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Toward a cohesive understanding of ecological
complexity
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Ecological systems are quintessentially complex systems. Understanding and being able to predict phenomena
typical of complex systems is, therefore, critical to progress in ecology and conservation amidst escalating global
environmental change. However, myriad definitions of complexity and excessive reliance on conventional sci-
entific approaches hamper conceptual advances and synthesis. Ecological complexity may be better understood
by following the solid theoretical basis of complex system science (CSS). We review features of ecological
systems described within CSS and conduct bibliometric and text mining analyses to characterize articles that
refer to ecological complexity. Our analyses demonstrate that the study of complexity in ecology is a highly
heterogeneous, global endeavor that is only weakly related to CSS. Current research trends are typically orga-
nized around basic theory, scaling, and macroecology. We leverage our review and the generalities identified in
our analyses to suggest a more coherent and cohesive way forward in the study of complexity in ecology.
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INTRODUCTION
Understanding nature’s complexity is at the core of science (1–6). In
ecology and conservation, studying complexity has led to both the
development of theories (2, 7–11) and considerations in policies
and plans for environmental management (12–16). Understanding
complexity is also becoming increasingly important in the face of
accelerating global environmental change, because ecological
systems exposed to multiple stressors often display phenomena
typical of complex systems (14, 15, 17–19). Advancements in the
study of complexity are therefore crucial, which has been recognized
in the 2021 Nobel Prize in Physics, awarded to Parisi, Manabe, and
Hasselmann for their “groundbreaking contributions to our under-
standing of complex systems” (20).

Complexity sciences belong in a central role in ecology and con-
servation because ecological systems are quintessentially complex
systems (3, 18, 21). Understanding the complexity of ecological
systems may, therefore, be key for addressing ongoing

environmental crises (19, 22, 23). For instance, the risk that
climate change will result in abrupt shifts in Earth’s climate is con-
siderable, and this awareness is critical to informing climate policy
aimed at preventing catastrophic scenarios (15, 24). Climate change,
in turn, affects ecosystems and food webs that are already degraded
and altered from millennia of human activities worldwide (25, 26).
Recognition of the potential for a planetary systemic failure due to
climate-biodiversity feedback is urgent and increasingly recognized
(14, 19, 22, 27). Nevertheless, untangling complex dynamics of eco-
logical systems is hindered by the fact that such systems are rarely
studied as complex systems per se. Most research in the environ-
mental sciences continues to follow traditional reductionist ap-
proaches (28) instead of applying preexisting developments in
complex system science (CSS).

CSS emerged in the 20th century from a confluence of disci-
plines that independently attempted to bypass the limitation of con-
ventional, reductionist approaches in the study of complex systems
(6, 29, 30). CSS is tied to more traditional studies on complexity,
which attempts to understand the fundamental, governing laws of
complexity, but it distinguishes itself as an independent, quantita-
tive field that attempts to identify and explain phenomena across
complex systems of different types, including the biological,
social, and technological. Despite the historical epistemological
and ontological difficulties in defining complexity (3, 31–33), re-
searchers in CSS have reached a consensus on what characterizes
complex systems (4–6, 18, 21, 34, 35) (Table 1). Grounding the
study of ecological complexity in CSS therefore has the potential
to facilitate coordinated advancements in ecology and the study
of complexity. Here, we provide a synthesis to identify and forge
links between these disciplines.

Coordination between ecology and CSS is needed because the
study and invocation of ecological complexity continues to grow
in the scientific literature, while there is also persistent imprecision
in how ecologists use the term “complexity.”A search on theWeb of
Science for the word “Complexity” in the “Ecology” and “Environ-
mental Sciences” categories matched 23,703 manuscripts published
between 2000 and 2021 (search conducted on 14 July 2021; Fig. 1A).
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The 71 review articles captured by this search discuss a broad range
of topics, from the evolutionary novelty of venoms (36) to the bio-
geochemistry of marine polysaccharides (37), but none directly ad-
dresses what ecological complexity is or how it emerges from lower
levels (table S1). Instead, complexity is often used in a colloquial
sense, implying that a study focuses on a system that is difficult to
comprehend. In other words, “complex” is often mistaken by

“complicated.” Based on the 71 review articles, the study of ecolog-
ical complexity appears highly disorganized, with few common
threads across an extensive body of literature. This lack of clarity
will likely confound the communication of ideas, foster unnecessary
debates, limit research progress, and hinder the translation of find-
ings into practice (38). Given the importance of understanding
natural systems in the face of global change, seeking common

Table 1. Features typical of complex ecological systems. Features identified as typical of complex ecological systems through a critical review of the literature in
complexity science. Note that search strings are presented as word stem (e.g., “self-orga”) to capture plurals and alternative forms and spellings (e.g., self-
organization, self-organisation, self-organising, etc.). We introduce a short definition of each feature with some seminal references for brevity, but it does not
necessarily exclude other definitions. See “What makes a system complex?” and “Identifying features typical of ecological complexity” sections in the text for
more details.

Feature Definition Search string Related concepts

Adaptation The parts and/or a system change in response to changes in external or
internal factors or states (4, 18)

adapt Evolution, niche, plasticity,
phenological shifts

Aggregation The parts that compose a system tend to organize into groups (18, 88) aggregat Consortia, superstructures

Attractor One of many states toward which a system tends to evolve (71, 111) attractor Criticality, hysteresis, tipping
points, stable states

Chaos A type of dynamical system where small differences in the initial conditions
result in great, deterministic differences among the potential states of that

system (60, 74)

chaos + chaotic Sensitivity, phase space
divergence

Diversity The parts that compose a system are not equal (5, 86) diversit Entropy, heterogeneity,
information, variation

Dynamicity The property of systems and parts change with time (14, 67) dynamic Evolution, stasis, transformation

Emergence The property of system characteristics that are not predictable based on the
characteristics of their parts (1, 41)

emergen Collective intelligence, gestalt
principles

Feedback Processes in the system that increase or reduce the likelihood of the same
process happening again (67, 103)

feedback Reinforcement, top-down
causation

Flow Exchange of material, energy, or information across the system (7, 21) flow Information, linkages

Fractality Self-similar regularities that repeat across scales (71, 114) fractal Regularity, scale invariance

Hierarchy The system exhibits properties at multiple organizational levels (69, 92) hierarch Levels, nestedness, scales

Homeostasis Self-regulating mechanisms maintaining a system functioning and persisting
(88, 123)

homeosta Control, robustness

Interaction The parts that compose a system affect each other (13, 41) interact Competition, dependence,
parasitism, mutualism, synergy

Memory Previous states of the system influence present and future states (72, 90) memory + memories Lagged responses, Markov
processes

Modularity The property whereby some parts of a system interact more strongly among
themselves than with the rest (8, 18)

modul Cluster, connectivity, stability

Network A representation of relationships (links) occurring between parts
(nodes) in a system (53, 65)

network Food webs, feedbacks, nodes

Nonequilibrium The state of a system that has not reach a steady state (67, 111) non-equilib + non
equilib + nonequilib

Balance, disturbance, multiple
stable states, instability

Nonlinearity A property of systems where the change of the output is not proportional to
the change of the input (68, 86)

non-linear + non
linear + nonlinear

Higher-order effects

Resilience The capacity of a system to resist and recover from disturbance (12, 116) resilien Brittleness, robustness, stability

Scaling The property of system patterns to change with scale (e.g., spatial, temporal,
or taxonomic) (7, 11)

scal + scale-depend +
scale depend

Discrete hierarchy, grain, levels

Self-
organization

The emergence of global patterns, dynamics, or ordered structures from the
local interaction among the components of a system (5, 88)

self-orga + self orga +
selforga

Evolution, emergence,
multicellularity, pattern

formation

Stability The tendency of a system to return to its equilibrium state (2, 152) stabilit Invasibility, persistence,
resistance, robustness

Threshold The context in which a small change in the conditions of a system results in
large change in the system itself (15, 88)

thresho Criticality, tipping point
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ground in how we study and define complexity is not merely a se-
mantic problem but instead a pressing challenge for current science.

