Garcia, Irwin and Smith (2015), Harri, Nalley
and Hudson (2009), Nazlioglu and Soytas (2011)). Such approaches disregard the fact that
global commodity prices do not capture country-specific movements in food prices, which
might depart considerably from global dynamics. Apart from considering global commodity
markets, studies focusing on the impact of climate-related shocks on country-specific macroe-
conomic and commodity market-related quantities typically fail to take potential spillovers or
feedback effects from trade, exchange rates, and other global factors into account (see, e.g.,
Guerrero, Hernández-del Valle and Juárez-Torres (2017), van Huellen (2018)).

These shortcomings thus call for a multicountry setup that takes cross-country spillovers
and feedback effects between economies into account explicitly. Popular large-scale macroe-
conometric models, however, are typically heavily parameterized. This often leads to impre-
cise inference, rendering policy relevant conclusion difficult. From a methodological point
of view, the main contribution of this paper is to propose a parsimonious yet flexible ap-
proach to estimate panel vector autoregressive (PVAR) models. We combine the literature
on Bayesian PVAR models (see Canova and Ciccarelli (2004), Feldkircher et al. (2022),
Canova and Ciccarelli (2009), Koop and Korobilis (2016), Korobilis (2016)) with the liter-
ature on finite mixture models (see Allenby, Arora and Ginter (1998), Lenk and DeSarbo
(2000), Frühwirth-Schnatter, Tüchler and Otter (2004), Frühwirth-Schnatter and Kaufmann
(2008), Malsiner-Walli, Frühwirth-Schnatter and Grün (2016), Hauzenberger et al. (2021)).
Dependency structures across economies are pushed to zero by means of global-local shrink-
age priors in the spirit of Griffin and Brown (2010) and Huber and Feldkircher (2019). To
account for international co-movement of volatilities that vary over time, we assume that
the errors of the system feature a factor stochastic volatility structure. This provides a parsi-
monious representation for a high-dimensional time-varying variance-covariance matrix (see
Kastner (2019a), Kastner and Huber (2020)).

The empirical contribution deals with the question of how climate shocks impact country-
specific macroeconomic fundamentals. Our approach is differentiated from other related pa-
pers that assess climate impacts on the economy (e.g., Alessandri and Mumtaz (2021), Kim,
Matthes and Phan (2021)) in that we specifically attempt to trace the impact through the chan-
nels of agricultural production and commodity markets. To control for international move-
ments in commodity markets, our baseline model features a global block, which consists of
commodity futures data from the United States (U.S.), and is akin to the framework pro-
posed in Georgiadis (2015). In addition, we jointly model 17 OECD economies, where each
country-specific model features several key macroeconomic variables alongside food prices.
We specifically focus on high-income developed economies to: (1) demonstrate the impact of
climate change on the macroeconomy of countries whose agricultural production constitutes
only a small part of output, and thus direct feedback from the agricultural sector is low; (2)
our selection of countries is motivated by our proposed methods requiring a balanced panel
dataset with a sufficiently large number of observations. Moreover, as both climate shocks
and commodity markets exhibit faster movements than the usual quarterly modeling frame-
work, we choose to use data on a monthly frequency. This further constrains our selection of
economies.
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Another empirical contribution of this paper is the development of an index to measure
climate shocks impacting the agricultural sector. Our proposed index has the virtue of at-
tempting to isolate climate-related shocks to the agricultural sector by focusing on specifi-
cally agriculture-related climate risks that impact a large part of global food production and
hence significantly endanger food security (as opposed to more localized damage). In our
modeling framework, climate shocks, assessed in terms of agricultural production under risk
of drought or flooding/excessive rainfall in 11 global regions are treated as strictly exoge-
nous. Our results demonstrate that climate shocks have a substantial impact on short-term
interest rates and inflation—the primary conventional policy tool and target variable of cen-
tral banks—and, to a lesser degree, on output and exchange rates. Significant impacts are
present, even if the regions hit by climate shocks are neither in the countries themselves nor
among major trading partners, likely due to the integration of global financial markets.

The paper is structured as follows. Section 2 introduces the general econometric frame-
work and specifies the adopted prior setup. We proceed by introducing the novel dataset in
Section 3. This section also includes further details on the model specification. The empirical
findings are discussed in Section 4. The last section summarizes and concludes the paper.
Additional empirical results, robustness checks and simulation-based evidence are provided
in the Supplementary Material (Huber, Krisztin and Pfarrhofer (2023)).

2. Econometric framework. In this section we discuss the PVAR model along with
important specification issues in Section 2.1, while the remainder of the section is devoted
to dealing with these issues using flexible Bayesian shrinkage priors. Before proceeding to
the model, it is convenient to introduce generic notation. In what follows, capitalized letters
without a time index refer to full-data matrices, that is, Y = (y1, . . . ,yT )′, unless otherwise
noted. The notation [Y ]j• selects the j th row of the matrix Y while [Y ]•j selects its j th
column. In addition, we let y−i,t denote the vector yt with the ith subvector excluded, that is,
y−it = (y′

1t , . . . ,y
′
i−1t ,y

′
i+1t , . . . ,y

′
Nt)

′. Finally, we let • be a generic notation that indicates
conditioning on all remaining coefficients in the model as well as the data.

2.1. The panel vector autoregressive model. In this paper we aim to model a set of M

macroeconomic and financial variables across a set of N countries. For each country the
domestic quantities are stored in an M-dimensional vector yit for i = 1, . . . ,N and t =
1, . . . , T , subsequently stacked in a vector yt = (y′

1t , . . . ,y
′
Nt )

′ of dimension K = MN . We
assume that yit follows a vector autoregressive (VAR) process:

yit = βi + Ai1yit−1 + · · · + AiP yit−P + B i1y−i,t−1 + · · · + BiP y−i,t−P + εit ,(1)

where βi is an M-dimensional intercept vector and Aij (j = 1, . . . ,P ) denotes a set of M ×
M-dimensional coefficient matrices associated with the P lags of yit . In what follows, we
label these parameters the domestic VAR coefficients. The impact of other countries’ lagged
dependent variables y−i,t−j is measured through the matrices B ij which are of dimension
M × (N − 1)M .

Equation (1) can be cast in the usual regression form

(2) yit = Cixit + Bix−i,t + εit ,

with xit = (1,y′
it−1, . . . ,y

′
it−P )′, Ci = (βi ,Ai1, . . . ,AiP ), x−i,t = (y′−i,t−1, . . . ,y

′−i,t−P )′,
and Bi = (Bi1, . . . ,BiP )′. The matrix B i establishes dynamic interdependencies (DIs) be-
tween countries i and j . In the literature on PVAR models (see Canova and Ciccarelli (2013),
for a recent survey), an important modeling decision is whether to set certain submatrices of
B i to zero, shutting off dynamic relations between country pairs. An extreme version of the
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model would set the whole matrix Bi to zero, ruling out lagged relations between country i

and the remaining economies.
Up to this point, we remained silent on assumptions regarding error covariances across

countries. Here, we stack the country-specific errors εit in a K-dimensional vector εt =
(ε′

1t , . . . ,ε
′
Nt )

′ and assume that

(3) εt ∼ N (0,�t ),

where �t is a full K × K-dimensional variance covariance matrix.
High-dimensional PVAR models, such as the one proposed in equations (1) to (3), are

highly parameterized, and model uncertainty is pervasive. Three important dimensions of
model uncertainty have been identified by the literature. The first one is concerned with mod-
eling contemporaneous relations across the shocks in the system (called static interdependen-
cies, SIs), while the second dimension centers on the question whether coefficients associ-
ated with lagged domestic variables are homogeneous across countries (labeled homogene-
ity restrictions). If such domestic coefficients are similar, so-called homogeneity restrictions
might be imposed, effectively introducing the same set of coefficients for several countries
and, therefore, reducing the number of free parameters. The final dimension deals with the
question on whether to allow for lagged dependencies between countries (labeled dynamic
interdependencies, DIs).

Considering the recent literature on model specification and selection in PVAR models
reveals two commonly used approaches to deal with the aforementioned issues. The first
strand of the literature suggests applying shrinkage priors to stochastically select an appro-
priate model specification (see Koop and Korobilis (2016), Korobilis (2016)). In light of
the large number of potential restrictions, however, mixing issues typically arise, leading to
weak convergence properties of existing algorithms (Bhattacharya et al. (2015)). The sec-
ond strand considers additional restrictions that reduce the dimension of the parameter space.
For instance, Canova and Ciccarelli (2009) assume that the (time-varying) coefficients of
their PVAR model feature a factor structure. This translates into statistical and computa-
tional gains since the dimension of the state space is substantially reduced. Another promi-
nent example are global VAR models (see, e.g., Dees et al. (2007), Pesaran, Schuermann
and Weiner (2004), Feldkircher and Huber (2016), Crespo Cuaresma, Feldkircher and Huber
(2016), Huber (2016)) that introduce parametric restrictions on the coefficients associated
with other countries’ endogenous variables.

2.2. Dealing with static interdependencies. In this section we start with discussing how
to tackle the first dimension of model uncertainty. SIs are introduced by using a factor
stochastic volatility structure (Kastner (2019a), Pitt and Shephard (1999), Aguilar and West
(2000)) on �t ,

(4) �t = LH tL
′ + �t .

