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Addressing path dependencies in decision-making
processes for operationalizing compound
climate-risk management
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SUMMARY

The need for a compound risk governance system and management practice is
argued in this paper. We find that, historically, risk management strategies
have been developed for single hazards and are often subject to path depen-
dency. It is thus difficult to adapt them to a situation that has compound risks.
The lack of attention to compound risks in current risk management practices
often leads to potential side effects—positive or negative—on other risks and
can also result in related management strategies being overlooked. This can ulti-
mately cause barriers to larger transformational adaptation efforts and lead to
the intensification of existing societal inequalities or to the creation of new
ones. To alert policy- and decision-makers to the need to move toward com-
pound-risk management strategies, we argue that risk management must explic-
itly highlight various elements of path dependencies, the positive and negative
side effects of single-hazard risk management, the appearance of new social
inequalities, and the intensification of existing ones.
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INTRODUCTION

In risk research, more attention has been paid to compound extreme weather and climate events in recent

years—for two reasons: the potentially substantial losses these events can cause and the resulting

complexity and non-linearity of managing and recovering from large compounding events.1,2 In addition,

these events havemultiple causes fromdifferent scales, sources, and time frames.1 The 2012 Special Report

on Climate Extremes (SREX) of the Intergovernmental Panel on Climate Change (IPCC) opened the debate

on compound/correlated/complex weather events.3 Compound weather and climate events can be

defined as ‘‘a combination of multiple drivers and/or hazards that contributes to societal or environmental

risk’’ (1, p. 469). As compound weather and climate events are connected in terms of physical processes, a

more dynamic perspective of the hazard events is often required.4 The complexity increases when com-

pound events are influenced by multiple physical processes, such as rainfall, wind speed, temperature,

and adiabatic processes, etc.5,6 These physical processes are interconnected and mutually reinforcing;

for example, the magnitude of a flood event can be influenced by soil dryness or the occurrence of extreme

wet and cold events.5,7 As climate change interacts with the different physical processes, its complexity in-

creases.1 A warmer climate will influence and increase the impact of most physical processes; for instance,

there may be increased rainfall events in the fall after a summer that is long and dry due to prolonged heat

waves.8–10 Overall, compound events can be distinguished by how they arise and interact. They may be:

(a) preconditioned (e.g., a flood event caused by a drought event); (b) multivariate (e.g., drought and heat-

waves occurring at the same time); (c) temporally connected (e.g., caused by several tropical cyclones); or

(d) spatially connected (e.g., multiple flood events.11 Compound events are also complex in that they con-

nect a variety of natural processes, spatial scales, and temporal factors such as prolonged drought events

that can trigger flooding. 11,12 Various events in recent years, such as hurricanes Harvey and Irma, different

false springs in Europe, or various connected drought and heatwave events across the globe, have shown

the limitations of societal and environmental capacities to cope with and adapt to climate change.1,12–15

The occurrence of such compound events has increased the frequency and magnitude of hazards.16–18

As compound weather and climate events combine different extremes, they have a cumulative impact

that is much higher than that of a single event; they can cause higher losses and damages than single

events, and with our current decision- and policymaking directions, we are unprepared to manage them.12
iScience 26, 107073, July 21, 2023 ª 2023 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

mailto:thaler@iiasa.ac.at
https://doi.org/10.1016/j.isci.2023.107073
https://doi.org/10.1016/j.isci.2023.107073
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2023.107073&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


ll
OPEN ACCESS

iScience
Perspective
Moreover, compound weather and climate events encourage cascading social processes, with high-impact

events creating further socio-cultural, economic/financial, and political effects, as well as stress to individ-

uals.19 Having to live with more extreme and frequent compound events will be particularly problematic for

low-income households, which are more likely affected by hazard events, often less prepared, and

frequently unprotected by technical mitigation measures.20–22 Subjectively, people see an initial event

as discrete, but by the second or third event the initial disaster is no longer understood as a singularity

but becomes intertwined in its effects and historical meaning with other events. Objectively, the domino

effect of disasters not only poses particular problems for recovery trajectories (whereby people have

not begun to recover from the first disaster before the second or third hits) but it also exposes preexisting

limitations for both short-term mitigation and long-term trajectories for social recovery (19, p. 24).