To this end, here we combine the strengths of a critical review,
text mining, and “science of science” (39) analyses (Fig. 1). We first
assess how ecologists conceptualize complexity following a three-
pronged approach: (i) we review CSS literature to identify a list of
features typically attributed to complex ecological systems (Fig. 1B
and Table 1); (ii) we assess the ecological literature to understand
how these features relate to the study of “ecological complexity”

(Fig. 1, C and D; results from the analyses illustrated in Figs. 2 to
5); and (iii) we leverage our critical review and generalities identified
in our analysis to suggest a cohesive way forward in the study of
complexity in ecology. This empirical approach allows us to face
the longstanding challenges of understanding complexity: Instead
of defining the study of complexity from first-principle reasoning,
we quantitatively assess the literature to understand how ecologists
have conceptualized complexity. Before addressing current practic-
es and how to improve apparent confusion in the study of ecological

Fig. 1. Analytical roadmap. Summary illustrating the stepwise process of data collection and analyses in this study. (A) Preliminary assessment of the literature done
through a search on Web of Science. (B) Examination of the papers, books, and book chapters as well as (C) the standardized literature search and full-text extraction to
search for the (D) 23 features identified on (B) in the full text of articles retrieved in (C). (E) Analyses on complexity and control articles in the search for generalities in the
field of ecological complexity. TS, topic; WC, Web of Science categories; TI, title; AK, author keywords.
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complexity, we contextualize our work by providing a brief account
of the history of CSS and by describing the philosophy underlying
CSS within the broader study of complexity.

A BRIEF HISTORY OF COMPLEX SYSTEM SCIENCE (CSS)
Understanding the history of CSS helps to appreciate why progress
in the study of ecological complexity following this paradigm has
high potential to advance in ecology and conservation. In brief,
CSS aims to discover general rules across biological, technological,
social, and other types of complex systems (6, 21, 40). This broad
objective has made CSS historically fluid and ever-evolving, gradu-
ally encapsulating various ideas, methods, and traditions (5, 41).
While CSS has some roots in ancient philosophy (e.g., Aristotle’s
emergence in the Metaphysics), formal research into complex
systems began only toward the 19th century. The scientific revolu-
tion of the 16th to 17th centuries revealed certain fundamental laws
of nature, but the concept that nature can be perfectly predicted fol-
lowing such laws soon began to falter, particularly in micro- and
cosmo-physics. For instance, in 1871, James Clerk Maxwell began
to explore the limitations of the second law of thermodynamics,
and, in 1890, Henri Poincaré identified strong dependence on
initial conditions when predicting the motion of celestial bodies
using the laws of gravitation, paving theway for chaos theory (6, 10).

In the 20th century, it became increasingly clear that the global
properties of complex systems can be inherently difficult to predict
from the fundamental laws of nature that underlie these systems—
as the adage goes, “the whole can be greater than the sum of its
parts.” In turn, scientists and mathematicians began to investigate
how natural laws constrain, but do not determine, the global prop-
erties of complex systems, where interactions among units can de-
termine phenomena that emerge across hierarchical levels of
complex systems (4, 5, 30, 42–44). CSS embraced the need to con-
sider interactions, providing a new paradigm for understanding
reality beyond traditional scientific views. CSS developed from the
conceptualization of “general systems theory,” spearheaded in the
1930s by Ludwig von Bertalanffy, by mathematical work, e.g., on
self-organization and dissipative systems by Ilya Prigogine and on
chaos by Edward Lorenz in the 1960s, and finally by increasing re-
liance on computer simulations after World War II (45).

Following these early developments, the study of complex
systems became an explicit research focus from the 1970s (39),
leading to the establishment of the Santa Fe Institute (https://
www.santafe.edu/) in New Mexico, United States (33). Founded
in 1984 by eight physicists, including Nobel Prize winner Murray
Gell-Mann, the Santa Fe Institute was the first institution fully ded-
icated to research of complex systems. Since then, many centers for
the study of complexity have opened across the planet. Today, the
Santa Fe Institute connects a global network of scientists that are
seeking a better understanding of complex systems and plays a
key role in popularizing CSS within and outside of academia. Prin-
ciples fromCSS have been instrumental in meta-science (46), math-
ematics (47), physics (29), medicine (48), sociology (49), archeology
(50), economy (51), social management (52), and computer science
(53), among many other disciplines. Ecology is one of those disci-
plines, and it has been argued that CSS can provide important
answers to many current environmental crises faced by humanity
(21–23).

With the initial work in place for developing CSS, physicist
Heinz Pagels suggested (in 1989) that “the nations and people
who master the new sciences of complexity will become the eco-
nomic, cultural, and political superpowers of the next century”
(54). Despite skepticism that has persisted around CSS since its in-
ception (53), the diffusion of this paradigm in the past three
decades, together with important developments documented
across many fields of knowledge (5, 55), is a testament to the
vision of the pioneers in this field.

THE PHILOSOPHY OF CSS
Defining and studying “complexity” has been a long-standing chal-
lenge, not least because of different philosophical views among
authors and entire disciplines. For instance, some authors catego-
rize their object of study as either complex or not, while others con-
ceptualize complexity along a continuum (31). Complexity takes on
different definitions across scientific domains, e.g., computer scien-
tists may refer to the time and computational memory required to
solve a problem (56, 57), whereas mathematicians may use complex-
ity to refer to chaotic and nonlinear dynamics (58). It has been even
suggested that complexity is “a placeholder for the unknown,” and a
“nomadic term that links disparate discourses,” such that a strict

Fig. 2. The study of ecological complexity in space and time. (A) Global network of collaborations including all authors from the articles that referred to “ecological
complexity” in their title or keywords (n = 172). Points represent researchers’ affiliation addresses, and lines indicate collaboration between authors. (B) Cumulative
production (from 1970 to 2021) between articles mentioning “complexity” in their titles and abstracts including all scientific fields (gray line) and, separately, for
ecology and environmental sciences, as approximated by the search term “ecological complexity” (red line).
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definition would only be an unwarranted constraint (32). This flexi-
bilitymight explain how some fields, such as computer science, which
leverage explicit, quantitative metrics of complexity, have advanced
faster than others in their quest to understand complexity. Neverthe-
less, the immoderate freedom of vague definitions also seems to have
hindered coordination and synthesis.

CSS bypasses most of these philosophical aspects and is more
operational in its definitions and implementation. Being the quan-
titative field that seeks to discover laws that describe phenomena in
complex systems, CSS has for decades provided a robust and prag-
matic framework to classify phenomena also observed in ecosys-
tems. Ecologists turning to CSS, however, must be aware that this
field demands a shift from conventional scientific paradigms (3,
6, 45, 59). Scientists have traditionally engaged complexity following
(i) determinism, i.e., the idea that systems can be explained by ad-
equate mathematical models; (ii) reductionism, i.e., that any system
composed by many entities can be understood by studying such en-
tities individually; and (iii) disjunction, i.e., that the way to resolve
cognitive problems is isolating them within specialized disciplines.
These principles can fail, as for example, some systems cannot be
easily predicted, even when they follow deterministic laws (4, 18,
33, 60); the organization of units in a system can determine the
emergence of some properties and the inhibition of others, hinder-
ing efforts to predict systems by studying their parts in isolation (6,
28, 31, 59); and using interdisciplinary approaches can greatly in-
crease our understanding of complex systems (3, 6, 47).