L is a K × q matrix of factor loadings (with q � K), H t = diag(eh1t , . . . , ehqt ) is a diagonal
matrix containing the variances of a set of q common factors f t ∼ N (0,H t ), and �t =
diag(eω1t , . . . , eωKt ) is a diagonal variance-covariance matrix of idiosyncratic shocks ηt ∼
N (0,�t ). The factors in f t can be latent or observed. In our empirical work we construct
exogenous climate shock measures and include these shocks as observed factors in our model.

An equivalent representation of equation (4) is the regression form

εt = Lf t + ηt .

The key feature from a computational point of view is that conditional on Lf t , the PVAR
reduces to a system of unrelated regression models. This leads to substantial computational
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gains relative to full system estimation (see Kastner and Huber (2020), for more details and
an efficient algorithm). More importantly, the resulting estimation approach will be order-
invariant (see Chan, Eisenstat and Yu (2022)), different to many recent estimation algorithms
in the spirit of Carriero, Clark and Marcellino (2019).

We assume that the (log) of the main diagonal elements of H t and �t follow independent
AR(1) processes:

hjt = ρhjhjt−1 + σhj ζhj,t , for i = 1, . . . , q,(5)

ωjt = φωj + ρωj (ωjt−1 − φωj ) + σωj ζωj,t , for j = 1, . . . ,K.(6)

We let φωj denote the unconditional mean of the log-volatility, ρsj the autoregressive param-
eter, and σ 2

sj the process innovation variance for s ∈ {h,ω}. Moreover, ζsj,t ∼ N (0,1) is a
serially uncorrelated white noise shock. To identify the unconditional scaling of the factors,
equation (5) is assumed to have zero mean.

As opposed to K(K + 1)/2 total parameters in the case of an unrestricted �t , the structure
in equation (4) implies that we only have to estimate (K + 1)q +K coefficients, a substantial
reduction relative to an unrestricted variance-covariance matrix if q is small. One important
consequence of equation (4) is that the covariance structure of the errors is driven by relatively
few latent factors that summarize the joint dynamics of εt . This assumption is warranted by
the fact that macroeconomic data are often driven by a relatively low number of fundamental
shocks (see, e.g., Bai and Ng (2007)).

2.3. Dealing with parameter homogeneity. It is worth noting that the total number of pa-
rameters of the PVAR model, outlined in the previous section, is K(pK +1)+ (K +1)q +K

and thus rises rapidly with K (and implicitly with M and N ). Since typical macroeconomic
datasets include time series with only a few hundred observations, some form of regulariza-
tion is needed. To cope with this issue, the Bayesian literature suggested various means of
achieving parsimony in the PVAR framework. One strand of the literature uses shrinkage
priors on several parts of the parameter space (Koop and Korobilis (2016), Korobilis (2016),
Koop and Korobilis (2018)). This approach conceptually treats the PVAR as a large VAR
with asymmetric shrinkage on the different coefficients in Ai , Bi , and the free elements in
�t . Another strand (Canova and Ciccarelli (2004), Canova and Ciccarelli (2009), Jarociński
(2010)) exploits the observation that countries do not differ much in terms of their domestic
macroeconomic dynamics, implying that the matrices Ai tend to be similar across countries.
This literature often pools information across countries by shrinking toward a common mean
of Ai but neglects dynamic or static interdependencies.

We deal with the second pillar of model uncertainty (parameter homogeneity across coun-
tries) by assuming that the domestic coefficients ci = vec{Ci} arise from a G-component
mixture of Gaussians distribution. A variant of this model has been proposed in the marketing
literature (Allenby, Arora and Ginter (1998), Lenk and DeSarbo (2000), Frühwirth-Schnatter,
Tüchler and Otter (2004)) and is commonly referred to as the heterogeneity model. In the
present framework the mixture distribution for ci is given by

(7) p(ci |w,μ1, . . . ,μG,V ) =
G∑

g=1

wgfN (ci |μg,V ).

Here, w = (w1, . . . ,wG)′ is a vector of component weights that satisfy
∑G

g=1 wg = 1 and
wg ≥ 0. Additionally, fN is the density of the multivariate Gaussian distribution, μg is an
m = M(Mp+1)-dimensional component-specific mean vector, and V is a common variance-
covariance matrix. This specification assumes that coefficients of countries within a given
country group tend to be similar, with potential deviations from μg driven by V .
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To estimate the mixture model, we introduce a set of N parameters δi that allow to state
equation (7) as

p(ci |δi = g,μg,V ) = fN (ci |μg,V ),

with Pr(δi = g) = wg . In what follows, we exploit this auxiliary representation for estimation
of the mixture model. Notice that ergodic averages of the posterior draws1 of δi can be used
to obtain the probability that country i is located within a specific country group.

On the main diagonal elements of V , we apply a set of independent inverted Gamma
priors,

vj ∼ G−1(w0,w1), for j = 1, . . . ,m,

with the hyperparameters w0 and w1 typically set to small values, that is, w0 = w1 = 0.01.
This leads to a weakly informative prior on the common variances.

Another key assumption is that each mixture component again comes from a common
distribution,

μg|μ0,Q0 ∼ N (μ0,Q0) for g = 1, . . . ,G.

We let μ0 denote a common mean, and Q0 is a diagonal variance-covariance matrix that can
be decomposed as

Q0 = �R0�,

where the matrix � = diag(
√

λ1, . . . ,
√

λm) contains the standard deviations and R0 =
diag(R2

1, . . . ,R2
m) constitutes an additional scaling matrix with R2

j denoting the range of
c = (c1, . . . , cN) along the j th dimension (see Malsiner-Walli, Frühwirth-Schnatter and Grün
(2016)).

Standard shrinkage priors force the coefficients toward the origin. By constrast, our shrink-
age prior borrows strength from parameter estimates of other countries’ domestic dynamics.
Hence, if the parameters ci are similar for a selected group of countries, our prior groups
them together and, by estimating a group-specific mean parameter, captures the notion that
several regions of the parameter space should be very similar (but not identical). In large pan-
els this approach has the substantial advantage that the resulting coefficient matrix (which is
possibly huge dimensional if N is large) will not be sparse and the effective dimension of the
state space is reduced. This has the immediate effect that, in light of heavy shrinkage, impulse
responses within a given country group will be similar but nonzero. By contrast, in the case
of a standard shrinkage prior, which pulls all elements to zero, the corresponding responses
will be centered on zero.2

Selecting cluster-relevant quantities. To select the driving forces behind cluster alloca-
tion, we follow Yau and Holmes (2011) and consider the standardized distance between clus-
ter centers for a given element j of μi for clusters g and s,

(μgj − μsj )√
2R2

j

∼ N (0, λj ) for j = 1, . . . ,m.

1This is based on classic Bayesian sampling theory, where the ergodic theorem is used to demonstrate that the
ergodic averages of the posterior draws converge in probability to the posterior mean under the assumption of
stationarity.

2In this case, only impact reaction will differ from zero, under the assumption that the factor loadings L are
nonzero.
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By specifying a suitable mixing density on λj , we can flexibly shrink the distance between
cluster centers to zero and thus are able to identify cluster relevant variables. As an example,
consider a situation where the conditional mean of output growth strongly differs across
countries while the remaining quantities (i.e., the coefficients associated with the lags of yit )
display only minor differences. In such a situation a shrinkage prior would strongly pull the
cluster centers together for elements in μ not related to the intercept, while, at the same time,
allowing for large differences between the cluster means for the intercept terms.

Following Malsiner-Walli, Frühwirth-Schnatter and Grün (2016), we introduce a Gamma
prior on λj , leading to a variant of the Normal–Gamma (NG) shrinkage prior (Griffin and
Brown (2010)). More specifically, we set

λj ∼ G(ν1, ν2),

where ν1 and ν2 are hyperparameters specified by the researcher. Notice that if ν1 = 1, we
obtain the Bayesian Lasso (Park and Casella (2008)) used in Yau and Holmes (2011). The NG
prior improves upon the Lasso by featuring a marginal prior that possesses heavier tails than
the Laplace distribution. In fact, the marginal prior of the proposed specification is available
in closed form (Frühwirth-Schnatter (2011)),

(8) p(μ1j , . . . ,μGj |μ0) = ν
ν1
2

(2π)G/2�(ν1)
2KpG

(
√

dj ej )

(
ej

dj

)pG/2
,

with dj = 2ν2, pG = νj − G/2, ej = ∑G
g=1(μgj − μ0j )

2/R2
j , �(�) is the Gamma function,

Kα(�) represents the modified Bessel function of the second kind, and μ0j denotes the j th
element of μ0. Griffin and Brown (2010) show that the excess kurtosis of the NG prior is
given by 3/ν1 and thus rises with smaller values of ν1. If ν1 is close to zero, more mass is
placed on zero while, at the same time, heavy tails of the marginal prior are maintained. In
the applications we specify ν1 = ν2 = 1/2 to strongly push the standardized distance between
cluster centers to zero.

