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B. Methods  

The core approach used in the landscape portion of the report Nature’s Frontiers: Achieving 
Sustainability, Efficiency, and Prosperity with Natural Capital models how spatial patterns in land use 
and land management (LU-LM) affect natural capital and the resulting ecosystem processes that 
determine the status of biodiversity and the flow of benefits to people (so-called ecosystem services). 
The component models used in this analysis quantify relationships between land use and land 
management patterns, biophysical processes, and a number of important environmental and economic 
benefits (see Chaplin-Kramer et al. 2019; Kareiva et al. 2011; Nelson et al. 2009; Sharp et al. 2020; 
references in table B.1). These component models utilize a wide array of globally available biophysical 
and socioeconomic data. Both the methods and the data are described in detail in this appendix.  
 
Six important ecosystem service and biodiversity outcome categories are modeled: (1) net greenhouse 
gas (GHG) storage and emissions reductions, which include changes in carbon storage due to land use 
change as well as methane emissions from livestock production, both expressed as metric tons of 
carbon dioxide equivalent (CO2eq); (2) biodiversity, which includes information on potential species 
richness, threatened and endangered species, endemic species, rare ecoregions, forest intactness, and 
key biodiversity areas; (3) water quality, measured by nitrate concentrations in drinking water supplies; 
(4) net returns from agricultural crop production; (5) net returns from livestock grazing; and (6) net 
returns from timber production. Categories 1–3 are measured in their own terms (metric tons of CO2eq, 
a biodiversity metric score, and nitrate concentrations), whereas categories 4–6 are combined into a 
single monetary metric.  
 
Thirteen alternative future land use and land management alternatives are modeled: natural habitat, 
forestry, grazing, and 10 alternatives for agricultural crop production that incorporate different 
management options for growing crops. Two LU-LM alternatives for agricultural crop management use 
current production methods—one assuming current crop area and one assuming expanded crop 
production area. Eight LU-LM alternatives for agricultural crop management use intensified production 
methods. These eight LU-LM alternatives involve all possible combinations of current production area 
versus expanded production area, irrigated versus rainfed, and adoption of best management practices 
(BMPs) versus nonadoption of BMPs.  
 
The component models and LU-LM alternatives are incorporated into an optimization approach to arrive 
at a set of Pareto-efficient solutions (Polasky et al. 2008). In a Pareto-efficient solution, it is not possible 
to change the LU-LM alternative on any set of parcels in a country to increase the score for any one 
component without also reducing the score for some other component. The optimization algorithm 
chooses one of the 13 LU-LM alternatives for each land parcel within a country so that the resulting land 
use and land management pattern is Pareto optimal. The optimization analysis included five of the six 
benefits but excluded water quality because the water quality analysis was still in an experimental stage 
when the optimization analysis was being conducted.  
 
The methods, data inputs, and key references for each of the six benefits are summarized in table B.1 
and described in detail in the sections that follow. Figure B.1 illustrates the steps in going from land use 
and land management patterns to total net revenue from production from landscapes. Separate models 
for agriculture, forestry and grazing generate net revenue estimates, which are then tallied for a total 
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production net value as an input to the optimization modeling. Scenario descriptions, a summary of 
methods for each model, and the optimization approach are provided in this appendix.  
 
Table B.1 Summary of methodology and data sources used for components of the landscape 
efficiency score  
 

Component Measure Summary of methodology Key data sources 

Total net return 
from agricultural 
crop production, 
forestry, and 
grazing 

Monetary returns from the 
landscape under each land 
use and land management 
(LU-LM) alternative 

Net revenue from 
agricultural crop, forestry, 
and grazing production are 
summed for each parcel 
and scenario as inputs to 
the optimization analysis 
that generates the 
landscape efficiency score. 

See below. 