Because of these discrepancies, reductionist scientific approach-
es have often failed ecologists interested in understanding complex
systems (27). Conversely, CSS has helped because it explicitly rec-
ognizes the importance of emergence, and it is, by nature, integra-
tive across disciplines. Transcending reductionism is a major divide
in the study of complexity between two philosophical views—re-
stricted complexity, of which CSS is an expression, and generalized
complexity (6, 45).
“Restricted complexity,” in contrast to "general" or “generalized

complexity,” is interested in the dynamics of complex systems com-
posed of a large number of interacting parts (i.e., the more parts and
interactions, the greater the complexity) (61). Restricted complexity
postulates that certain phenomenamake systemsmore difficult than
others to understand and predict, bypassing epistemological and
ontological considerations on complexity, and aims at understand-
ing laws governing those phenomena. Drawing inspiration from
mathematics and physics, restricted complexity emerged to
address the gap left when the traditional scientific paradigm has
been demonstrated to be inadequate in predicting phenomena
typical of some systems (due to, e.g., chaos, nonlinearities, and
tipping points). It is a search for the “laws of complexity” and
may be equally prone to the paradox of following a reductionistic
model as well (33).

Generalized complexity originated from the integration of post-
structural philosophy with biology and suggests that complexity con-
cerns not only all scientific disciplines, but also systems of knowledge.
Reductionism is substituted with the seeking of a dynamic under-
standing of the relationship between a whole and its parts, as well
as their mutual implications. Rather than the number of parts inter-
acting in a system, generalized complexity focuses on the nature of the
interactions among the parts (i.e., more complex interactions lead to
more complex systems). In this view, our inference on complex
systems can never be perfect because studying a system requires

creating boundaries, which is at least partially an arbitrary process
for complex systems, and might exclude certain aspects of the
system itself and of the environment hosting that system. Note that
generalized complexity does not argue against reductionism;
instead, it recognizes some of its limitations.

Our analyses and approach align with the view embraced by the
restricted complexity perspective, which we consider appropriate
given the strong quantitative focus of modern ecology. A balance
between conceptual advances and urgent action, as well as
between restricted and generalized complexity perspectives, will
be necessary to face the global environmental crisis (62, 63).

UNTANGLING THE FABRIC OF ECOLOGICAL COMPLEXITY
To understand how ecologists conceptualize complexity, we
propose a “research weaving” exercise designed to identify general
patterns in how authors conceptualize complexity in ecology (Fig. 1,
B to E; see Materials and Methods) (64). Briefly, we first identify a
set of features typical of complex systems in ecology and the envi-
ronmental sciences (Table 1).We then quantify how often these fea-
tures have been used in all the articles that are explicitly related to
ecological complexity in the Web of Science database, and compare
those to the “control” articles, which are randomly selected from
ecological studies that do not refer to ecological complexity. Last,
we use this dataset to describe spatiotemporal trends in the study
of ecological complexity (Fig. 2), to analyze thematic diversity
(Fig. 3), and to identify patterns in connections between feature
usage (Fig. 4) and co-citation of the references appearing in articles
that explicitly refer to ecological complexity (Fig. 5).

Because the concept of complexity should recall similar ideas for
different scientists, we expect that articles explicitly referring to eco-
logical complexity should more frequently mention features typical
of complex systems than the control group articles (or “control ar-
ticles”).We also predict that articles that explicitly refer to ecological
complexity should be more similar among themselves than the
control articles, because of ecology’s vast scope. For the same
reason, we predict that patterns in how ecological complexity is con-
ceptualized should differ across subfields of ecology, e.g., with
certain features being more likely to be discussed together, and/or
with some subfields citing different subsets of the literature. Support
for these predictions would suggest that authors who refer to eco-
logical complexity do so while relating to a set of shared ideas, and
therefore that, at least theoretically, there is potential to organize the
study of ecological complexity around the principles we identified
in reviewing relevant literature in CSS (Table 1).

Features of complex ecological systems identified from CSS
We found from the literature that scientists in CSS identified a core
set of concepts that characterize complex systems. Common narra-
tives include the idea that complexity is typical of systems composed
of multiple, diverse parts and structured across different organiza-
tional levels (3–5, 18, 21, 33), a vision that puts networks (53, 65)
and hierarchies (9, 66, 67) at the core of ecological complexity.
Other concepts include spatiotemporal scale dependencies (28,
68–70), criticality (11, 71), self-organization of the parts that
compose a system in increasingly sophisticated modules (9, 21,
33, 72, 73), and feedbacks occurring both within and between
each level of the system, which stabilize and constrain both the
whole system and its parts (6, 18, 31, 68, 70). Chaotic dynamics
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and the potential for alternative states, which are often contingent
on the initial conditions of a system and may operate at any orga-
nizational level, complete the typical recipe of a complex system (2,
18, 74, 75). We chose 23 representative features to synthesize more
specific aspects that emerged consistently from this broad range of
concepts (Table 1).

Spatiotemporal patterns in the study of ecological
complexity
We retrieved 172 articles that mention “ecological complexity” in
their title or keywords. Researchers based in institutions from all
continents except Antarctica contributed to this pool of manu-
scripts (Fig. 2A), with researchers based in North American (n =
266) and European (n = 185) institutions contributing more

articles. Considering the articles mentioning “ecological complexi-
ty” in all fields (i.e., title, keywords, and abstract), we found a steady
increase in research effort starting from the late 1990s, exceeding
2000 articles per year as of the end of 2021 (Fig. 2B; see also fig. S1).

The diversity of complexity articles
We ran a topic modeling analysis using the latent dirichlet allocation
(LDA) to test whether the 23 features we selected through our critical
review (Table 1) are relevant to characterize complexity articles, and to
what extent these contribute more to complexity than control articles.
All features except “aggregation” appeared more often in the top 0.5%
important features in topics from the complexity group compared to
the control, and the average probability of a feature to characterize a
document was higher for the complexity group (fig. S2).