The prior on μ0 ∼ N (m0,M0) is improper with m0 denoting the median over the columns
of c and M−1

0 = 0. Here, one alternative would be to use a Minnesota prior (Doan, Litterman
and Sims (1984)) at the top level of the hierarchy, assuming that μ0 again features a nor-
mally distributed prior centered on a multivariate random walk with a known prior variance-
covariance matrix. For several datasets, however, we found that this choice only exerts a
minor impact on the results.

Choosing the number of mixture components. To endogenously select the number of
components G, we follow Malsiner-Walli, Frühwirth-Schnatter and Grün (2016) and intro-
duce a symmetric Dirichlet prior on the mixture component weights w,

w ∼ Dir(p0, . . . , p0),

where p0 denotes the intensity parameter of the Dirichlet distribution. In the framework of
overfitting mixture models (i.e., models that set G greater than the true number of clusters,
Gtrue), the parameter p0 plays an important role in shaping the way the algorithm treats
redundant mixture components.3

In what follows, we place another Gamma prior on p0. Following Ishwaran, James and
Sun (2001) and Malsiner-Walli, Frühwirth-Schnatter and Grün (2016), we choose a Gamma
prior with expectation E(p0) = 1/G,

p0 ∼ G(c0, c0G).

3For a discussion, see Frühwirth-Schnatter (2006) and Rousseau and Mengersen (2011).
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Here, we let c0 be a hyperparameter that controls the variance of the prior 1/(c0G
2). This

choice handles irrelevant mixture components by shrinking the associated weights to zero and
empties superfluous components. Consistent with simulation evidence, provided in Malsiner-
Walli, Frühwirth-Schnatter and Grün (2016), we set c0 = 10.

2.4. Dealing with dynamic interdependencies. To decide on whether DIs, the third aspect
of model uncertainty in PVARs, for a given country i are present, we use a NG shrinkage
prior similar to the one discussed above. While the prior on μ0 introduces local shrinkage
parameters that push the differences between cluster centers toward zero, the standard im-
plementation of the NG prior combines local shrinkage parameters with a global shrinkage
factor that pulls all coefficients concerned to zero.

To illustrate the problem of selecting DIs, we partition the matrices Bip for p = 1, . . . ,P

and stack them to obtain

Bp =

⎛
⎜⎜⎜⎝

B1p

B2p

...

BNp

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

B12,p B13,p . . . B1N,p

B21,p B23,p
. . .

...
...

. . .
... BN−1N,p

BN1,p . . . BNN−2,p BNN−1,p

⎞
⎟⎟⎟⎟⎠ ,

where the submatrix Bij,p measures the DIs between countries i and j for lag p. Model
specification boils down to deciding whether a given B ij,p equals zero, ruling out DIs be-
tween countries i and j . Koop and Korobilis (2016) use a stochastic search variable selection
(SSVS) prior that is based on a set of auxiliary measures that determine whether different
submatrices of Bp are pushed to zero. While this approach is conceptually straightforward to
implement, a high-dimensional model space needs to be explored. Using MCMC techniques
helps to circumvent this issue by performing a stochastic model specification search that only
explores a fraction of the full model space. However, in large dimensions the possible num-
ber of DI restrictions is huge, even for a moderate number of countries included. In that case,
even SSVS priors manage to exploit only a tiny fraction of the model space, leading to weak
convergence (see Bhattacharya et al. (2015), for details).

In this paper we assume that each element of vec(B i ), labeled bij , features a normally
distributed prior,

(9) bij |τij , ξi ∼ N
(

0,
2τ 2

ij

ξi

)
, τ 2

ij ∼ G(ϑi, ϑi), ξi ∼ G(c0, c1),

for j = 1, . . . , k = PM2(N − 1) and i = 1, . . . ,N . ξi denotes a country-specific global scal-
ing parameter that pushes all elements in Bi (or, equivalently, Bip for all p) to zero, shutting
off DIs between a given country and all remaining countries, if necessary. Overall shrinkage
is driven by the hyperparameters c0, c1, with small values translating into heavy shrinkage.

Since shutting of all DIs within a given country would be overly restrictive, we introduce a
set of local scaling parameters τ 2

ij . The local scaling parameters allow for nonzero bij ’s, even
in the presence of strong global shrinkage due to a heavy tailed marginal prior (see equation
(8)), with excess kurtosis depending on ϑi . This enables flexible selection of restrictions of
the form whether country i’s output depends on country c’s lagged output while turning off
dependencies between output in country i and, for instance, lagged interest rates in country
c. We set c0 = c1 = 0.01 and ϑi = 0.1. Both hyperparameter values are based on evidence
in Huber and Feldkircher (2019), who integrate out ϑi in a Bayesian fashion and find values
between 0.1 to 0.3, depending on the size of the model involved.
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2.5. Priors for the factor stochastic volatility specification. For the remaining coeffi-
cients we utilize the prior setup proposed in Kastner (2019a). In particular, we use a rowwise
NG shrinkage prior on the factor loadings in L, with its elements denoted by lij .4 We specify
the prior

lij |ϕij , ζi ∼ N
(

0,
2ϕ2

ij

ζi

)
, ϕ2

ij ∼ G(ϑl, ϑl), ζi ∼ G(e0, e1).

The hyperparameters are set to ϑl = 0.1 and e0 = e1 = 1. On the parameters of the state
equations for the log-volatility processes, we use a normally distributed prior on the un-
conditional mean μωj ∼ N (0,10) for all j , a Gamma prior on the process innovation vari-
ances σ 2

sj ∼ G(1/2,1/2), and a Beta prior on the (transformed) autoregressive parameter
(ρsj + 1)/2 ∼ B(10,3) for all s, j . Using different hyperparameter values or estimating the
model with weakly informative independent Gaussian priors on the factor loadings has neg-
ligible consequences for the results in Section 4.

2.6. Identification issues. The model described above is econometrically not identified,
with identification issues stemming from two sources. First, the factor model in equation (4)
is not identified unless suitable restrictions are introduced. Here, we employ an automatic re-
striction search approach implemented in Kastner (2019b). The second source arises from the
well-known label switching problem.5 This issue comes from the invariance of the mixture
likelihood function in equation (7) with respect to relabeling the components

p(ci |w,μ1, . . . ,μG,V ) =
G∑

g=1

wgfN (ci |μg,V )

=
G∑

g=1

w�(g)fN (ci |μ�(g),V ),

with � indicating a random permutation of {1, . . . ,G}. We obtain identification by applying
the random permutation sampler outlined in Frühwirth-Schnatter (2001) and then perform
ex post identification of the model. In our case and since N is typically a moderate number
of countries, we can easily identify different country groups via economic reasoning. In the
empirical application, for instance, we introduce an ordering constraint on the size of the
cluster components. Furthermore, notice that if interest centers exclusively on functionals of
the coefficients in equation (1), such as impulse response functions or predictive densities,
obtaining explicit identification is not necessary. However, it is worth emphasizing that if
unbalanced label switching takes place (i.e., the posterior simulator jumps only between a
small number of the G! potential modes), inference could be distorted. Using the random
permutation sampler in that situation thus leads to balanced label switching, ensuring that the
algorithm visits all modes.

This completes the prior setup of our modeling approach. To obtain posterior distributions
for all parameters, we propose a Markov chain Monte Carlo (MCMC) algorithm that consists
of several blocks. We briefly summarize the algorithm with all full conditional posterior dis-
tributions in Appendix A. Moreover, for an illustration of the merits of our approach using
synthetic data, see the Supplementary Material (Huber, Krisztin and Pfarrhofer (2023)).

4For estimation we rely on the implementation provided in the R-package factorstochvol (Kastner
(2019b)). Further details on potential variants of the Normal–Gamma shrinkage prior, such as columnwise shrink-
age, may be obtained in Huber and Feldkircher (2019).

5For a discussion, see Frühwirth-Schnatter (2006).
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2.7. Including global variables in our model. Instead of focusing exclusively on country-
specific dynamics, we are also interested in how shocks impact a set of L global quantities. In
the previous discussion we focused on the case that yit comprises of the same set of variables
and that their treatment is symmetric with respect to the prior setup. In this subsection we
discuss how global variables can be incorporated in the general PVAR model.

Suppose that L global variables are included in a vector y0t . These global variables differ
from the ones we use at the country level. In our empirical work, for instance, y0t captures
dynamics on futures markets for energy and agricultural commodities. To capture the effect
of y0t on yt (which includes the country-specific information only) we again assume a VAR
process,

y0t = A01y0t−1 + · · · + A01y0t−P + B01yt−1 + · · · + B0P yt−P + ε0t .

Here, we let A0j and B0j for j = 1, . . . ,P denote coefficient matrices of dimension L × L

and L × K , respectively. Notice that all country-specific variables are allowed to impact
the global variables. To handle overparameterization concerns, we use a NG shrinkage prior
similar to the one described above.

The corresponding country-specific models (for i = 1, . . . ,N ) are slightly modified as
follows:

(10) yit = Cixit + Bix−i,t + Dizt + εit ,

whereby Di is a M × L matrix that measures the dynamic relations between yit and y0t . In
principle, this approach is equivalent to adding y0t to yt but creating a separate cluster that
includes only y0t .