Agricultural crop 
production 

Net revenue from 10 major 
global crops (barley, 
cassava, maize, oil palm, 
rapeseed, rice, sorghum, 
soybean, sugarcane, wheat) 
for each parcel for each 
agricultural crop LU-LM 
alternative 

Potential crop yields under 
each scenario modeled as a 
function of crop-specific 
temperature, precipitation, 
soil type, etc. and whether 
each parcel is rainfed or 
irrigated and is intensively 
managed. Suitability of 
different crops per parcel, 
which depends on slope, 
weather, soil type, and 
sustainability of irrigation. 
Net revenue from crop 
production for each crop 
and parcel are equal to 
yield × producer price – 
production costs and 
transport costs. 

FAO (2020); Mueller et al. 
(2012); Ray et al. (2019); 
Weiss et al. (2018); World 
Bank (2020); Zabel, 
Putzenlechner, and Mauser 
(2014) 

Forestry Net revenue from managed 
forestry for each parcel for 
the forestry LU-LM 
alternative 

Potential forest biomass 
and yields are modeled as a 
function of vegetation 
types and observed growth 
functions. Net monetary 
returns from managed 
forestry are calculated 
based on regional log prices 
minus harvesting and 
transportation costs. 

Favero, Daigneault, and 
Sohngen (2020); Kim et al. 
(2017); Tian et al. (2016)  

Livestock 
production from 
grazing 

Net revenue from livestock 
production expressed in 
terms of beef equivalents 
based on grass/forage 

Average annual grazed 
biomass availability and 
resulting (sustainable) 
grazing intensity modeled 

Castonguay et al. (2022); 
Chang et al. (2016);  FAO 
(2021b); Herrero et al. 
(2013)  

https://drive.google.com/file/d/1h6MTGYTAqFE5d2R6SLlJCVr6NU3OS3kY/view?usp=sharing
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Component Measure Summary of methodology Key data sources 

intake only (no feedlots) for 
each parcel for the grazing 
LU-LM alternative  

for each parcel as beef-
equivalent meat produced 
(kilograms per hectare) and 
greenhouse gas (GHG) 
emissions (as carbon and 
methane from manure and 
transport). Net revenue is a 
function of meat 
production × price of meat 
– production costs and 
transport costs 

Nonmonetary 
environmental 
benefits 

Combined index of GHG 
storage and emissions 
reductions and the 
biodiversity index for each 
parcel for each LU-LM 
alternative 

Geometric mean of GHG 
emissions and biodiversity 
index for each 
parcel/scenario 

See below. 

Greenhouse gas 
emissions 

Net carbon storage minus 
methane emissions from 
livestock expressed as 
carbon dioxide equivalent 
in metric tons for each 
parcel for each LU-LM 
alternative 

Above-ground and below-
ground carbon pools from 
data for forest, herbaceous 
(grass and shrub) and 
agricultural, forest, grazing, 
and urban land cover 
classes for each of 124 
global carbon zones. 
 
Methane emissions (over 
20 years) were subtracted 
from the carbon stock for 
the land use/land cover 
(LU/LC) on a particular pixel 
if grazing is allowed on that 
pixel.  
GHG emissions for different 
LU/LC adjusted for each 
scenario as information 
allows. 

Ruesch and Gibbs (2008); 
Suh et al. (2020) 

Biodiversity Biodiversity index 
comprised of six 
biodiversity metrics: (1) 
species richness, (2) habitat 
for species at risk; (3) 
habitat for endemic 
species; (4) habitat in rare 
ecoregions; (5) forest 
intactness; and (6) key 
biodiversity areas (KBAs), 

Metrics: (1) species richness 
as a function of LU/LC from 
PREDICTS database, 
International Union for 
Conservation of Nature 
(IUCN) range maps, and 
European Space Agency 
(ESA) LU/LC; (2) amount of 
“natural” habitat available 
to species with smaller 

ESA (2019); Dinerstein et al. 
(2017); Grantham et al. 
(2020); IUCN (2019); 
PREDICTS database 
(Hudson et al. [2014]; 
Newbold et al. [2015]) 

https://www.nature.com/articles/s41467-020-19493-3
https://www.nature.com/articles/s41467-020-19493-3
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Component Measure Summary of methodology Key data sources 

expressed as maximum of 
the indexes for each parcel 
for each LU-LM alternative. 

ranges; (3) amount of 
”natural” habitat available 
to species at risk from IUCN 
Red List; (4) overlaid map of 
KBAs with study’s map of 
natural habitat (5) 
calculation of inverse of 
each ecoregion's size to 
identify rare ecoregions and 
the amount of ”natural” 
habitat in each; (6) global 
data on forest intactness. 
Each metric was normalized 
between 0 and 1 (except 
KBAs, which were 
normalized between 0 and 
0.5). The maximum of the 
six values is the final value 
for each parcel. 