Fig. 3. Comparison between control and complexity articles. Comparison between control (gray) and complexity (red) groups considering the features retrieved by
the systematic mapping (listed in Table 1). The control group includes articles randomly selected from the ecological literature, and the complexity group includes articles
explicitly referring to “ecological complexity” in their title or keywords. Note that six articles (control = 4, complexity = 2) did not include any of the features described in
Table 1 andwere excluded from the analysis. (A) The richness of features of each article and (B) the exponential of the Shannon entropy calculated on relative frequency of
feature usage were significantly higher in the complexity articles. (C) Study uniqueness (i.e., the distance from each article to its group median) was smaller in complexity
articles, indicating that these were typically more similar among themselves. (D) The relationship between study uniqueness and feature richness shows that articles
mentioning fewer features were on average more distant from their group mean, suggesting that these features were rarely mentioned by other articles. In (A) to (C), the
data distributions are depicted with a kernel density plot with a dot representing the median value, and a box-and-whisker plot with outliers representing the minimum,
Q1, median, Q3, and maximum with the length of 1.5 × the interquartile range.
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Having assessed the reliability of the 23 features we identified in
our critical review, we compared complexity and control articles
with respect to their reference to these features. Complexity articles
included a significantly (α = 0.05) higher number of features than
expected from a random sample of control articles from the ecolog-
ical literature (Fig. 3, A and B) and were more similar to each other
than expected by chance alone (Fig. 3, C and D). Specifically, com-
plexity articles mentioned on average 9 of 23 features, against the 6
observed in control articles (F1,344 = 86.6, P < 0.0001; Fig. 3A). This
result was consistent when accounting for features’ relative abun-
dances (F1,344 = 68.53, P < 0.0001; Fig. 3B). Regarding uniqueness,
complexity articles were on average 6% more similar to each other
than control articles. The average distance to the median of com-
plexity articles was 0.51 ± 0.09, while control articles showed an
average distance to the median of 0.54 ± 0.10 (F1,344 = 10.92, P =
0.001; Fig. 3C). For both complexity and control articles, thosemen-
tioning less than five features were typically more distant from their
respective group median than the other articles, which suggests that
the features mentioned in those articles were less commonly men-
tioned in other articles from our sample (Fig. 3D).

A network of complexity features
The features identified in our critical review formed a highly con-
nected network (relative connectance = 0.988; Fig. 4). Most of the
features co-occurred at least once, although the features “scaling,”
“interaction,” and “dynamicity” contributed disproportionately
more in terms of connection strength and node weight (Fig. 4
and fig. S3). By modeling the network using an exponential
random graph model (ERGM), we found that complexity articles

are more likely to form connections in the network (edges) than
control articles (estimate ± SE: 0.47 ± 0.02, z = 27.67, P < 0.0001).
Conversely, network homophily (i.e., similar nodes are more likely
to connect than dissimilar ones) was not significant (estimate ± SE:
−0.04 ± 0.02, z = −1.91, P = 0.06), indicating overall that control and
complexity articles tended to be interconnected with each other.
Some of the most important features for the extracted network
(e.g., the terms “network” and “diversity”) were not typically
common to the complexity articles (Fig. 4).

Co-citation network for the ecological complexity literature
When assessing the reference lists of all complexity articles, the
Louvain clustering algorithm identified five clusters of co-citation
among the top 100 most co-cited references (Fig. 5). Two clusters
included 10 or fewer references and reflected the production of two
research groups (Fig. 5, in gray and black). Conversely, three clusters
included at least 19 references and involved several research groups.
The first cluster includes, among others, the seminal work of Kuhn
(76), Levins and Lewontin (77), and May (2), representing a tradi-
tion of basic theory, mathematics, and philosophy applied in the
study of complexity (Fig. 5, in pink). The second cluster includes
the work of Levin (18), Brown (78), Maurer (79), and Hubbell
(80), representing a tradition of macroecological approaches and
large-scale system science (Fig. 5, in blue). The third cluster includes
the work of Allen and Starr (9), Levin (70), and Petrovskii et al. (81),
representing a tradition of scaling approaches and application of hi-
erarchy theory in the study of complex ecological systems (Fig. 5, in
gold). Although these clusters were found when considering the 100
most cited articles, such structure remained resistant to deviations

Fig. 4. Connections among complexity features in ecology. This unipartite network shows the projection of a bipartite network linking complexity features (Table 1)
based on their co-occurrence in the “complexity” group of articles. Features (nodes of the network) are shown, with more red color indicating that features are more
significantly associated with the complexity articles based on indicator species analysis. Co-occurrence strength (edges) is represented by the sum of the edgeweights of
the adjacent edges of the node.
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in the number of nodes in the network, except for the cluster includ-
ing two seminal references by Ulanowicz (Fig. 5, in black). Overall,
68 complexity articles cited the references that determined patterns
in the clusters, from which 58 cited only references from the three
most important clusters. The adjacency matrix showing the pair-
wise co-occurrence of all 100 articles can be found in the Supple-
mentary Materials (fig. S4).

THEMES IN ECOLOGICAL COMPLEXITY
The concept of complexity has been historically intertwined with
our understanding of nature (3, 32, 33, 82). Many environmental
challenges faced by humanity are “complex systems problems”
(13, 14, 16, 19, 21, 22, 24). Solutions to these challenges might
appear straightforward (e.g., reducing emissions of greenhouse
gasses and halting habitat degradation), but because we lack
unified theories, methods, and ultimately a comprehensive under-
standing of complex ecological systems, we cannot adequately assess
ecosystem collapse scenarios given current and forecasted environ-
mental conditions (19, 22). Some phenomenamight even be impos-
sible to predict, a crucial aspect that scientists often fail to

communicate effectively with the public (62). The study of ecolog-
ical complexity will be central in clarifying these aspects in the
coming century (14, 29).

Nevertheless, our analysis suggests that the field of ecological
complexity is currently disorganized, hampering a coordinated
and optimized progress. The reviews that we assessed based on
our preliminary literature survey (Fig. 1A and table S1) focus on a
broad spectrum of unrelated themes, and we could not assess com-
plexity articles concerning CSS independently, because we only
found 24 such articles. Furthermore, ecology and conservation are
lagging behind recent developments in complexity science (22, 58,
72) despite increasing numbers of articles on the topic. For instance,
a recent analysis suggests that deterministic chaos might not be un-
common in nature (83) but attempts to reveal its influence on
natural systems remain comparatively rare. Similarly, the potential
for catastrophic scenarios is largely understudied (19); meanwhile,
recent evidence suggests that global warming is likely to trigger cli-
matic tipping points (15). These are dynamics that must be under-
stood urgently, a goal that could be directly pursued following
principles from CSS. In the following sections, we discuss how we
could best achieve this objective.

Fig. 5. Seminal literature and the topic clusters in the ecological complexity literature. Weighted co-citation network for the top 100 co-cited articles in the com-
plexity articles. The colors reflect co-citation clusters: foundational complexity theory [(18); in blue]; scaling, hierarchies, and cross-scale dynamics [(70); in gold]; and
macroecological theory and large-scale systems [(2); in pink]. Two additional clusters [(43, 151); in gray] count 10 or less articles and emerged from the use of “ecological
complexity” in a more specific context [e.g., pest control in agriculture (151)].
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What makes a system complex?
Given that complexity has been studied as an attribute of ecological
systems (39, 75, 84, 85), it is theoretically possible to identify features
that make some systems more complex than others. We therefore
conducted a critical review to identify features typical of complex
systems as described in the CSS literature. Through this exercise,
we reduced very broad, interconnected aspects of complexity into
a more tractable set of features typical of complex systems
(Table 1). Our synthesis goes beyond applications within specific
subfields and encompasses a broad range of perspectives, following
both seminal references (3–6, 18, 21, 33, 43, 71, 86–89) and more
recent work that focuses on application of the CSS paradigm in
ecology and conservation (10, 11, 31, 38, 55, 58, 68, 72, 75, 84,
90–92). Therefore, we suggest that Table 1 can be used as a template
to organize the study of complex ecological systems around well-es-
tablished themes in CSS.