Major drought events, for example, affect soils and forest health, which can trigger future flood events as

soil and forest conditions become unable to provide their traditional regulation functions.23,24 In such

cases, drought events can lead to a positive feedback loop for future flood events, as crusted soil leads

to greater runoff.1,25,26 On the other hand, floods often occur in multiple spatial areas (like the Alpine sum-

mer floods in 2005), and this exhausts the blue-light organizations, making it impossible for them to cope

with all the various flood events at the same time.27 The outcome in such situations is much higher losses

compared with those that result from a single-catchment flood event.

To date, however, most risk assessments have been based on the understanding of a single independent

hazard process. Many risk management approaches thus fail to take into account the positive or negative

consequences that a given single hazard process might have for another hazard as well as for management

efforts related to it. For example, decisions taken in the course of drought risk management could have

negative impacts on future flood events, or vice versa.26; the implementation of Nature-Based Solutions

(NBS) in flood risk management could have positive impacts in terms of reducing the risk of future drought

events.28

Over time, risk management of individual hazards has become path-dependent and based on engineering

solutions. Hence, although alternative approaches are available, infrastructure, knowledge, and institu-

tions have evolved and become more and more interconnected, resulting in this particular practice taking

hold.29 Engineering solutions are often easier to implement in currently used decision-making processes

than innovative alternatives, such as NBS, like wetlands, trees, and natural retention areas, etc. NBS could

be implemented to manage risks emerging from different types of hazards within a compound event. How-

ever, NBS need space for implementation, and this space is often privately owned, which may cause con-

flicts and/or long-term negotiation processes.30,31 Engineering solutions, on the other hand, require less or

no privately owned land, and are well-known within the public administration for their efficiency in risk

reduction.32,33 Overcoming such path dependencies is thus crucial, and risk-management decisions should

be checked at every stage against a variety of alternatives, particularly those best suited to addressing

compound climate risks.

In this perspective paper, we aim to extend the current debates within the climate-related riskmanagement

sphere. We demonstrate the importance of compound risk management and the decision-making pro-

cesses related to it. We show how several concepts can be integrated to improve risk management. As

mentioned, strategies to reduce losses caused by natural hazard events have often focused, to date, on

single hazard events; and this, in turn, has the potential to create inefficient and problematic effects within

the risk management system itself. A limited perspective of this kind can increase the vulnerability of indi-

viduals and communities. We emphasize, in particular, the importance of establishing a compound risk

management approach and of overcoming the potential path dependencies of current single risk-manage-

ment approaches.29 Indeed, by definition, path dependencies lock in on sub-optimal paths—paths that are

inefficient or that exacerbate inequalities within a country or a community by increasing the social vulner-

ability of individuals and communities and hindering their recovery after an event has occurred .34,35 A key

focus is thus on the questions: (i) how can path dependencies be avoided or overcome? and thus (ii) how

can a compound risk management system be enabled in practice to ultimately help prevent escalation of

economic losses and social inequalities as climate change intensifies. With this in mind, we conducted a

critical review of the literature on the need for, and the challenges involved in, compound weather and

climate risk management, and its practical implementation.36 On this basis, we outline the positive aspects

of developing a compound risk management approach with, as follows: (i) an overview of the current
2 iScience 26, 107073, July 21, 2023
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limitations in disaster risk management in terms of compound weather and climate risks; (ii) the risk of path

dependency and its potential negative socially implications; and (iii) how these challenges and negative

consequences can be overcome using a compound risk management strategy.
THE ROLE OF PATH DEPENDENCY IN DISASTER RISK MANAGEMENT

According to Hanger-Kopp et al. (29, p. 2) path dependency is: a process that has the property of staying on

a particular [trajectory], so that past decisions and contingent events pre-determine what further steps may

be taken. [Under such circumstances] technologies, policies, or governance modes are locked-in [and] self-

reinforcing mechanisms contribute to their reproduction and diminish the range of likely alternatives.