3. Data and model specification. In this section we present a novel dataset to assess the
impact of climate shocks on futures markets for agricultural commodities and key macroeco-
nomic quantities across a set of OECD economies.

3.1. Data and descriptive statistics. Our dataset contains monthly observations for 17
OECD member countries, comprised of 13 European member states, Canada, Israel, South
Africa, and the U.S. Our sample covers a majority of high-income economies (as defined
by the World Bank), accounting for 77% of the population and 82% of output in terms of
nominal GDP in U.S. dollars.

The sample includes 215 monthly observations per country, ranging from January 2000
to November 2017. This encompasses multiple major drought and excess rainfall shocks
in Europe and the U.S. as well as the food crisis of 2007/08, where the prices of agricultural
commodities experienced a sharp peak. The country-specific time series include the consumer
price index (CPI), short-term interest rates (IR), the total value of industrial production (IP),
and the real effective exchange rate to selected currencies of major trading partners (FX).
Movements in food prices are measured through the ratio of the consumer price index for
food products to the consumer price index (CPF).6

In order to capture the role of the futures market, our dataset includes monthly observations
on continuous Chicago Mercantile Exchange (CME) and Intercontinental Exchange (ICE)
futures prices with a two-month forward contract for eleven commodities. While the data
mainly covers the U.S. futures market, there is strong evidence suggesting that commodity

6Our selection of countries is motivated based on our methods requiring a fully balanced monthly panel over an
extended time period. Mainly, the joint availability of monthly observation on real effective exchange rates and
consumer price indices for food products restricts our sample. Given these constraints, our selection of 17 OECD
member countries is as wide as possible for the given time period and variables.
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markets are highly integrated, similar to financial markets (e.g., Cashin, Mohaddes and Raissi
(2017), Nazlioglu and Soytas (2011), Huber, Krisztin and Piribauer (2017)). This has been
emphasized in the literature, especially since the commodity boom in 2004/05. Global shocks
to agricultural production are thus expected to be reflected in the U.S. futures market (Headey
(2011), Nazlioglu (2011)). Our main crop production measures are rice, corn, cotton, wheat,
and soybean futures. Additionally, to assess the role of the livestock sector, we include hogs,
feeder, and live cattle futures.7 Feeder cattle are freshly weaned calves, whereas live cattle
are fully grown animals. The interplay of these two livestock futures allows us to gauge
how shocks to feed supply play out in the markets. Moreover, the interlinkages of energy
and agricultural markets—specifically, the oil and ethanol markets—is well-established in
literature (Lucotte (2016), Nazlioglu (2011), Nazlioglu and Soytas (2011)). To measure the
responses of the energy and biofuel sectors to climate shocks, we include crude oil, gas/oil,
and ethanol futures in our model. A full list of variables as well as our selection of countries
is presented in Appendix B.

Finding a measure, which accurately reflects the presence or absence of climate shocks
in agricultural production regions at a national level, poses a serious challenge. National
level averages of climate variables, such as precipitation or temperature, fail to take into
account the regional variation and localized impact of climate change (Burke and Tanutama
(2019), Harari and Ferrara (2018)). To alleviate this issue, we rely on a spatially explicit
dataset to proxy climate impacts. This allows us to take the localized nature of climate shocks
into account. This data is subsequently aggregated to the supranational level, weighted by a
high-resolution dataset of agricultural production. The advantage of this approach is that we
explicitly capture localized climate events in high-productivity regions.

Our measure of climate shocks is derived from a drought and excess water availabil-
ity (which we indicate as flood/excess rainfall) based variable, the Global Standardized
Precipitation-Evapotranspiration Index (SPEI), which is a well-established benchmark for
capturing joint effects of precipitation, potential evaporation, and temperature (Beguería et al.
(2014)).

The SPEI index uses monthly precipitation and potential evapotranspiration data from the
CRU weather database as an input variable. The SPEI data is available monthly as a globally
gridded dataset, where each pixel has a half-degree resolution. Each monthly observation
of the index informs on deviations from the average available water (i.e., the presence and
severity of droughts and excess rainfall shocks). Lower values of the index correspond to
larger deviations from average water availability conditions, while higher values indicate
excess water availability.

Additionally, SPEI data also characterizes the persistence of drought and excess rainfalls,
ranging from one to 12 months. In our analysis we focus on persistent droughts and excess
rainfalls affecting a substantial share of national agricultural good production. We rely on
the index of droughts that are persistent over a time window of three months and that are
severe to exceptional (SPEI < −1.5), based on the classification of Leng and Hall (2019).
Similarly, as a measure of floods/excessive rainfall we rely on severe to exceptional (SPEI
> 1.5) values of the SPEI index over a time window of three months. In the main body of
the paper, we focus on a combination of drought and excess rainfall-related shocks, while the
Supplementary Material (Huber, Krisztin and Pfarrhofer (2023)) contains some additional
results for individual shocks.

7In all three cases of livestock futures, the actual traded good is the slaughtered, packaged, and frozen meat of
the animals.
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To quantify the impact of severe to exceptional droughts and excess rainfalls on agricul-
tural production, we combine the SPEI data with spatially explicit data on agricultural pro-
duction. The spatial production allocation model (SPAM) provides a well-established base-
line of gridded, global agricultural production areas at a 5-arcminute resolution in the year
2000. The data was obtained by harmonizing subnational and national production statistics
with satellite-based remote sensing data (Balkovič et al. (2014)). SPAM provides growing
area information on a wide range of crop types with varying degrees of accuracy. Due to data
limitations and to provide robustness for our assessment, we focus on the main crop types
corn, rice, maize, and wheat, which jointly cover 75% of the caloric content of global food
production (Roberts and Schlenker (2013)). Observations on average yields in kilocalories
per hectare under different levels of crop management intensification are obtained from the
biophysical EPIC model (van der Velde et al. (2012)).8 Combining data on crop production
areas and yields provides us with a gridded dataset of potential production in kilocalories at
a half-degree level.

Drought and excess rainfall-related events are assumed to only have an impact during
growing season which differs substantially by production regions. We use the AQUASTAT
crop calendar to inform us on worldwide growing seasons. We aggregate the percent of
monthly kilocaloric crop production for 11 supranational regions (see Appendix B for a def-
inition of the climatic regions) which is subject to severe or exceptional droughts and excess
rainfalls lasting for three or more months during growing season.

Figure 1 displays the resulting climate shock index. The black line and grey areas show the
impact of droughts and excess rainfalls in percent of caloric production per region. Inspection
of regional results reveals that trends in annual yield shortfalls are captured well by the index.
Particularly well-known severe drought events, such as the drought in the U.S. in 2012/13 or
in Australia (located in the OCE group) in 2007/08 are clearly visible. The index also picks
up other climate-related stylized facts, such as the higher incidence of droughts and extreme
climate events in the Middle East and North Africa (MNA), Sub-Saharan Africa (SSA) and
Southeast Asia (SAS).

Figure 2 displays the correlation of drought and excess rainfall-related shocks among re-
gions across our sample. Note that both drought and the combination of drought and excess
rainfall-related shocks exhibit spatial correlation, with geographically close regions being
correlated more strongly. This is particularly evident in the drought shocks (left panel), where
the strongest correlations are among regions with similar latitude (e.g., OCE and LAC or
USA and CAN). A similar pattern, albeit somewhat muted, can be observed in the combined
drought and excess rainfall shocks (right panel), where the strongest correlations are between
USA and EUR as well as EUR and CAN regions.

3.2. Model specification. We use the model outlined in Section 2. In particular, the vari-
ables included in the vector of global futures market quantities y0t and the country-specific
macroeconomic time series in yit are

y0t = (
Crudeoil,Gas/Oil,Corn,Rice,Soya,Soybean Oil,Wheat,Cotton,Ethanol, . . .

Hogs,Cattle (F),Cattle (L)
)′
,

yit = (CPI,CPF, IR, IP,FX)′.

We introduce climate shocks for aggregate regions through the exogenous scalar time se-
ries rjt (for j = 1, . . . ,J , where j marks a specific region) to assess the contemporaneous

8The EPIC model simulates potential crop growth under various biophysical and management conditions, which
we transform by using FAO conversion values from tons per hectare for each of our main crops.
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FIG. 1. Percent of caloric production under severe exceptional three-month drought and excess rainfall/flood
(grey shaded areas) and their sum (black line).

FIG. 2. Region-by-region correlations of climate shocks series for drought and drought/excess rainfall. The
regions are ordered by the latitude coordinates of their centroids.
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responses of all endogenous variables in the system. The effect of exogenous climate shocks
is captured as follows. Without loss of generality, we assume that the first J elements of f t ,
fjt , are set to rjt . Hence, the factor becomes observed and the impact reaction of yt and y0t

to a climate shock in region j is given by the j th column of the corresponding factor loadings.
Higher order impulse responses are then computed iteratively using standard recursions.

In terms of our prior setup we follow the general framework proposed in Section 2. It
remains to specify the lag length P , which we set equal to two, and the number of factors.
Here, we rely on the NG shrinkage prior setup involved in achieving regularization of the
factor loadings matrix which indicates that q = 19 factors are sufficient. These 19 factors
comprise of 11 observed climate shock series and the eight latent factors. Choosing a different
number of latent factors leaves the results qualitatively unchanged. We iterate the algorithm
30,000 times and discard the first 15,000 draws as burn-in. Posterior inference is obtained
considering each third of the remaining 15,000 posterior draws.