Water quality– 
human health 

Nitrate concentrations in 
drinking water  

Nitrogen export based on 
fertilizer application rate, 
runoff (from precipitation), 
topography, and vegetation 
retention capacity located 
along flow path between 
pollutant source and 
stream. Nitrogen export 
converted to nitrate 
concentrations in ground 
and surface water using a 
random forest model 
predicting the global 
observed nitrate 
concentration based on 
modeled export and other 
covariates (basin size, 
climate, etc.) converted to 
concentrations of nitrate in 
drinking water based on 
country level statistics of 
drinking water sources.  

 Chaplin-Kramer et al. 
(2019); Damania et al. 
(2019); Gu et al. (2013); 
Ouedraogo, Defourny, and 
Vanclooster (2019)  

Source: Original table for this publication. 
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Figure B.1 Steps to estimating total production value  
 

 
Source: Original figure for this publication. 
Note: Flow diagram includes the net production for agricultural crops, grazing, and forestry for each parcel for each 
land use and land management alternative and the impact on nonmarket environmental components. The location 
and condition of ecosystems are entered in the land use/land cover (LU/LC) base maps (with over 30 distinct 
habitat classifications). For protected areas, only the natural land use alternative is allowed. These input maps then 
contribute to designated cropland suitability, grazed biomass availability, and forest vegetation type. Each 
ecosystem service model (crop yield, meat production, and forestry yield) uses additional ecosystem attributes to 
estimate service provision (such as soil type, water availability, temperature, and slope). Details on ecosystem 
attributes included in each model can be found in this technical appendix. ESA = European Space Agency; CO2eq = 
carbon dioxide equivalent; kg/ha = kilograms per hectare. 

B.1 Biodiversity and ecosystem services modeling 

B.1.1 Carbon storage and reduced greenhouse gas emissions 
Ecosystems regulate the earth’s climate, in part by adding and removing greenhouse gases such as 
carbon dioxide (CO2) from the atmosphere. The amount of carbon stored in soil and vegetation far 
exceeds the amount of carbon in the atmosphere (Lal 2002). By storing this carbon in soil, wood, and 
other biomass, ecosystems prevent CO2 from entering the atmosphere where it would otherwise 
contribute to climate change. Disturbing these systems through changes in land use or land 
management can release large amounts of CO2 into the atmosphere, whereas reforestation or other 
forms of restoration can lead to the increased storage of large amounts of CO2 (Griscom et al. 2017). The 
Intergovernmental Panel on Climate Change (IPCC) estimates that 23 percent of global anthropogenic 
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emissions are from agriculture, forestry, and other land uses (IPCC 2021). Therefore, the ways in which 
humans manage terrestrial ecosystems are critical to regulating the earth’s climate. 
 
The InVEST Carbon Storage and Sequestration model (Sharp et al. 2020) scores each land use and land 
management alternative for the amount of carbon stored in different carbon pools (such as vegetation, 
soil, or litter). This study includes the cumulative amount found in above-ground and below-ground 
biomass (see figure B.2). It does not account for carbon in soil, leaf litter, or wood products. The amount 
of carbon stored in forest, herbaceous vegetation (grass and shrub), and agricultural land cover classes is 
taken from Ruesch and Gibbs (2008) and is geographically differentiated based on 124 different carbon 
zones, which, in turn, are based on bioclimatic variables and biomes (Suh et al. 2020). Thus the same 
land use/land cover classes contain different carbon densities in different parts of the world. To 
represent changes in carbon storage from the adoption of best management practices in agricultural 
crop production, a weighted average is taken for the value in that carbon zone for the dominant natural 
vegetation type (proportional to 10 percent of the area) and agricultural crop production (proportional 
to 90 percent of the area). Agricultural crop intensification is not assumed to change carbon storage. 
Although poorly managed agriculture may result in degraded soils that store very little carbon, 
intensification per se does not necessarily mean poor management, and this study team has no global 
information on soil tillage or other management practices that fundamentally affect carbon storage in 
agriculture. Therefore, estimating trade-offs of intensification with carbon storage were not attempted 
in this study. 
 