A core problem is that ‘‘path dependency manifests as resistance to changing the way things have always

been done, even if business as usual seems to be increasingly maladaptive’’ (37, p. 2). In approaching path

dependency, the idea is to understand and assess why it is difficult or almost impossible to redesign certain

modes of governance or decision-making as they arise over time.38 Path dependencies are often a key bar-

rier to adapting to changing risks in the future, and they thus hinder the introduction of adequate disaster

risk reduction measures. Decisions that create path dependency can even have negative consequences

(e.g., losses) for another hazard or create cascading effects which result in higher losses.34 The core of

the problem of path dependency is that it is self-reinforcing, namely, it ensures that ‘‘further steps will

be taken along the same path’’ (38, p. 96) by decision-making entities, and this plays a crucial role in the

failure to adequately address disasters and disaster risk management. Indeed, several interrelated self-re-

inforcing mechanisms may be at play to varying extents. Some are more closely tied to the technology in

place, for instance, high up-front costs, learning, and network effects, whereas others are related more to

the associated institutions, for example, political authority and institutional density.29

In disaster risk management, self-reinforcing mechanisms support the ‘‘accumulation of vulnerability and

exposure within a system over time’’ (34, p. 2). Frequently, however, these connections and interactions

are overlooked in the decision-making process. One example is the connection between SARS-CoV-02

pandemic and climate risks.39 In 2020 the SARS-CoV-02 pandemic was highly influential in the emergency

planning for tornados, posing such questions as: how and where can people be evacuated during the lock-

downs? who will be driving the buses for homeless people during tornado season lockdowns? and how

should those who test positive for Sars-CoV-02 be dealt with in the shelters?40

A classic example of path dependency in disaster risk management is the focus on structural engineering

solutions, which is often based on a standardized design level, and leaves limited possibilities for further

adaptation strategies, which are needed to confront the impacts of a warmer climate.29,41,42 Hazard events

with a higher intensity in particular cannot be covered by existing structural engineering solutions. In the

worst case, those structural measures could even reinforce the natural hazard process (or any other hazard

process). For example, under intensive rainfall, dams or reservoirs used for water supply during periods of

drought have a much higher susceptibility to failure, as they strain against the weight of the increased vol-

ume of water.26 On the other hand, if intensive rainfall is expected, dams can usually release water to pre-

pare for the flood wave. Releases can, however, worsen the situation if a drought event follows, as the dam

or reservoir cannot fulfill its major function of water supply. Such was the case in Kerala, India, in 2018.43 It is

impossible or almost impossible to adapt decisions that lead to path dependency without an enormous

expenditure of resources (e.g., personal, financial, technological, etc.).44 Disaster risk management is often

subject to path dependency, both institutionally and structurally, as engineering solutions have lifespans of

up to 80 years and any adaptation to a chance event would be extremely costly.

Consequently, path dependency in disaster risk reduction often reinforces or encourages vulnerability and

exposure within a region. This can have negative consequences for low-income householders.34 who, in

many cases, are more prone to hazards and more greatly affected by past events.21 They also suffer

more from hazard events compared to other social groups.21,45–48 Some possible reasons are: (a) lower so-

cial capital; (b) lack of financial resources; (c) lack of insurance on which to claim; and (d) delayed financial

support from the public administration. Low-income householders are also more likely to live in hazard-

prone areas with a lower level of protection.49,50 or are more often affected by planned relocations.20

This is highly problematic if decisions in risk management have created a lock-in situation, as this makes

it almost impossible to break the current path to find an effective response to the new circumstances, to
iScience 26, 107073, July 21, 2023 3



Table 1. Potential implications of a compound risk approach for the five strategies in risk management

Risk management

strategy Examples

Aim of the measure for

a single-hazard

perspective

Aim of the measure for

a compound

perspective

Potential implications

for a compound risk

approach

Prevention Relocation of residential

and non-residential

properties.