4. The impact of climate shocks.

Key features of the modeling approach. We start by investigating the cluster allocation
of countries and the estimated number of clusters. The upper panel in Table 1 displays the
estimated regime allocation across countries. The estimated allocation indicates that, within
our sample of high-income economies, the modeling approach yields two distinct clusters
based on domestic dynamics governed by ci . In fact, computing the posterior distribution
of the estimated number of regimes along the lines of Malsiner-Walli, Frühwirth-Schnatter
and Grün (2016) yields a posterior probability for two clusters equal to unity. The smaller
group contains four countries (Belgium, Canada, France and the U.S.), while the larger cluster
features the remaining economies. In terms of inclusion probabilities in the lower panel of
Table 1, the cluster allocation of all countries is distinct. Most economies are included in their
respective clusters in all iterations of the MCMC algorithm. An exception is Canada which
is included in the second group with an inclusion probability of 86%, and 14% for the first
group. Assessing drivers of cluster allocation in terms of λj and the posterior distribution of
μ1 − μ2 shows that main differences occur for the respective CPI equation.

In a second step, we assess the importance of SIs and thus comovements across shocks
governed by the factor structure. Figure 3 shows pairwise scatterplots of the columns of
the median estimates of the loadings matrix L associated with the latent factors. This vi-
sualization serves to illustrate which series load most strongly on which factor and to give
a qualitative interpretation to the latent factors. The first factor appears to reflect comove-
ments in interest rates, with most corresponding series exhibiting quantitatively large factor
loadings. Hence, this factor can be interpreted as a global financial cycle in the spirit of
Miranda-Agrippino and Rey (2020) and Eller, Huber and Schuberth (2020).

TABLE 1
Cluster allocation and posterior inclusion probability per country

Country AUT BEL CAN DEU ESP FRA GBR GRC HUN ISR ITA JPN NLD PRT SWE USA ZAF

Allocation
Cluster 1 2 2 1 1 2 1 1 1 1 1 1 1 1 1 2 1

Posterior inclusion probability
1 1.00 0.00 0.14 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00
2 0.00 1.00 0.86 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
other 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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FIG. 3. Pairwise scatterplots of the posterior median loadings by variable type across latent factors.

The third factor tracks joint movements in industrial production across economies. Turning
to factors shaping the error structure of commodities futures prices, we find the highest factor
loadings for the second, fourth, and fifth factors. Interestingly, the second factor appears to
also drive the shocks for exchange rates, providing a link between foreign exchange rate and
commodity markets. The fourth factor governs contemporaneous dynamics of commodities
futures markets and consumer price inflation across economies, while the fifth factor shows
the largest loadings for futures prices in terms of the respective magnitude of the loadings.
Notice that the eighth latent factor mostly shows loadings close to zero, providing further
evidence that this number is likely sufficient to capture dynamics in the variance-covariance
structure of the model.

In the following discussion we focus on three factors associated with the largest loadings
on futures market prices. Figure 4 plots the full history of the log volatilities over the sample
period. The volatilities with the highest loadings on commodity futures highlight multiple
stylized facts. First, the peak of the volatilities in 2008 in all three plots coincides with the
global financial crisis. However, note that fifth factor also reflects the so-called food price
crisis, where food and energy commodities rose sharply, with associated increased volatility
(Headey (2011)). Additionally, the sharp increase in commodity futures volatilities in 2013
corresponds to severe droughts impacting the U.S. It should be pointed out that the magnitude
of volatilities differs sharply across the factors, with the fourth factor—most strongly asso-
ciated with CPI and commodity futures—exhibiting the largest values. Commodity futures
are in fact seen as a possible hedge against inflation, providing an explanation for the shared
volatility structure.

Moreover, for the sake of completeness, we present some evidence on series specific id-
iosyncrasies for commodities futures prices in Figure 5. A few points are worth noting here.
First, we again find substantial differences in the magnitude of the volatilities across series.
Second, evidence for time variation in the idiosyncratic components of the error terms is
muted for soybeans and soyoil, while we find substantial movements in the idiosyncratic log
volatilities for the remaining series. Specifically, we do not find evidence for an increase in
the idiosyncratic log volatilities of biofuels during the stock market and food price crisis of

FIG. 4. Log volatilities of the factors with largest loadings for commodities futures prices. The solid black
line indicates the posterior median, while dashed lines refer to the 16th and 84th percentiles of the posterior
distribution.
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FIG. 5. Idiosyncratic log volatility components of commodities futures prices. The solid black line indicates the
posterior median, while dashed lines refer to the 16th and 84th percentiles of the posterior distribution.

2008/09. This implies that, while energy and agricultural futures clearly share similar volatil-
ity patterns, the link is not necessarily provided by biofuel markets and related U.S. policy
(Nazlioglu and Soytas (2011)).

The idiosyncratic log volatilities of crude oil and gas/oil exhibit similar patterns, especially
after the global financial crisis. The 2015 volatility spike, which is largely due to supply side
consolidation, especially of shale oil companies, can clearly be observed. The log volatilities
of corn exhibit seasonal patterns. These represent a well-known fact of the U.S. corn futures
market and are connected to corn stock movements. Moreover, the 2013 drought, evident in
Figure 1, is reflected as the highest volatility spike in corn futures.

Closer inspection of idiosyncratic livestock log volatility patterns reveals that live cattle
and hogs closely track the volatilities of crop markets as feeder cattle. This reflects the fact
that both of these livestock futures relate to animals which have to reach full maturity and
are tightly linked to global feed prices. Note that some pronounced volatility spikes in corn,
cotton, and ethanol futures are tracked with a slight delay by the hogs and live cattle mar-
kets, due to these crops being a major food source for hogs and cattles. The increase in the
log volatilities of the livestock market since 2016 can be clearly observed. Initially, chang-
ing CME futures market regulations were blamed for this increase; however, the trend has
persisted. Since then, despite regulatory countermeasures, the causes are subject of ongoing
research.

The impact of climate shocks on global futures prices. In the following we consider the
impact of climate-related drought/excess rainfall shocks on financial markets. The empiri-
cal literature emphasizes spillovers from energy to agricultural markets as causal effects for
rising food prices (Baumeister and Peersman (2013), Lucotte (2016), Nazlioglu and Soytas
(2011)). The dynamic responses of a wide range of commodity futures to regionally located
climate shocks provide evidence on the prevalence of strong linkages between global com-
modity prices and an increase in drought and excess rainfall events.

Figure 6 summarizes the peak endogenous responses to exogenous drought/excess rainfall
shocks across multiple geographic areas, measured in percent of potential kilocaloric produc-
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FIG. 6. Peak impulse response (excess rainfall and drought shocks) for commodities futures prices. The shading
indicates the absolute magnitude of the response. Plus/minus refers to the direction of the response; the numbers
in parentheses are months after the impact of the shock when the peak response occurs. Insignificant impulse
responses, based on the 16th and 84th percentiles of the posterior distribution covering zero, are left blank.

tion under severe drought/excess rainfall, in a single plot. Additional results and robustness
checks are provided in the Supplementary Material (Huber, Krisztin and Pfarrhofer (2023)).
The shading indicates the absolute magnitude of the response. Plus/minus refers to the di-
rection of the response, while the numbers in parentheses are months after the impact of
the shock when the peak response occurs. Insignificant impulse responses, that is, responses
where the 16th and 84th percentiles of the posterior distribution cover zero, are displayed as
blank.

The responses underlying Figure 6 are illustrated for both types of shocks—the sum of
drought/excess rainfall and only drought shocks in the U.S.—in Figure 7.9 The grey shaded
areas correspond to 68th percentile credible intervals. Combined drought/excess rainfall
shocks correspond to the dash-dot line, while the dashed line denotes a drought shock only.
The futures for the agricultural products corn, soybeans, and wheat are the three most valu-
able crops in terms of their aggregate production value in the U.S.

A first and rough inspection of the figures reveals that drought and excess rainfall shocks
can induce both positive and negative reactions in the futures markets. Positive responses can
be interpreted as a direct result of tightening agricultural supply. Negative reactions may stem
from various causes.

FIG. 7. Impulse responses of corn, soybeans, and wheat commodities futures to climate shocks in the U.S.
Shaded areas refer to 68 percent posterior credible set. “Both” denotes combined drought/excess rainfall shock,
while “Drought” denotes only a drought shock.

9Additional empirical results are available in the Supplementary Material (Huber, Krisztin and Pfarrhofer
(2023)). The full set of impulse response functions across shock regions and economies is available upon request.
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Zooming into the precise results, a few observations stand out. First and foremost, a short-
term (within a couple of months) decrease in prices might be interpreted as the overshooting
behavior of agricultural commodity prices. Second, a medium term decrease in prices could
indicate agricultural production shifting to crops that are less affected by adverse climate ef-
fects, for example, crops with lower water demand or higher resilience to climate volatility.
A further prevalent explanation for a price decrease are supply chain effects, such as droughts
and excess rainfall damage causing a decrease in demand for livestock feed and associated
products. The literature suggests that these effects play a key role in lower-income regions,
such as Sub-Saharan Africa, where wide-spread subsistence level farming coupled with cli-
mate change leads to lower demand for imported agricultural goods for feed-related purposes
(Amare et al. (2018), Minot (2014)). Finally, a medium- to long-term decrease in commod-
ity prices might be caused by production shifting to producing regions not affected by the
climate shock or where higher yields can be obtained.