For land managed as forestry, the study team reduced the carbon stored in forest classes by half to 
reflect the fact that timber is periodically harvested, which reduces above-ground carbon that grows 
back slowly while trees mature. For grazing lands, it did not attribute a change in carbon to the land use. 
Again, although it is unlikely that grazing has no effect on carbon, there is evidence in both directions: 
well-managed grazing can increase carbon storage, especially in soils, whereas poorly managed grazing 
can reduce it. Therefore, no attempt is made to represent trade-offs of moving from natural (ungrazed) 
grassland to grazing. However, if applying grazing causes a change in land cover (for example, from 
forest to grazed grassland), the change in that land cover is specified according to Ruesch and Gibbs, as 
specified earlier.  
 
As for deserts, the carbon storage assigned to the natural sparse vegetation class was sometimes lower 
than the carbon storage assigned to potential cropland agriculture because of a lack of spatial 
heterogeneity in the cropland carbon storage data (that is, overestimating carbon potential in these 
areas). This heterogeneity led to the unintended outcome of very poor cropland being selected in the 
optimization to provide a carbon benefit. To address this outcome, when assigning the estimated carbon 
storage for cropland use, the study team set a maximum value equal to the carbon storage of the 
potential natural habitat type, thereby preventing the problematic case, but it has no effect in 
nondesert areas.  
 
Methane emissions per year were derived from the livestock model for grazed parcels in terms of CO2eq 
and were converted from kilograms (units in the livestock model) to metric tons (units in the carbon 
stocks data set) by multiplying by 0.001. Methane emissions per year were converted to a long-term 
measure to compare with carbon stocks. The per year emissions were multiplied by 20 years to calculate 
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a long-term methane emissions contribution. Carbon stocks were also converted to CO2eq (multiplying 
carbon density by 44/12). The long-term methane emissions from livestock were then subtracted from 
the carbon stock to calculate an overall greenhouse gas storage and emissions reduction number. These 
calculations should not be considered net emissions because the land use–based carbon stocks are not 
sequestration; they are just avoided losses.  

B.1.2 Biodiversity 
Biodiversity is a crucial characteristic of nature. If nature is a basket of human lives and economies, then 
biodiversity is the quality of the material and the tightness of the weave of the basket. Biodiversity, 
defined in terms of the total variety of life on earth, encompasses all forms of life from genes to 
ecosystems and exhibits variability at spatial scales ranging from a soil aggregate to the globe and 
timescales ranging from minutes to millennia. In an attempt to tackle the enormous challenge of 
describing the variety of life on earth, scientists have created a plethora of methods and metrics in 
pursuit of quantifying current patterns of biodiversity and projecting future threats to it.  
 
The very breadth of the research trajectories that have strengthened biodiversity science has made 
synthesis challenging. This challenge has become increasingly apparent with both the unprecedented 
proliferation in globally available biodiversity metrics and the call for international agreement on how to 
best measure biodiversity in support of the post-2020 goals of the Convention on Biological Diversity 
(CBD). It is unlikely a single metric will be selected by the CBD for the post-2020 goals, but rather some 
aggregate metric that pulls from the many groups doing great work in this space.  
 