We recognize that there are elements of subjectivity in our work.
Furthermore, our analysis neglects some concepts in ecological
complexity due to the approach that we used, and future perspec-
tives should therefore expand on concepts that we have not included
here. For instance, we omitted some concepts developed in CSS
from our list of features, including panarchy (93), heterarchy (92),
brittleness (94), and criticality (11, 71). These are important con-
ceptual aspects of CSS but are less general than the features we se-
lected, e.g., they rarely occur in the complexity papers we retrieved
(Fig. 1, C and D, and fig. S5). Nevertheless, perhaps oversimplisti-
cally, the concepts embodied by these terms can be represented by
combining different features proposed in our synthesis. For in-
stance, “panarchy” relates to stability and dynamicity, “heterarchy”
to networks and hierarchies,“brittleness” to resilience andmodular-
ity, and “criticality” to dynamicity, fractality, scaling, and attractors
(Table 1).We also purposely chose to represent some of our features
using very general terms—for example, the feature “diversity,” with
the term “biodiversity” alone being the object of volumes of discus-
sion (95). Another relevant example is scaling, which has been used
loosely to describe the property of some ecological phenomena to
change across spatial scales (96, 97), and more formally in the
context of scale-invariant laws discovered in ecology (11) (see dis-
cussion of “efficient theories” below). Keeping these limitations in
mind, we believe that the flexibility coming with the broad terms we
chose will accommodate the many different phenomena described
in complex ecological systems under a broad, but organized, con-
ceptual framework. Our review is not a definitive guide to the
vast field of ecological complexity but is a starting point of an
effort to explore CSS for ecologists interested in complexity.

While we recognize that some of our methodological choices
may be somewhat arbitrary, it is not clear that there is an objective
way to reproduce this study while entirely removing personal eval-
uations. Relying solely on bibliometric tools to identify alternative
features to thosewe propose would have substantial limitations (98).
For instance, the same terminology can be used by different authors
to express different concepts [see, e.g., “complex adaptive systems”
sensu (3) versus (4)], and while the human mind can recognize
these patterns, algorithms would likely fail to do so. Furthermore,
text analysis would skew our assessments toward concepts in peer-
reviewed papers, neglecting books, letters, lectures, and personal
communications that we have used to inform our assessment
(99). For this reason, we preferred a critical review to a topic mod-
eling approach for identifying the features synthesized in Table 1.

Acknowledging these aspects of our work, we next discuss how
we used the template of 23 features to assess how ecological com-
plexity has been conceptualized in the peer-reviewed literature.

How is ecological complexity discussed in the literature?
Our analyses found that the number of articles referring to “ecolog-
ical complexity” has increased exponentially in the past 50 years
(Fig. 2 and fig. S1), mirroring the trend observed for articles that
refer more broadly to “complexity” (and involving all continents
except for Antarctica). Despite this growth, what authors conceptu-
alize when referring to ecological complexity has remained largely
unanalyzed. In parallel to reviewing CSS in relation to ecological
systems (Fig. 1, B and D), we provide a quantitative assessment of
how authors have conceptualized ecological complexity in relation
to the features identified in our critical review (Fig. 1, C to E,
and Table 1).

Overall, we found limited differences between complexity and
control articles. For instance, approximately a quarter of the com-
plexity articles mentioned fewer features than the average control
article, and complexity articles were only 6% more similar to each
other than control articles (Fig. 3). The term complexity seems
therefore to have been often used loosely, confirming the perspec-
tive that the word “complexity” is often used as a synonym for
“complicated,” or as a “placeholder for the unknown” (32). This
result suggests that many articles refer to ecological complexity in-
consistently, but while invoking pivotal concepts in complexity
science, or that these articles focus on a few of the features typical
of complex systems, rather than covering multiple aspects discov-
ered in our review. Similarly, assessing the co-occurrence of features
revealed a highly connected network, with little defining structure
and 98% of all possible connections fulfilled (Fig. 4). Last, only
about a third of the complexity articles contributed to the 100
most co-cited references (Fig. 5). Together, these parallel lines of
evidence suggest that the study of ecological complexity has
lacked coordination and structure.

One could argue that the true essence of ecological complexity is
not captured by the features revealed in our review (Table 1).
However, we identified meaningful patterns that suggest the con-
trary. For instance, a significantly higher number of features in com-
plexity articles indicates that authors appealing to ecological
complexity might agree that more complex systems are complex
owing to the interplay of a larger set of features. Furthermore,
~60% of the features identified in our review were significantly
more likely to be related to complexity articles (14 of 23 features;
Fig. 4), with this number increasing to ~80% of the features (19
of 23 features) when assessing the presence of features rather than
frequency of use. A caveat to these results is that not all analyses en-
gaging with complexity require consideration of many features (e.g.,
macroecological models), and unnecessarily complicated models
are inconsistent with principles from CSS. Finally, our analysis
identified expected relationships based on current ecological
theory, such as those between scales and hierarchies (67), and net-
works and interactions (65).

Most notably, the results of co-citation network analysis are con-
sistent with three prominent philosophies in ecology (Fig. 5). The
first co-citation cluster emerged from literature referencing com-
plexity in relation to a long tradition of basic theory and mathemat-
ics (1, 2, 31, 76). The second co-citation cluster emerged from
literature that refers to complexity in relation to the concepts of
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scales and hierarchies (9, 38, 67, 70, 100). The third co-citation
cluster emerged from literature that invokes complexity in relation
to macroecological theory and the study of large-scale systems, or
those containing many data points describing individual objects
in a system (79, 80, 101–103). These schools of thought have been
prominent in ecology for decades and will likely continue to be so.
Recent developments suggest that the role of theory in ecology will
be crucial in the era of big data (104), that scales can be amediator of
seemingly irreconcilable ecological patterns (105), and that a mac-
roecological approach might be our only way to escape local contin-
gencies in the pursuit of generality (28).

Ultimately, imprecision in the use of the term complexity in the
ecological literature means that descriptions of it are not converging
on a single set of shared understanding. Despite this and some lim-
itations of text mining approaches, we found promising trends for
coordination of research efforts at the interface between ecology,
conservation, and CSS.

TOWARD A COHESIVE UNDERSTANDING OF ECOLOGICAL
COMPLEXITY
We interpret the results of our research weaving exercise as evidence
that studies targeting complexity in ecology would benefit from fol-
lowing principles developed in CSS. This could be a key direction
for ecological research because such studies have the potential not
only to reveal how ecological systems are responding to global
change, but also to advance theory in both disciplines. On the
one hand, developments in CSS can provide ecology with innova-
tive theories and tools. For instance, studies on the mathematics of
fractals and of self-similarity permeate many fundamental theories
in ecology (106, 107); mechanistic simulations such as cellular au-
tomata and agent-based models, developed by computer scientists
in the 1950s, are increasingly used to explore emergent biological
phenomena (71, 108, 109); and genetic algorithms (86) are now rou-
tinely used for ecological applications (110). Relatedly, ecology has
held a special place in the development of theory for CSS. Research
on populations and ecosystems has provided many insights, e.g., on
nonlinear dynamics (111, 112), chaos (60, 74, 83), tipping points
(12, 15, 113), scaling (11, 70, 114), resilience (115, 116), and
natural computation (58). Better integration of principles from
CSS in ecology will reinforce this virtuous cycle.

An example of successful integration between CSS and ecology
comes from the application of principles from the three clusters out-
lined by our analysis—theory, scaling, and macroecology (Fig. 5)—
in the search for efficient theories [sensu (104)]. These are typically
“theories of averages” that identify regularities appearing in ecolog-
ical systems at certain levels of organization (11, 21). Efficient the-
ories generate first-principle predictions across scales of ecological
organization, usually based on mathematical models, and ecologists
have successfully dealt with the complexity of ecological systems by
developing a number of these theories. Ecological theories devel-
oped in the past decades allow testing explicit predictions on a
variety of phenomena including biodiversity (106, 117, 118), abun-
dances and spatial distributions of species (118), distribution net-
works in animals and plants (107), or responses to temperature
across levels of biological organization (119). The principles on
which these theories are based include information theory (120,
121), optimization of energy dissipation (107), metabolic rates
(122), or chemical laws (119). While it has been argued that

identifying such efficient theories should be the primary goal of
ecologists (62), progress is slow, in part because of the urgency to
solve pressing environmental issues with other tools currently avail-
able (63).