Sudden decrease in the

number of exposed

residential and non-

residential properties

affected by a single hazard

event

Permanent and future-

oriented decrease in the

number of exposed

residential and non-

residential properties

affected by different

hazards

Integration of compound

events into planning and

policy decisions

Defense Implementation of

subsurface storages

Technical mitigation

measures, such as flood

dams

Reduce the peak flows and

store water for potential

drought events

Consideration of cascading

effects and interactions

Mitigation Implementation of building

adaptation strategies

Implementation of

property-level flood-risk

adaptation (PLFRA)

measures

Implementation of

property-level measures

showing high efficiency for

compound events

Selection and

development of

adaptation measures that

can be used for compound

events

Preparation Take actions to improve

risk awareness of

compound events through

training, evacuation

strategies, risk

communication

Reduce potential losses

from a single hazard

Reduce potential losses of

compound events

Enhanced cooperation and

communication between

the public sector and

society

Recovery Financial schemes (e.g.,

insurance payments,

government relief

subsidies, micro credits,

buy-out schemes etc.) for

recovery—focusing on the

impacts of compound

events

Reduce potential losses

from a single hazard

Reduce potential losses

from compound events

Improve efficiency of fiscal

measures
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adapt to higher temperature, or to take actions to reduce social inequalities. There is thus a strong need to

understand—well in advance—how path dependency can be avoided.

TOWARD COMPOUND RISK MANAGEMENT TO AVOID PATH DEPENDENCY

Compound weather- and climate-related events are hardly ever considered in current risk management

strategies.51 Compound risk management is vital in order to expand current perspectives within disaster

risk management and thereby tackle intensifying climate-related risks in the future. The aim of a compound

risk management strategy is to consider different hazards and their interactions within the decision-making

and planning process, with the ultimate goal of reducing the overall level of climate-related risk for a spe-

cific community. Compound weather- and climate-related management must be holistically implemented

in all five components/stages of natural hazard risk management strategies52: (i) prevention (e.g., spatial

planning); (ii) defense (e.g., technical mitigation measures); (iii) mitigation (e.g., natural flood manage-

ment); (iv) preparation (e.g., disaster management plans); and (v) recovery (e.g., rebuilding strategy).

Table 1 provides an overview of the strategies that constitute compound risk management at each stage.

First, the prevention strategy aims to reduce the negative consequences of natural hazard events with the

help of planning instruments or relocation policies. The main objective is to reduce (or avoid) the exposure

of residential and non-residential properties. To date, risk prevention has mostly focused on reducing the

risk of only one type of hazard at a time, thus excluding the perspective of compound events and the po-

tential impact of climate change. Such a change of perspective would mean that relocation policies, for

example, would need to address not only one risk within their current strategy but also the potential
4 iScience 26, 107073, July 21, 2023
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long-term impacts for the relocators under climate change, as the relocators might need to relocat

again.31,53

Second, the defense strategy focuses on technical solutions, such as dams or dikes.Within a compound risk

management perspective, the selection process of technical solutions should address the potential im-

pacts of compound events; the management (operational) process, too, needs to include a compound

perspective. In particular, the defense strategy shows the highest risk of path dependency as well as dispro-

portional negative consequences for other types of hazards.

Third, the risk mitigation strategy aims to address the implementation of risk reduction measures, such as

property-level risk adaptation measures, to improve the resilience of buildings.54 Thus far, the selection

process to improve the resilience of buildings has often focused only on one single type of hazard, mostly

flooding. Here, the solutions are not always suitable for other types of hazards. For example, metallic doors,

concrete stairs, or timber block construction, which show a strong resistance to different types of hazards55

are rarely implemented.