In the case of combined drought and excess rainfall shocks in the U.S., our results suggest
that all considered crop and livestock futures, with the exception of rice and cotton, exhibit
a positive price response, peaking in the relative short-term of zero to two months. This is
also evident in the impulse response functions in Figure 7. Note that in the case of a drought
shock, only soybeans exhibit a significant price increase. A potential explanation could be
the high ratio of irrigable cropland which can mitigate the effect of drought on agricultural
production. The price of cotton decreases, albeit only slightly in the medium term. This could
be interpreted as a substitution effect. Particularly, cotton is seen as a competitor for soy and
corn production—both of which are seen as less resilient to climatic impacts.

Former U.S.S.R. countries have been a major producer and consumer of soybeans prior
to the collapse of large-scale production in the late 1990s. As a result, Russia and Western
Asian (CSI) countries are now major importers of soybeans and have started expanding pro-
duction again only in the last decade (Headey (2011)). Therefore, a drought shock translates
to a sharp increase of prices in global soy markets, as is evident in our results. Moreover,
combined drought and excess rainfall shocks lead to a short-term increase in corn prices and
a longer term increase (peak at nine months) of wheat price futures. The delayed peak is
likely the result of wheat stocks. The dip in cotton prices mirrors the responses in the U.S.
in magnitude and is likely also due to substitution effects. The significant decrease in global
oil futures prices is likely due to droughts being coupled with higher temperatures which can
significantly lower heating costs in cold climate regions.

The peak impulse response functions for Canada (CAN) are relatively muted. This is likely
due to the fact that Canada is not a major agriculture producing region and drought/excess
rainfall shocks have only minor impacts. The short-term price decreases of crops, followed by
a dip in life cattle, could be interpreted as the climate shocks affecting cattle production and
causing a dip in feed prices. The increase in soybean oil prices indicates an excess demand
for biofuels, of which Canada is a major global producer.

The peak impulse responses to a drought/excess rainfall shock in Europe (EUR) suggests
an increase in rice and cotton prices, coupled with an increase in crude oil prices peaking after
two months. This, together with a decrease in corn, soybean, and soyoil futures, suggests that
these crops and associated products are more robust to climatic shocks and yields might also
increase as a result of excess rainfall (Urban et al. (2015)). The increase in crude oil futures
peaking after two months can be interpreted as mitigation efforts by agricultural producers.

Southeast Asia (SEA) presents an interesting case, as it experienced major expansions of
palm oil plantations, used both in fuel production and as biofuels, to the detriment of cropland
and pastures in the recent decade. This is reflected in our results by a sharp increase in corn,
wheat, soy, and livestock prices in response to a climate shock. Feeder cattle prices exhibit
an immediate dip, likely due to producers faced with increasing feeder prices flooding the
market with young cattle for immediate meat production.
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Our results for the major producing region of Eastern Asia (EAS), encompassing China,
Japan, and South Korea, underline the effects of a drought/excess rainfall shocks on cotton
and cattle prices. Note also that the climate impacts lead to an immediate increase in ethanol
futures prices, where China is one of the leading producer regions.

Turning our attention to the results of drought/excess rainfall shocks in the Middle East and
North Africa (MNA), we provide evidence of sharp increases in rice prices. This is related to
the shocks impacting domestic production.

Considering the results for droughts/excess rainfall in Southern Asia (SAS), we find de-
creases in prices across a wide range of futures. Since the region itself encompasses devel-
oping economies with a low per capita income but a large share of global production, this
provides support of a change in demand in relatively poorer countries as a result of climate
shocks (Amare et al. (2018), Minot (2014)). The persistent dip in oil prices is evidence of the
major role of transportation costs: a shortfall of exports leads to less demand for fuel (Headey
(2011)).

For shocks in Sub-Saharan Africa (SSA), our results suggest a decrease in cotton, wheat,
corn, soybean, hogs, and livestock prices, coupled with an increase in the global futures price
for rice. Household level surveys, such as Minot (2014) and Amare et al. (2018), provide
evidence for a drop in demand for multiple imported goods, due to a decrease in household
income, which is supported by our results. While SSA accounts for only two percent of global
rice production, they are a major per capita consumer of rice products, and the majority of
local production is also consumed locally (Headey (2011)). Thus, a drought shock turns into
increased imports and, in turn, an increase in global prices.

A drought/excess rainfall-related shock to agricultural production areas in Latin American
countries (LAC) leads to an immediate dip in corn, soybeans, and live cattle futures prices.
The joint dip in major feed and live cattle prices suggests that futures markets react to the
climate shock by selling live cattle which causes a subsequent dip in feed prices. Additionally,
climate-related shocks, especially in South and Central America, are thought to lead to a
conversion of cropland areas into pastures (Headey (2011)) which, in turn, increases global
supply of livestock products.

Drought shocks in Oceania (OCE), covering the high output economies New Zealand and
Australia, yield similar responses as in Europe. The shortfall in domestic production leads
to excess demand and a sharp increase in global wheat, corn, soybean, and soyoil prices.
These price spikes are persistent and in the case of soybean, rice and corn, peak only after
four months. Lean hogs futures prices decrease, likely due to producers selling early to avoid
increased production costs. The decrease in global oil prices points to a decrease in exports.

Impacts on high-income economies. In order to obtain a more detailed picture of how
global drought/excess rainfall shocks play out in high-income economies, we now consider
the country-specific results of our model for several key macroeconomic series.

Figure 8 displays peak responses to exogenous climate shocks for a set of macroeco-
nomic variables in a single plot. Each subpanel of the figure contains peak responses for
all drought/excess rainfall shocks in the 11 global climatic regions. The shading corresponds
to the absolute magnitude of the response, while the plus/minus signs indicate the direction
of the response. The numbers in parentheses denote the peak of the response after the impact
of the shock in months. Insignificant impulse responses (under the 16th and 84th percentile)
are again displayed as blank.

Selected nonaggregated, individual impulse responses, which Figure 8 is based upon, are
presented for a climate shock in the U.S. in Figure 9. Additional results are provided in
the Supplementary Material (Huber, Krisztin and Pfarrhofer (2023)). The plot contains the
response of selected variables (IP, CPF, IR, and XR) for the U.S., Canada, Japan, and the
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FIG. 8. Peak impulse responses (excess rainfall and drought shocks) across countries and variable types. The
shading indicates the absolute magnitude of the response; plus/minus refers to the direction of the response, while
the numbers in parentheses are months after the impact of the shock when the peak response occurs. Insignificant
impulse responses, based on the 16th and 84th percentiles of the posterior distribution covering zero, are left
blank.

U.K. These countries were the largest (in 2010 USD) users/importers of U.S. agricultural
trade goods in our study period. The figure illustrates both drought/excess rainfall (dash-dot
line) as well as drought shocks in isolation (dashed line), while the grey shaded areas indicate
68% credible intervals.

A first inspection of Figures 8 and 9 reveals that droughts and excess rainfall events in-
deed exhibit spillovers on price changes, interest rates, and economic output. The magnitude,
direction, and significance of these shocks is dependent on a countries’ overall dependence



A BAYESIAN PVAR TO ANALYZE ECONOMIC IMPACTS OF CLIMATE SHOCKS 1563

FIG. 9. Impulse responses of selected variables to a shock (excess rainfall and drought) in the U.S. Shaded areas
refer to 68% posterior credible set.

on agricultural goods as well as geographic proximity and trade ties to the drought/excess
rainfall impacted climatic region. Nonetheless, some regularities can be readily observed.
Exchange and interest rate responses of Euro area countries exhibit comovements, due to the
common monetary policy. Additionally, the responses of interest rates display significant co-
movement across the sample. The direction of this comovement seems to strongly depend on
which climatic region is impacted by the shocks. This can be explained by the fact that the
countries of interest represent developed economies with homogeneous choices of trading
partners amongst the eleven climatic regions (Baker et al. (2018)).

The magnitude of food price responses are rather muted, as compared to the aggregate
change in CPI. While this might seem surprising, the pronounced response in short-term
interest rates can be seen as a compensation of shocks that would otherwise increase food
prices. This is supported by recent literature documenting the relationship of CPF and inter-
est rates which views interest rates as implicitly mitigating climate shocks (Akram (2009),
de Nicola, De Pace and Hernandez (2016)). Finally, it is worth mentioning that the peak
responses manifest within the first months in countries that were directly impacted by the
drought/excess rainfall shock. Spillover to other countries typically are seen later on.