This tension between a search for general, theoretical advance-
ments, and resolving more specific case studies, is useful to advanc-
ing ecology. There is no doubt that traditional scientific views will
continue to provide important insights on ecological systems, yet
approaches fromCSS have already yielded fresh perspectives on his-
torical dilemmas that could not be solved with traditional approach-
es. These include insights on the stability-diversity relationship
[e.g., negative feedbacks in species interactions can promote stabil-
ity in dynamic systems (123)], on critical thresholds in habitat loss
and fragmentation [e.g., genetic drift can depend on thresholds of
habitat area left in a landscape (124)], on the evolution of maladap-
tive characters [e.g., when considering spatial dynamics, maladap-
tive traits can be retained in a population despite their
disadvantages (125)], and on the regulation of emergent behaviors
[e.g., simple rules can explain how fireflies coordinate their light
pulses (126)], among many more topics (58, 72).

A central message of our work is that developments in CSS will
lead to developments in ecology and conservation (and vice versa)
only if ecologists will conceptualize ecological “complexity” with
more clarity and depth. We propose two simple principles that
will help to this end. First, it is always desirable to specify what
exactly one means when referring to complexity. While working
on our critical review, we noticed that definitions of ecological com-
plexity are extremely rare in the literature, with “complexity” being
sometimes used as a buzzword (127). We therefore propose that the
term complexity in ecology should be used carefully by studies that
are not assessing ecological systems through the lenses of CSS.
Second, attempts to measure the complexity of natural systems
are very common [e.g., (39, 84, 85, 128)], and we believe that
these efforts could often be sharpened. When measuring properties
of systems and referring to those as metrics of complexity, authors
could first refer explicitly to the phenomenon that a metric repre-
sents, and then discuss their results in relation to ecological com-
plexity, rather than conflating the two aspects. We provide a
nonexhaustive list of metrics used to measure complexity as an
example (Table 2), specifying the relationships among these
metrics and the features identified by our review. Many questions
in ecology and conservation can be answered without appealing
to concepts and approaches from CSS; for those studies, we
suggest that referring to complexity only increases confusion in
an already difficult field.

THE ROLE OF ECOLOGICAL COMPLEXITY IN AN AGE
OF URGENCY
One of the most important lessons learned from the development of
CSS is that, with a proper focus, we can estimate and even predict
how global environmental change will affect many types of complex
systems (20). Embracing ideas and approaches from CSS is, there-
fore, more urgent than ever as we attempt to understand how an-
thropogenic, global change will affect our planet. As we write, Earth
has experienced another season of records in climatic anomalies
(129). The summer of 2022 was the hottest recorded in the
history of Europe, as much as China has experienced the longest
heatwave ever recorded. Several rivers and bodies of waters
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worldwide are experiencing reductions in discharge and area due to
drought, including the Po, Rhine, and Loire rivers in Europe, the
Colorado river in North America, and China’s largest freshwater
body, Poyang Lake. Africa was affected by the worst drought in 70
years, while intensifying wildfires are causing extreme damage to
ecosystems and human societies on many different continents
(130). These phenomena are affecting not only biodiversity and eco-
system functions but also the supply of energy and primary services
(e.g., water) to millions of people (23). CSS provides a relevant con-
ceptual framework to assess ongoing environmental crises not only
because of the conceptual advancements outlined in this review (21)
but also because it recognizes the tight links connecting ecosystems
and human societies into social-political-ecological entities (103),
embracing the important roles of sustainability, governance, poli-
tics, and ethics for applied biodiversity conservation in the face of
global environmental change (23, 27). This holistic understanding

of environmental and social issues will be necessary as we embark in
a critical transition to more sustainable and ethical societies, in an
attempt to mitigate the effects of human activities on Earth (23,
25, 26).

Ultimately, while we primarily provide guidelines to integrate
CSS, ecology, and conservation, our hope is that this work will
also promote the pursuit of consilience and integration with
social aspects of the modern environmental sciences. Reflecting
on how we study and refer to ecological complexity has great poten-
tial to stimulate the sharing of ideas from areas that likely have
already participated in CSS, but whose contributions remain
poorly known to the Western science. These efforts will benefit
from inclusion of perspectives from underrepresented regions (3,
6), such as the Global South, which remains marginalized in the
study of ecological complexity (Fig. 2A). Likewise, maximizing col-
laborations beyond the limited scope of one’s own research group

Table 2. Popular metrics characterizing complexity features. A non-exhaustive list of metrics used in the ecological literature when assessing ecological
complexity and their relationship with the features identified in our article. We refer particularly to (39, 65, 75, 84, 85, 128) for comprehensive reviews of metrics
designed to measure complexity.

Feature Metric Reference

Chaos Lyapunov exponent. It represents the rate of separation of infinitesimally close trajectories, measuring how a dynamic system is
sensitive to initial conditions.

(153)

Diversity Shannon entropy: −
P

iP(xi) log P(xi), where P is the probability of an event i. Measures the amount of information in an event
drawn from that distribution.

(75)

Diversity Mean information gain: Hs(L + 1) − Hs(L), where Hs is the Shannon entropy of the sequence of length L.Measures the amount of
information gained by knowing an additional step in time or space.

(84)

Diversity Fluctuation complexity:
P

i;jPL;ijlog
PL;i
PL;j

� �2
, where PL,ij is the probability of observing j immediately following i. Measures the
degree of structure in a time series.

(84)

Dynamicity Information theoretic measure of correlation between the two halves of a stochastic process limt → ∞ I(X−tX−t+1…X−1; X0X1…Xt).
Also known as effective measure complexity, predictive information, and excess entropy.

(154)

Fractality Fractal dimension: log(N ) /log(r), where N is the number of self-similar pieces and r is a magnification factor. Measures the
degree of self-similarity.

(84)

Fractality Power law: P(x) = cx−γ. Measures the degree of pattern consistency across scales. (155)

Network Modularity: Q =
P

i[eij − (
P

jeij)
2], where eij are the fraction of edges that link nodes in cluster i to nodes in cluster j. Measures the

strength of division of a network into groups (modules).
(65)

Network Connectance: the proportion of realized ecological interactions (m) among the potential ones (L), or L/m. Potential links are
most often calculated as the squared species richness. Measures the fraction of all possible links that are realized in a network.

(65)

Network Degree distribution: the distribution (Pk) of the number of links (interactions) per species; if N(k) is the number of nodes with k
interactions, and S is the total number of species in the network, then P(k) = N(k)/S. Measures the heterogeneity of a system: If all

the nodes have the same degree k, the network is completely homogeneous.

(65)

Network Singular value decomposition (SVD) entropy: within a matrix i, the nonzero singular values (σi) and the number of nonzero
entries (k) are extracted. SVD entropy is then calculated as:

J ¼
� 1
lnðkÞ

Xk
i¼1si � lnðsiÞ

where si = σi/sum(σ). Measures the number of vectors needed for an adequate explanation of the dataset, where higher values
indicate that the dataset cannot be efficiently compressed.