Fourth, the preparation strategy focuses on the proactive planning of emergency management if an event

occurs. The key areas of attention are evacuation, early warning, individual training, plus risk communica-

tion between the public administration and society at large. Within a compound risk management para-

digm, blue-light organizations (such as fire brigades) would need equipment that can be used for different

types of hazards. Early warning systems as well as communication strategies need to address the com-

pound effect of different hazards to a society, such as the impact of a long-lasting drought and other

extreme weather conditions, an example being Hurricane Ophelia which triggered forest fires in Portugal

and claimed 50 casualties.56 Often, early warning or communication systems still focus only on one type of

hazard.

Fifth, the recovery strategy strongly focuses on financial support for individuals after a hazard event. Finan-

cial schemes, such as insurance or government relief payments, often aim to reduce the individual financial

burdens for one type of hazard, for example, flood insurance schemes. A compound perspective would

require financial schemes to address not just one type of hazard, but the potential losses from compound

events; this would need an improvement in the current efficiency of fiscal measures, as losses from com-

pound events are much larger than from single ones.

This requirement will further increase the current complexity of risk management in terms of data, knowl-

edge, expectations for future developments, and close collaborations between the different actors dealing

with these various aspects across governance levels (national, regional, and local). Moreover, a shift from

the static toward the dynamic perspectives of risk management is needed. For example, at the present

time, future land use or socio-demographic changes are not always included in the development of risk

management strategies and decisions are often based on the current situation only.57,58 Another key

aspect reflects the political process of managing compound and weather-related events. Flood risk man-

agement, for example, is highly institutionalized in many flood-prone countries with national, regional, and

local authorities being responsible for different tasks. Sometimes, however, local stakeholders or private

actors manage drought risk, rather than there being any involvement from the public administration. A

key drawback is the lack of policy coordination between and among the different natural hazard risk man-

agement strategies; frequently there is also a lack of long-term adaptive perspective within different haz-

ards regimes.59

Generally, most communities have not managed their risks in an integrative or systematic way. Droughts

and floods are often managed by agencies that rarely collaborate or even communicate (see e.g., for

Austria42). Such a siloed approach makes it much harder to exploit measures that can protect against

both threats. For instance, flood risk management focuses on land use planning and is increasingly risk-ori-

ented and proactive, whereas drought management focuses mainly on water supply and agriculture and

often consists of reactive emergency responses.26,60,61 To achieve a more holistic perspective to manage

the large and growing compound risks, changes in governance structures and procedures will be required.

Adaptive and integrative risk governance can help address the key gaps and challenges associated with the

understanding and management of compound risks, in particular the inadequate knowledge base, under-

lying complexities, and associated ambiguities.62
iScience 26, 107073, July 21, 2023 5
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Policy strategies that focus exclusively on one hazard frequently downplay its consequences. One possible

way of integrating these strategies is to use a socio-physical narrative of the risks, such as stress, burnout,

fear, etc.12,63 Another example would be the use of new methodological approaches to design protection

schemes that integrate simultaneous (or near-simultaneous) occurrences of different hazard events like

storm surges and river discharge peaks.64 Concepts like adaptation pathways, storylines, or stress tests

explore future developments, look out for potential path dependency, and enable decision-makers and

stakeholders to find decisions even under deep uncertainties.12,29,65
ADAPTATION PATHWAYS, STORYLINES, OR STRESS TESTS FOR OPERATIONALIZING

COMPOUND CLIMATE-RELATED RISK MANAGEMENT

Path dependency usually analyzes past decisions that lead to lock-in situations, whereas adaptation path-

ways focus on the future and aim to avoid path dependencies. Various recent methods focus on the for-

ward-looking perspective; the most important of these are adaptive pathways, storylines, and stress tests.