While an exogenous drought/excess rainfall shock in the U.S. has only modest domes-
tic effects, our results provide evidence for spillovers to other regions. Canada (in monetary
terms the largest importer of U.S. agricultural goods) exhibits a dip in industrial production,
peaking a year after the shock. Multiple European economies as well as Japan and Israel ex-
hibit an immediate increase in industrial production as a response to a climate shock in the
U.S. Moreover, a climate shock in the U.S. increases food prices around three months after
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the shock in several of the considered economies. Spillover effects on average food prices in
other regions vary in intensity, with the most pronounced responses being in the U.K. and
Netherlands. Relatedly, we observe a minor increase of the real effective exchange rate of the
U.S. dollar which is consistent with the U.S. being a large importer of food stocks. This indi-
cates that the shortfall of production is matched by imports. Interestingly, the exchange rate
of Canada—the largest trading partner of the U.S.—does not change significantly, reflecting
that agricultural commodities are imported from elsewhere. However, Canada experiences a
short decrease in inflation which is matched by a decrease in interest rates consistent with
expansionary monetary policy counteracting disinflationary pressures. The real effective ex-
change rates of almost all Euro area economies and Israel exhibit a slight dip, coupled with
decreases in short-term interest rates and a one to five month spike in output. This indicates a
direct increase in production to cover the U.S. shortfalls. The responses in inflation are mixed,
pointing to a slight short-term increase in Sweden, Portugal and Greece.

The impacts of a drought/excess rainfall shock in Russia and Western Asia (CSI) are char-
acterized by a reduction of short-term interest rates, combined with short-term food price and
output spikes in major trading partners. Note that positive impacts on production are short-
term in most European countries. This is closely related to our findings that drought shocks
in the CSI region induce a dip in crude oil and gas/oil prices (Lucotte (2016)).

Focusing on the domestic response to a drought/excess rainfall shock in Canada (CAN),
we observe that food prices experience a short spike, where food prices exceed average prices
by over one percent initially. This is matched by a decrease in interest rates and a statistically
significant decline in industrial production. Canada’s largest trading partner, the U.S., exhibits
similar patterns, albeit without increases in relative food prices. Price and output fluctuations
can be observed throughout the European economies around the first months, reflecting ad-
justments to the economy to a drought shock in a large ethanol producing country. Major
importers of Canadian products, such as the U.K., also experience spike in food prices di-
rectly following the climate shock.

The real effective exchange rate responses to a drought/excess rainfall shock in Europe
(EUR) provide evidence that all European economies (with the exception of the United
Kingdom, Hungary, and Portugal) significantly increase imports to match the shortfalls in
agricultural production. The responses in output within Europe are mixed, with the major-
ity of countries experiencing a decrease in production, with the exception of Austria, Italy,
Hungary, Portugal, and Spain. Note that food prices decrease across all European countries
with the exception of the Netherlands. The responses in the U.S. to a European drought
shock demonstrate an increase in exports, coupled with an initial drop in production. This
phenomenon occurs at the same time as global futures prices for wheat and rice increase,
pointing to shortages in food availability as a possible explanation.

A climate shock in Southeast Asia (SEA) results in the strongest responses in industrial
production across our sample of economies. In most cases the response is an immediate
increase in industrial production, with the exception of Spain and Greece where production
dips modestly. The shocks result in a CPF increase over the medium- to long-term (four to
13 months). This is consistent with a supply shocks to agricultural production. Note that the
drought/excess rainfall shocks also yield increases in interest rates, mostly coinciding with
the food price increases. The real effective exchange rates also tend to increase.

Examining drought/excess rainfall shocks in Eastern Asia (EAS), we observe that Japan,
and some parts of Europe face a shortfall in production and a negative reaction of output.
The results highlight that countries such as the U.S., Austria, Germany, Hungary, and South
Africa experience a small delayed (after a horizon of 12 to 20 months), albeit significant,
decrease in industrial production. This might be an indication of the overshooting behavior
of commodity markets, since many of these countries expand their production in response to
the climate shock in Asia.
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Droughts and excess rainfall events in Middle East and Northern Africa (MNA) cause
a significant, albeit small, positive reaction on output and a dip in inflation in almost all
economies under consideration. The results from a drought/excess rainfall shock in Sub-
Saharan Africa (SSA) have relatively muted effects on industrial production, causing only a
short-term dip in Israel and Belgium. The effect of the shock on prices and interest rates is
limited, except for Israel where the climate shock leads to a spike in inflation with a relative
increase in food prices and a decrease in short-term interest rates. This may be explained by
noting that Israel has substantial agricultural import ties with Sub-Saharan Africa. Almost all
countries in our sample exhibit a statistically significant increase in real effective exchange
rates in response to a climate shock which is consistent with increased imports. South Africa
is not significantly affected in terms of output or exchange rate fluctuations. This underlines
findings of Amare et al. (2018) who argue that demand shifts due to droughts are only in
effect in lower-income countries, as opposed to high-income economies.

The peak impulse responses to a climate change shock in Latin America (LAC) indicate a
negative impact on interest rates across almost all countries of the sample, accompanied by
a short period of declines in output. This reflects the large contribution of Latin American
countries to crop and livestock production globally (Headey (2011)). Major trading partners
like the U.S. and some European countries increase imports. Additionally, across the Euro
area food prices relative to overall price levels dip significantly after the shock.

5. Concluding remarks. In this paper we focus on the highly policy relevant question
of assessing the impacts and transmission channels of climate change shocks on a set of high-
income OECD economies. For this purpose we measure climate change-related shocks using
a novel index measuring the percentage of agricultural production under severe, persistent
drought, and excess rainfall, constructed by using spatially explicit datasets. Moreover, we
specifically focus on macroeconomic quantities, such as output, interest and exchange rates
as well as food prices and inflation. Moreover, our approach controls for the crucial role of
global commodity markets in the agricultural sector. In order to efficiently cope with the large
number of variables, we develop a PVAR model that pools information across countries using
a sparse finite mixture of Gaussians prior on the domestic, country-specific coefficients. We
control for the existence of dynamic interdependencies by relying on a global-local shrink-
age prior to stochastically select nonzero relationships across countries and variable types.
Static interdependencies are parsimoniously modeled through a factor stochastic volatility
specification of the error variance-covariance matrix.

Our findings suggest that climate shocks have a sizable effect on global commodity mar-
kets as well as on country-specific macroeconomic variables. The strongest effects can be
found for interest rates and inflation, consistent with U.S.-based studies such as Akram (2009)
and Cashin, Mohaddes and Raissi (2017). The quantitative relevance of climate shocks points
toward substantial policy implications. For instance, higher frequencies and intensities of cli-
mate shocks triggered by climate change require appropriate fiscal and monetary policies to
mitigate the economic implications of climate change. Major central banks, such as the Euro-
pean Central Bank, now explicitly analyze and discuss appropriate policy reactions to climate
change in recent strategy reviews (Drudi et al. (2021)). Our results contribute to this discus-
sion by providing quantitative guidance on how climate shocks impact financial markets and
the wider macroeconomy.

Additionally, we provide evidence for climate change impacts on high-income countries,
even if the associated events manifest in a different part of the world. The global commodity
market results corroborate the findings of Nazlioglu and Soytas (2012) and Lucotte (2016),
who also find strong evidence for the interdependence between energy and agricultural mar-
kets coupled with an increased global demand for biofuels.
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APPENDIX A: POSTERIOR SIMULATION

(1) Simulation of VAR coefficients, factor loadings, and stochastic volatility components:
(a) Sample Ai and Bi from their Gaussian conditional posterior distributions on an

equation-by-equation basis. Conditional on Lf t , the conditional posterior for each
equation of equation (1) is given by([Ci]′j•

[Bi]′j•

)
|• ∼ N (cij ,M ij )

for i = 1, . . . ,N and j = 1, . . . ,M . The posterior mean and variance are given by

M ij = (
X̃

′
iX̃i + W−1

i

)−1
,

cij = M ij

(
X̃

′
i[Ỹ i]•j + W−1

ij ψ ij

)
with X̃i being a full-data matrix with typical t th row, given by (x′

it ,x
′−i,t ) exp(−ωtn/

2). The index n selects the element of �t associated with the j th equation in country
i and [Ỹ i]•j has typical element yij,t − [L]n•f t . In addition, W i = diag(V j ,	ij )

with 	ij being a diagonal prior variance-covariance matrix for the j th equation con-
structed using equation (9), and ψ ij is a prior mean matrix that consists of the ele-
ments in μg associated with the j th equation, for δi = g, and the remaining elements
are set equal to zero. The matrix V j is constructed by selecting the variance param-
eters in V that relate to the j th equation.

(b) We simulate the quantities related to the factor stochastic volatility specification
using the R-package factorstochvol (Kastner (2019b)). Details on the pos-
terior quantities involved are presented in Kastner (2019a). Specifically, the algo-
rithm draws first the full history of the idiosyncratic volatilities hjt , the volatilities of
the factors ωjt , and the corresponding parameters φωj , ρsj and σsj . The subsequent
step produces draws for the global and local shrinkage parameters from the rowwise
Normal–Gamma prior specification. In the next step, simple Bayesian regression up-
dates can be used to obtain a draw for the factor loadings matrix L. To speed up
mixing in this step, the algorithm relies on deep interweaving techniques. The final
updating step produces a draw for the full history of the factors f t .