For the landscape efficiency score approach to biodiversity, six types of biodiversity data are combined: 
species richness, habitat for endemic species, habitat for threatened and endangered species, Key 
Biodiversity Areas, habitat for rare species, and forest intactness (figure B.2). These types account for 
different levels of biological organization (species and ecosystems) as well as the level of threat to that 
component of biodiversity (such as endangered species and range-restricted species).  
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Figure B.2 Conceptual model of methods used to develop the biodiversity index  
 

 

Source: Original figure for this publication. 
Note: [0-1] and [0-0.5] indicate the range of potential scores that each component can receive, before being 
aggregated into the full Biodiversity index. IUCN = International Union for Conservation of Nature; KBA = Key 
Biodiversity Area; T/E = threatened and endangered. 
 
Species richness. Species richness is the number of species represented in an ecological community, 
landscape, or region. It remains by a wide margin the most identifiable and relatable component of 
biodiversity for policymakers and decision makers. The study team used the PREDICTS database (Hudson 
et al. 2014; Newbold et al. 2015) to address how changes in land use and land cover affect species 
richness. This database is a global effort to collate primary studies in which researchers have compared 
the species richness and abundance associated with different types of land use and among different 
levels of land use intensity. A complete description of the taxonomic, geographic, and land use coverage 
can be found in Hudson et al. (2014). 
 
The study team first calculated regional species pools for every land pixel in every country using IUCN 
range maps for amphibians, birds, mammals, and reptiles (IUCN 2019). It then modified regional species 
pools by the local land cover in each pixel based on European Space Agency (ESA) land cover data (ESA 
2019) and the PREDICTS database. Three factors were considered: 
 

1. General land use type (natural, plantation forest, cropland, pasture, urban area) 
2. Level of human intensity (minimal, light, heavy) 
3. Age of habitat for natural habitat type (young, intermediate, mature, primary). 
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This approach provides for each scenario a value of total species richness for every taxon in every 
location on the landscape. These were weighted by first dividing by the total number of species globally 
for each species group and then summing over all four taxa. 
 
Habitat for endemic species. Endemic species exist in only one region, potentially increasing their risk of 
extinction. The amount of habitat available for endemic species was mapped using European Space 
Agency land use/land cover data (ESA 2015). Degraded, grazed, timbered, agriculture, or urban 
development habitat classes were excluded. These habitat maps were combined with inverse-weighted 
range maps for each species, whereby species with large ranges were down-weighted and species with 
smaller ranges were up-weighted. Natural habitat was overlaid with these inverse-range weighted maps 
summed across all species in the four taxonomic groups to arrive at a final metric of available habitat for 
endemic species within each taxonomic group.  
 
Habitat for threatened and endangered species. Not all species are equally imperiled at present, nor are 
they all equally vulnerable to future changes in land use. Thus the amount of habitat available to 
threatened and endangered species within a country’s borders were quantified as an explicit metric in 
calculations of the biodiversity value of a given land use configuration.  
 
From the species richness data developed, only those species were selected that are listed as 
”Threatened,” ”Endangered,” or ”Critically endangered” in the IUCN Red List of Species. All four 
taxonomic groupings were summed to create values representing the total number of threatened and 
endangered species that can be found in each location on the landscape. These values were not 
weighted as a fraction of the total richness of each taxonomic group. It was assumed instead that all 
threatened and endangered species are treated as equally important, regardless of how common or rare 
their broader taxonomic group is globally.  
 
The amount of habitat available for threatened and endangered species was calculated by creating a 
land cover map that grouped “natural” versus ”agriculture, grazed, forested, and built land uses” and 
tallied the total number of rare and endangered species found in each pixel. Because threatened and 
endangered species are much less likely to persist in agricultural or built landscapes, all ”natural” 
habitats received a value of 1, and all agricultural and built land uses received a value of 0. However, the 
study team recognized that there may also be areas recently used for agriculture but are currently 
degraded and have yet to be restored to their natural habitat. For this reason, it created a mask in which 
lands are degraded (that is, the potential vegetation map indicates the pixel should be forest, but the 
pixel is either in grassland or shrubland) and also set these values to 0 in the binary land cover map. For 
each scenario, the study team multiplied this binary land cover map with the map of potential 
threatened and endangered species richness. From this emerged location-specific values of how many 
threatened and endangered species are able to utilize existing natural habitat, which then generated a 
map in which higher values indicate that preserving natural habitat in that location better protects Red 
List species.  
 