These three methods include the different complex interactions of compound weather events, their im-

pacts, and their influence under climate change.12,66 The adaptation pathways concept (e.g.,67–70) is one

idea of how to break the current siloed approaches in risk management and potential path dependency.29

The idea behind adaptation pathways is to develop different trajectories or alternative solutions—based

on different climate conditions—for the future planning of risk management.67,71 The concept integrates

future developments (e.g., different climate conditions, land use changes, socio-demographic changes,

societal needs) into a decision-making process whose aim is to find effective and efficient risk reduction

measures (67,68,70). The main reason for adaptation pathways is to integrate a more dynamic perspective

of risk management, including a planning process, under deep uncertainties.67,68,72 The latest develop-

ments in the adaptation pathways literature include the idea of integrating a backward-looking perspective

into the process to identify path dependencies and to overcome any that emerge.29 The concept of the

backward-looking adaptation pathway encourages users to explore the root causes of vulnerabilities within

a community/region and of the lock-in decisions made in the past. This knowledge is needed to avoid de-

cisions in risk management that might encourage further path dependencies. In Saint-Martin (Caribbean),

for example, when the region was hit by various tropical cyclones like Irma in 2017, past decisions led to

enormous losses being suffered, especially by low-income householders.34 Decisions in disaster risk man-

agement can cause long-term vulnerabilities and allow them to accumulate, and this is what so often

exacerbates social inequalities.34,73

A second commonly used method for developing forward-looking risk management approaches is story-

lines. Storylines of extreme compound events can be defined as ‘‘a physically self-consistent unfolding of

past events, or of plausible future events or pathways’’ (74, p. 557). Storylines are often used for event anal-

ysis.66 The conceptual idea of storylines is to translate the complex physical processes of natural hazard

events, influenced by natural climate variability and anthropogenic climate change, into an event-oriented

rather than a pure probabilistic debate.74,75 Storylines aim to focus on the uncertainties of the physical pro-

cesses based on exploratory experiments.75 The advantage of using storylines is to provide plausible future

scenarios or pathways based on historically observed information and events providing subjective-descrip-

tive future outcomes.65,76 This is done by focusing on specific drivers, which are important in the case of

deep uncertainty in compound risk management.75 In terms of compound events, storylines are used to

understand the potential impacts of the complexity of compound weather- and climate-related events

as well as how community resilience can be increased.66

Thirdly, stress tests can support the robustness of the decision-making process. Stress tests help to identify

the connections between different items in a system, such as how communities and regions or urban and

rural are linked, potential reserve resources, and how different sectors are dependent on each other. This

also includes the potential aspect of ‘‘unexpected’’ developments that should be considered in the plan-

ning and decision-making process.12 The stress test can be used to explore the ‘‘weakest’’ points in the sys-

tem. It not only includes the type of measure that might fail to respond to the hazard event; it also helps to

spot potential path dependency in the current risk management strategy. Additionally, the stress test in-

cludes an assessment of potential impacts—that is, not only financial losses but also who is affected in

the communities (low-income or high-income householders). The outcome of the stress test would help

the decision-making process to recognize and integrate (and thereby avoid) potential path dependency

and at the same mitigate the risk of social inequalities caused by it.
6 iScience 26, 107073, July 21, 2023
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DISCUSSION AND CONCLUSIONS

This perspective set out to discuss why we need compound risk management approaches, the importance

of avoiding the risk of path dependency among the different hazards, and how this system might look. Ac-

cording to our findings, operationalizing compound risk management requires new approaches in the de-

cision-making processes, as collaboration among even larger and more diverse sets of stakeholders will be

required in the near future and existing path dependencies have to be addressed. This requires the further

development of established techniques, such as adaptation pathways, storylines, and stress tests as well as

the gathering of new and more complex empirical and model-based data. Risk management needs to

particularly address all four characteristics of compound and weather-related events (preconditioned,

multivariate, temporally connected, and spatially connected), rather than focusing on only one of them.