(156)

Stability Eigenvalues of the Jacobian matrix: [Jij] = [∂fi/∂xj], where x is a state and fi = dxi/dt at a fixed point. If all real parts of the
eigenvalues are negative, this fixed point is a stable attractor, and the system returns to the steady state after perturbation.

(128)

Stability Coefficient of variation: CV = σ/μ, where σ is the standard deviation and μ is the average of a time series. Measures the level of
dispersion around the mean of a series.

(152)

Self-
organization

Mutual information: measures the difference in uncertainty between the sum of the individual random variable (example, X and
Y ) distributions and the joint distribution: I(X;Y ) = H(X ) + H(Y ) − H(X,Y ), where H represents Shannon entropy. When two
variables are completely independent from one another, H(X ) + H(Y ) = H(X,Y ) and the mutual information is zero. Any

covariance between X and Y (i.e., self-organization or order) will result in an uncertainty in the joint distribution that is lower
than the sum of their individual distributions.

(128)
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and promoting international collaborations across country borders
will be a key step to bring unexplored ideas and hypotheses into CSS
(131). In an age of globalization and potentially catastrophic envi-
ronmental changes, embracing the principles of CSS—including
being open to original, transdisciplinary ideas—has never been
more timely.

MATERIALS AND METHODS
Overview
We prepared and analyzed a dataset to assess how often the features
typical of complex systems are used in the literature referring to
complexity in ecology (Fig. 1). This required first to identify features
typical of ecological complexity (Table 1). Next, through a system-
atic literature survey, we sourced two bodies of literature: a treat-
ment (i.e., articles using the term “ecological complexity” in their
title; hereafter complexity articles) and a control group (i.e.,
general articles in ecology; hereafter control articles) (Fig. 1C). Af-
terward, we quantified the use of the selected features in control and
complexity articles (Fig. 1, B to E). The analysis followed four steps:
(i) describing general patterns in complexity articles, (ii) comparing
the diversity of features in complexity versus control articles, (iii)
exploring the relationships among complexity features within com-
plexity articles, and (iv) identifying influential references in ecolog-
ical complexity literature. We ran all analyses in R v.4.1.2 (132),
using the “tidyverse” suite v.1.3.1 (133) for data wrangling and vi-
sualizations. We refer readers to the Data and materials availability
statement for information on scripts and data used in this study.
Our analysis is based on the premise that complexity is an attribute
of ecological systems, and thus that we can identify properties of
systems that are typically associated with the idea of complexity
(84). This perspective relates to the paradigm of restricted complex-
ity and allows us to quantitatively assess the ecological literature (see
the “The philosophy of CSS” section).

Data preparation
Identifying features typical of ecological complexity
We began by compiling a list of features that are typically associated
with the study of complexity in the scientific literature, with an em-
phasis on ecological literature. An initial screening showed that dif-
ferent articles that mention and define complexity highlight
different features (table S1). For instance, we tried searching for
reviews summarizing ideas from complexity science in ecology
with little success [but see (68, 72)]. We concluded that identifying
the features typical of complex systems in ecology as described in
complexity science was not possible based on an automatic proce-
dure. This is because different authors use complexity to describe
very different ideas and processes or use different words to refer
to the same concept, which makes the design of a systematic
review prohibitive. We therefore chose an unstructured, critical
review approach (134), based on a mixture of article retrieval with
fixed search strings (e.g., “complexity” AND “ecology” AND
“review”) and scouting of the references cited in seminal articles
that we deemed relevant for our exercise.

We refer to several documents for discussion of the features
identified in our review (Table 1). These include books and book
chapters (3, 5, 6, 21, 43, 58, 86–88), and various types of peer-re-
viewed scientific articles (hereafter “articles”), particularly reviews
(4, 10, 11, 18, 31, 33, 38, 55, 68, 71, 72, 75, 84, 89–92). While

other relevant perspectives certainly exist in the literature, we
suggest that this body of literature captured what characterizes
complex systems reasonably well because we targeted the perspec-
tive of several independent groups of authors interested in CSS,
often recognized as leaders in the study of complexity, and
because we included recent reviews, capturing ideas at the forefront
of the study of ecological complexity.

Our critical review identified 23 major features typical of ecolog-
ical complexity (Table 1). We note that some features initially under
consideration, including the terms “hysteresis,” “panarchy,” and “he-
terarchy,” were removed because they appeared rarely in the articles
assessed in our analysis (fig. S5). We used single words to represent
each of the selected features, aiming to ensure comparability on the
frequency of use of different features across studies (Table 1). These
words were carefully chosen to be as broadly representative of the
features as possible. For example, a common feature emerging in the
literature is the idea that complex systems are composed of units that
differ among themselves; this is typically discussed as “diversity,”
but can also be associated with “entropy,” e.g., in biodiversity
science, and “heterogeneity,” e.g., in landscape ecology. Because
we selected a single word to represent each of the compiled features
to ensure comparability in features’ counts among articles, we ac-
knowledge that our results might be sensitive to the word selected.
We also recognize that any two articles might share similar features
but address them with different approaches. These nuances are
challenging to capture when conducting bibliometric analyses,
and our results should be evaluated keeping this in mind.
Systematic mapping of the literature
Next, we retrieved articles representing research on ecological com-
plexity to compare them with more general articles in the field of
ecology. This was carried out through literature searches on the
Web of Science Core Collection database over all the citation
indices, all document types, and all years (exploratory queries
between May and July 2021; final query on 23 September 2021).
In an exploratory scoping phase, we trialed different search terms
by running searches and considering the relevance of the first ref-
erences. We found that using overly broad terms (e.g., <ALL =
“ecology” AND “complexity”>) yielded a large number of articles
(n > 14,000). On the opposite end, incorporating specific terms typ-
ically associated with ecological complexity eithermatched a limited
number of articles (e.g., “homeostasis”) or captured several articles
not relevant to the question posed (e.g., the term “network” gener-
ated many articles on energy infrastructure). We found a balance
between specificity and quantity by searching for general terms
but restricting the search to the title (TI) and keywords (AK). The
final query was <TI = “ecolog* complex*” OR AK = “ecolog*
complex*”>, which returned 188 results (henceforward “complexi-
ty” articles; Fig. 1C). We assumed these articles to be a random
sample of literature that generally refer to complexity in ecology
and the environmental sciences, i.e., that the study of “ecological
complexity” is not an independent avenue of research from the
broader study of complexity in ecology. As a control (henceforward
“control” articles), we randomly selected 188 articles from the eco-
logical literature, using the query <WC = “Ecology” NOT (TI =
“ecolog* complex*” OR AK = “ecolog* complex*”>, where WC is
used for searching through the Web of Science categories
(Fig. 1C). In all analyses, we looked at differences between complex-
ity and control articles to understand if complexity articles were
more consistent with CSS literature (Fig. 1, D and E).
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Text mining
The last step of our dataset preparation was to quantify how often
each of the features listed in Table 1 occurred in each article. We did
this by performing text mining analyses on the full-text file of each
of the articles returned by our searches.We first downloaded all full-
text files as .pdf files and extracted their text using the package
“pdftools” v.3.1.0 (135). Because we could not retrieve 24 files (16
complexity and 8 control articles), the final sample size for the text
mining analysis was 172 complexity articles and 180 control articles.
Once we extracted the text from the articles, we screened them to
obtain all the n-grams (strings of one or more adjacent words;
henceforth “words”) within each article using the package “tidytext”
v.0.3.2 (136) and “stringr” v.1.4.0 (137). Some of the features could
be found either as single or composite words (Table 1); thus, we ex-
tracted both unigrams and bigrams from articles using strings com-
patible with both British and American spellings. For single words
(e.g., “scale”), we cross-referenced the string with the unigrams ex-
tracted from the text (i.e., every single word in the article). For two-
part words (e.g.,“self-organization”), we cross-referenced the search
string with all bigrams extracted from the text (i.e., every combina-
tion of two consecutive words). For the features that could be found
either as single, hyphenated, or two-part words (e.g., “nonlinear”
versus “non-linear” versus “non linear”), we cross-referenced the
strings separately using both approaches. Last, we summed the
results from the cross-reference to determine the total number of
times each feature appeared in each article and to calculate the rel-
ative frequency of each feature as the ratio between the number of
uses of a given feature and the total number of words in that article.
We note that four control and two one-page-long complexity arti-
cles did not include any features from Table 1.