(2) Simulation of quantities associated with the mixture model:
(a) Sample the mixture probabilities w from a Dirichlet distribution, given by

w|• ∼ Dir(p1, . . . , pG),

with pg = p0 + Ng and Ng = #{i : δi = g} denoting the number of countries located
in cluster g.

(b) The regime measures δi are simulated from a multinomial distribution with

Pr(δi = k) ∝ wkfN (ci |μg,V ).

(c) We obtain draws for the group-specific means from a multivariate Gaussian distribu-
tion,

μg|• ∼ N (μg,V g),

V g = (
NgV

−1 + Q−1
0

)−1
,

μg = V g

(
NgV

−1cg + Q−1
0 μ0

)
.

cg =
∑N

i=1 ci δi

Ng
denotes the mean of the domestic quantities associated with group g.
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(d) The common variance-covariance matrix V is obtained by independently sampling
vj (j = 1, . . . ,m) from

vj |• ∼ G−1
(
w0 + N

2
,w1 +

∑N
n=1(cnj − μnj )

2

2

)
,

where μnj = μgj if δn = g.
(e) We simulate λj from a generalized inverted Gaussian (GIG) distribution,10

λj |• ∼ GIG(pG,dj , ej ).

After simulating all λj s we construct Q0 = �R0�, with R0 being based on the most
recent Gibbs draw of c.

(f) The full conditional posterior of μ0 is Gaussian with

μ0|• ∼ N (μ0,Q0),

whereby μ0 = 1
G

∑G
g=1 μg and Q0 = 1

G
Q0.

(g) Simulate the intensity parameter of the Dirichlet prior p0 using a random walk
Metropolis–Hastings algorithm on the log scale. The full conditional posterior den-
sity of p0 is given by

p(p0|w) ∝ p(w|p0) p(p0).

We propose a value p∗
0 from p∗

0 ∼ p
(a)
0 ez with z ∼ N (0, c). Here, we let c be a tuning

parameter specified such that the acceptance rate lies between 20 and 40% and p
(a)
0

denotes the last accepted draw. The probability of accepting a new draw is then

α
(
p∗

0,p
(a)
0

) = min
[

p(w|p∗
0) p(p∗

0) p∗
0

p(w|p(a)
0 ) p(p

(a)
0 ) p

(a)
0

,1
]
.

(3) Simulation of shrinkage parameters on dynamic interdependencies:
(a) For each country i = 1, . . . ,N , simulate the global shrinkage parameters ξi from a

Gamma distribution,

ξi |• ∼ G
(
c0 + ϑik, c0 + ϑi

2

k∑
i=1

τij

)
.

(b) Sample the local shrinkage parameters from their GIG distributed posteriors

τij |• ∼ GIG
(
ϑi − 1

2
, ϑiξi, b

2
ij

)

for i = 1, . . . ,N and j = 1, . . . , k.
(4) Apply a random permutation step by simulating one of G! possible permutations of

{1, . . . ,G}, labeled �,

(w1, . . . ,wG)′ = (w�(1), . . . ,w�(G)),

(μ1, . . . ,μG)′ = (μ�(1), . . . ,μ�(G)),

δ = �(δ).

In case we include a set of global variables (such as in our empirical work), the correspond-
ing coefficients can be estimated in precisely the same way as the ones for the country-specific
variables.
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APPENDIX B: REGIONS AND DATA

TABLE 2
Composition of aggregated global climatic regions and the associated countries

Canada (CAN)
Canada

Russia and West Asia
(CSI)

Armenia
Azerbaijan

Belarus
Georgia

Kazakhstan
Kyrgyzstan
Moldova

Russian Federation
Tajikistan

Turkmenistan
Ukraine

Uzbekistan
East Asia (EAS)

China
Japan

Republic of Korea
Europe (EUR)

Albania
Austria

Belgium
Bosnia and Herzegovina

Bulgaria
Croatia
Cyprus

Czech Republic
Denmark
Estonia
Finland
France

Germany
Greece

Greenland
Hungary
Iceland
Ireland
Italy

Latvia
Lithuania

Luxembourg
Macedonia

Malta
Netherlands

Norway
Poland

Portugal

Europe (EUR)
Romania

Serbia and Montenegro
Slovakia
Slovenia

Spain
Sweden

Switzerland
United Kingdom

Latin America (LAC)
Argentina
Bahamas

Belize
Bolivia
Brazil
Chile

Colombia
Costa Rica

Cuba
Dominican Republic

Ecuador
El Salvador

Falkland Islands
French Guiana

Guadeloupe
Guatemala

Guyana
Haiti

Honduras
Jamaica
Mexico

Nicaragua
Panama

Paraguay
Peru

Suriname
Trinidad and Tobago

Uruguay
Venezuela

Middle-East and
North-Africa (MNA)

Algeria
Bahrain
Egypt
Iran
Iraq

Israel
Jordan
Kuwait

Middle-East and
North-Africa (MNA)

Lebanon
Libya

Morocco
Oman
Qatar

Saudi Arabia
Syria

Tunisia
Turkey

United Arab Emirates
Western Sahara

Yemen
Oceania (OCE)

Australia
Fiji

French Polynesia
New Caledonia
New Zealand

Papua New Guinea
Samoa

Solomon Islands
Vanuatu

South Asia (SAS)
Bangladesh

Bhutan
India
Nepal

Pakistan
Sri Lanka

Southeast Asia (SEA)
Brunei Darussalam

Cambodia
Indonesia

Korea DPR
Laos

Malaysia
Mongolia
Myanmar

Philippines
Singapore
Thailand
Viet Nam

Sub-Saharan Africa
(SSA)
Angola
Benin

Botswana

Burkina Faso
Sub-Saharan Africa

(SSA)
Burundi

Cameroon
Cape Verde

Central African Republic
Chad

Comoros
Congo

Congo DR
Cote d’Ivoire

Djibouti
Equatorial Guinea

Eritrea
Ethiopia
Gabon
Gambia
Ghana
Guinea

Guinea-Bissau
Kenya

Lesotho
Liberia

Madagascar
Malawi

Mali
Mauritania
Mauritius

Mozambique
Namibia

Niger
Nigeria
Reunion
Rwanda
Senegal

Sierra Leone
Somalia

South Africa
Sudan

Swaziland
Tanzania

Togo
Uganda
Zambia

Zimbabwe
United States of
America (USA)

United States of America
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TABLE 3
Abbreviations and variable descriptions of the PVAR information set and sources of the data

Futures prices Description and source
(Abbreviation)

Crude oil Intercontinental Exchange Brent Crude Futures, Continuous Contract #2
(Source: Quandl/CHRIS)

Gas/Oil Intercontinental Exchange Gas Oil Futures, Continuous Contract #2
(Source: Quandl/CHRIS)

Corn Chicago Mercantile Exchange Corn Futures, Continuous Contract #2
(Source: Quandl/CHRIS)

Rice Chicago Mercantile Exchange Rough Rice Futures, Continuous Contract #2
(Source: Quandl/CHRIS)

Soya Chicago Mercantile Exchange Soya Futures, Continuous Contract #2
(Source: Quandl/CHRIS)

Soybean Oil Chicago Mercantile Exchange Soybean Oil Futures, Continuous Contract #2
(Source: Quandl/CHRIS)

Wheat Chicago Mercantile Exchange Wheat Futures, Continuous Contract #2
(Source: Quandl/CHRIS)

Cotton Intercontinental Exchange Cotton No. 2 Futures, Continuous Contract #2
(Source: Quandl/CHRIS)

Ethanol Chicago Mercantile Exchange Ethanol Futures, Continuous Contract #2
(Source: Quandl/CHRIS)

Hogs Chicago Mercantile Exchange Lean Hogs Futures, Continuous Contract #2
(Source: Quandl/CHRIS)

Cattle (F) Chicago Mercantile Exchange Feeder Cattle Futures, Continuous Contract #2
(Source: Quandl/CHRIS)

Cattle (L) Chicago Mercantile Exchange Live Cattle Futures, Continuous Contract #2
(Source: Quandl/CHRIS)

Macroeconomic variables Description and source
(Abbreviation)

CPI Nominal seasonally adjusted consumer price index, measured in log differences.
(Source: World Bank)

CPF Ratio of nominal, seasonally adjusted food consumer price index and CPI,
measured in log levels. (Source: FAO)

IR Short term interest rates, percent per annum, measured in log levels.
(Source: OECD)

IP Total value of industrial production, in seasonally adjusted 2010 USD,
measured in log levels. (Source World Bank)

FX Real effective exchange rate index, measured in log levels.
(Source: World Bank)
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10We assume that x follows a GIG distribution if its density is proportional to xa−1 exp{−(bx + c/x)/2} with
a ∈R and b, c > 0.
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SUPPLEMENTARY MATERIAL

Additional empirical results. (DOI: 10.1214/22-AOAS1681SUPPA; .zip). This section
collects several additional results. These include impulse responses to drought shocks only
and cross-sectionally aggregated impulse responses. Individual responses across countries
and shock-regions are available upon request.

Simulation based evidence (DOI: 10.1214/22-AOAS1681SUPPB; .pdf). In this section
we evaluate the merits of our approach by means of an extensive simulation exercise.
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