Additionally, the current research on compound and weather-related events needs to incorporate not

only various physical components but also dynamic perspectives about vulnerability and exposure.77,78

Furthermore, these three methodologies show considerable advantages for use in risk management. All

three approaches, however, are also very complex in terms of designing and using them in the decision-

making process. Most importantly, they require large qualitative and quantitative datasets. They are often

time- and resource-intensive and additionally require resources and knowledge to use them. There are

particularly large barriers to introducing these approaches into the existing governance structures, espe-

cially in contexts with high path dependency.

Beyond implementation challenges for these specific approaches, the main barriers to a compound risk

management system are manifold, but most of them are rooted in the prevailing institutional framework.

Most countries have specific regulations, financial schemes, and administration units that deal with one

specific hazard.42 The outcome is that compound hazards are typically excluded and go unrecognized

within emergency management plans or land use plans.79 As decisions are often based on single hazards,

the decision-making process can create different aims and priorities for activities to reduce the risk level,

and this could potentially result in the highest risks being overlooked or a mechanism being reinforced.

Another key point involves the lack of communication and the unsatisfactory partnerships among the

different actors responsible for dealing with disaster risk management. This is because of a lack of policy

coordination and integration that can often avoid or hinder collaboration to manage the different hazards

within a compound risk management framework. These barriers to coordination can include a lack of inter-

est, incentives to maintain secrecy, administrative turf wars, and partisan politics.80 Finally, the institutional

framework also often discourages sharing of data and knowledge among the different actors and stake-

holders who engage in risk management.81

The shift toward a compound risk management perspective has at least two benefits.

First, compound risk management acknowledges that for risks to be adequately managed, their intercon-

nected nature must be recognized and that cooperation and co-management must be: (i) fostered across

the institutional and administrative boundaries of risk management through inclusive channels; and (ii)

the building of inclusive communication channels to engage decision-makers and stakeholders across

interdependent sectors and knowledge communities in order to account for different values and risk

perceptions.82,83

Second, compound risk management helps to foresee path dependency and the risk of increased social

inequality. Future-looking socio-physical approaches can anticipate path dependency and enable deci-

sion-makers to overcome lock-ins. The advantages of using compound risk management can be, for

example, well-designed infrastructure that avoids major traffic jams after large compound wildfires and

landslide events.12 The shift of the perspective on compound risk management would also support the

identification of current and potential future path dependencies, as, by definition, dealing with compound

risks requires alternatives to be considered and to go beyond the traditional actors involved in a single-

hazard approach.

Overall, we raise several points regarding the enabling of a compound risk management perspective in

terms of data- and knowledge-sharing and also cooperation and co-management across institutional

and administrative boundaries. Institutional changes enabling compound risk management strategies

should then be able to prevent entry into new lock-ins and facilitate new structural measures, either gray

or NBS. Path dependencies cannot be fully avoided, but approaches to compound risk management
iScience 26, 107073, July 21, 2023 7
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may reduce the risk of negatively perceived lock-in. Ultimately, a residual risk of path dependency on a sub-

optimal path may occur as we gain new knowledge and also as actor constellations and preferences shift

over time and formerly good solutions are no longer perceived as such. Opportunities to change existing

lock-ins of infrastructure are, by definition, external and may occur at the end of the lifetime of the infra-

structure or be due to insufficient protection levels caused by increasing risks. Operationalizing a com-

pound risk management approach requires an integrative, adaptive, and participatory governance system.

Nevertheless, participation has the challenge of slowing down the implementation process. On the other

hand, including a future-oriented risk management would expand our decision-making potential, espe-

cially to avoid path dependency and social inequalities, which have a much longer negative impact.
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(2019). The future orientation of Austria’s
flood policies: from flood control to
anticipatory flood risk management.
J. Environ. Plann. Manag. 62, 1864–1885.
https://doi.org/10.1080/09640568.2018.
1515731.
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