Analysis
Spatiotemporal patterns in the study of complexity
The first set of analyses was aimed at describing general patterns in
complexity articles. We assessed the number of complexity articles
published each year up to 2020 to determine whether research effort
increased over time. We also extracted the affiliation of all authors
from each article to investigate whether the collaborations were
carried out nationally or internationally, and how these were glob-
ally distributed. We automatically retrieved the geographic coordi-
nates for each affiliation using the package “ggmap” v.3.0.0 (138).
Topic modeling
We ran a topic modeling analysis using the LDA method (139) to
verify whether the 23 features we selected through the critical review
(Table 1) are meaningful to describe ecological complexity. LDA
assumes that text documents are a mixture of topics, and topics
are composed of a mixture of words (with individual words
having differential probabilities of associating to a given topic).
LDA is a mathematical method for finding the mixture of words
that is associated with each topic while also determining the
mixture of topics that describes each document. First, we extracted
the full text of all articles in the complexity and control groups and
preprocessed the text (e.g., removed stop words and punctuation,
combined hyphenated words, and singularized all words). Next,
we ran an LDA on the preprocessed text of all articles with the func-
tion LDA in the R package “topicmodels” v.0.2.12 (140), setting the
number of topics to 100 and using the variational expectation-max-
imization algorithm. We then extracted the per-topic-per-word
probability for each word (beta parameter; fig. S2). Because LDA

provides near-zero probability for most of the words in topics, we
selected only the 0.5% highest probabilities of our data in each topic
by taking only the values above the upper limit of the 0.99 highest
density interval (HDI) of our posterior distribution. Afterward, we
ranked the beta values of each word within each topic and grouped
them based on whether they ranked at the lowest (Q1) or the highest
quantile (Q4). If the probability and frequency of a feature was
higher in the complexity group, we considered it to be more impor-
tant in characterizing this group.
The diversity of complexity articles
To compare complexity and control articles, we ran a series of anal-
yses inspired by classical community-level biodiversity analyses. In
these analyses, we treated each complexity feature as a “species,” and
each article as a “site.”We calculated feature richness (i.e., number
of features discussed in each article) and the effective number of fea-
tures of first order [i.e., exponential of the Shannon entropy calcu-
lated using the relative frequency of features used in each paper;
(141)] to evaluate whether complexity articles tend to encompass
more of the features typical of ecological complexity compared to
control articles. Given how we delimited the terms associated
with complexity, we assumed that articles referring to more features
should generally capture the idea of complexity better (but see the
“How is ecological complexity discussed in the literature?” section
for discussion of caveats).

Additionally, we assessed the uniqueness of the features in each
complexity and control article by analyzing the multivariate homo-
geneity of group dispersion (PERMDISP), as calculated using the
package “vegan” v.2.5.7 (142). A common measure of multivariate
dispersion (i.e., variance) for a group of samples (i.e., articles) is to
calculate the average distance of group members (i.e., control versus
complexity articles) to their spatial median, and test if the disper-
sions are different with analysis of variance. PERMDISP requires
a symmetrical matrix of dissimilarities between pairs of articles,
which we calculated using the Bray-Curtis dissimilarity metric
applied to each feature relative frequency. Last, we tested which fea-
tures were typical of complexity or control articles using an indica-
tor species analysis with “indicspecies” v.1.7.9 (143).
Network of complexity features
We explored relationships among the complexity features using a
network approach. Specifically, we constructed a bipartite (i.e., con-
taining two node types) directed network to link complexity articles
with the features retrieved from our review (Table 1). In this network,
the first node type represents individual articles, and the second node
type represents the features. We weighted the edges connecting the
two node types in the bipartite network by the relative usage of
each feature within each article. Once we constructed the bipartite
network, we projected it as a single mode or “unipartite” network
for ease of visualization and analysis. In the unipartite network, all
nodes are treated as the same type and directionality is lost. We cal-
culated the importance of each node in the network as the sum of the
edge weights of the adjacent edges of the node (henceforth
“strength”). We also estimated realized connectance (RC), namely,
the proportion of possible links between nodes that are realized, as

RC ¼ L
2

SðS � 1Þ

� �

where S represents the number of nodes and L is the actual number of
links realized among all the nodes in the network. To estimate the
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degree of discrepancy between article types, we tested the probability
of connection between complexity and control articles within the
network by using ERGM (144). In ERGMs, Yij designates the proba-
bility of forming a link between articles i and j, with Yij = 1 if there is a
network link, and Yij = 0 otherwise. Each value yij specifies the ob-
served valueYij in a system governed by amatrix of predictor variables
Y and links y—i.e., the network. The general form of ERGM can be
derived as follows

PrðY ¼ yÞ ¼
exp½θ0gðyÞ�

kðθÞ
ERGMs assume that the structure of a graph can be explained by a

vector of network statistics g(y) relating to network configuration, and
to model parameters θ associated with g(y). The normalization term
k(θ) ensures that probabilities sum to 1. Note that g(y) can be inter-
preted as covariates in amodel that predicts edge occurrence, and that,
here, it represents network homophily, i.e., the degree to which nodes
are connected based on similarity of their attributes. For this analysis,
we constructed a bipartite incidence network, starting from an inci-
dence matrix that included both complexity and control articles. We
projected the network to visualize the connections among articles
through the features used. The projected network was introduced as
a response variable in an ERGM fitted using the package “ergm”
v.4.1.2 (145–147), with the formula (in R notation)

Network ≏ link þ nodeMatch ð}Group}Þ

þ nodeFactor ð}Group}Þ

where “Group” is a categorical variable discriminating complexity
and control articles, nodeMatch tests network homophily in
terms of article type, and nodeFactor tests the overall probability
of nodes forming a link based on their article type.
Network of co-citations
We extracted the reference list from all complexity articles and used
it to build a co-citation network, seeking to identify broad trends
within the study of ecological complexity. Co-citation networks de-
scribe the number of times a reference was cited alongside others,
and how often these were co-occurring in the reference lists. Anal-
ysis of co-citation networks has been proposed as a tool to enhance
transdisciplinary research because it allows identifying key articles
that act as bridges between (sub)disciplines, as well as groups of
authors focusing on similar research topics (148, 149). We identify
these clusters in an unsupervised way using a Louvain clustering
optimization, a greedy optimization algorithm often used in
network analyses due to its fast computation time and performance
(150). This way, we let clusters emerge without imposing a fixed
number of clusters a priori.

Supplementary Materials
This PDF file includes:
Table S1
Figs. S1 to S5
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