Key Biodiversity Areas. Key Biodiversity Areas (KBAs) are defined by IUCN as ”sites contributing 
significantly to the global persistence of biodiversity” in terrestrial, freshwater, and marine ecosystems 
(IUCN 2016). The “Global Standard for the Identification of Key Biodiversity Areas” (IUCN 2016) 
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articulates the globally agreed-on criteria for the identification of KBAs worldwide. A map of KBAs was 
laid over the study’s map of natural habitat, and the total amount of natural habitat preserved in KBAs 
was then calculated. The biodiversity data included in these maps were normalized and weighted as 
described at the end of this section before being included in the optimization analyses.  
 
Habitat in rare ecoregions. Ecoregions are geographically and ecologically defined areas in which the 
biodiversity of flora, fauna, and ecosystems tend to be distinct. Such areas encompass a spatial scale of 
biodiversity that is important to protect and can serve as a useful proxy for a country considering its 
wealth of species, habitat types, and other natural capital assets. Ecoregions have gained significant 
traction in the conservation literature as an approach to ensure that conservation portfolios protect all 
species and not just hydrologically diverse regions (Dinerstein et al. 2019; Olson and Dinerstein 2002). 
Although there are many ecoregion classification schemes, the one used most broadly is the map 
created by Olson et al. (2001) and recently updated by Dinerstein et al. (2017). This map was validated 
by Smith et al. (2018) to show that it does, in fact, divide the world into relatively distinct biological 
communities.  
 
The amount of habitat in rare ecoregions was based on a first calculation of how rare each ecoregion is 
globally. This was done by taking the inverse of each ecoregion's size. Within each country, the values 
for the raster representing the rarity of the ecoregion were multiplied by the binary land cover map 
(which excludes working, degraded, and urban lands).  
 
Forest intactness. It is recognized that simply replacing existing habitat with restored habitat in another 
location will not necessarily capture the equivalent biodiversity value of the original and the restored 
habitat. For example, one would expect the intact, undisturbed landscape to have a much higher 
amount of biodiversity relative to its potential than the restored patch. This is particularly true for forest 
habitats, which often require years to reach maturity. To account for this, a map of current forest 
intactness was included (Grantham et al. 2020). This index assigns each pixel globally with a score 
between 0 and 1 based on the level of forest fragmentation and observed human pressures (such as 
agricultural development, road networks, and recorded deforestation), with a higher value representing 
more intact forests. Within each country, pixels that were initially in forest and remained in forest were 
assigned an intactness score equal to their forest intactness score. Any pixel not currently in forest was 
assigned a score of 0 (and would remain 0 even if that pixel is reforested). In this way, the optimization 
selects against conversion of intact forest landscapes.  
 
These six biodiversity indicator maps were then combined by first normalizing them between 0 and 1 
(except Key Biodiversity Areas, which were normalized between 0 and 0.5) and then the maximum of 
the six values was selected as the final value for each pixel. 

B.1.3 Agricultural crop production value 
Agricultural crop production provides crucial food, feed, fiber, and fuels that support human well-being, 
provide employment, and generate income that helps boost economies in every country. The impacts of 
agricultural crop production on other ecosystem benefits and human well-being stem, in part, from 
foregone land uses. When forest, wetlands, grassland, and other natural habitats are converted into 
agricultural crop production areas, these areas no longer provide equivalent amounts of biodiversity 
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habitat, water recharge and filtration, flood retention, carbon storage and sequestration, and other 
ecosystem services. Another major impact of agricultural production is through the runoff of excess 
sediment and fertilizer-derived nutrients, with potentially damaging effects on water quality in 
downstream rivers and coastal regions (Carpenter et al. 1998; Galloway 2003). Air quality can also be 
negatively affected by agricultural practices such as the particulate matter that arises from fertilization 
and wind erosion (Bauer, Tsigaridis, and Miller 2016; Hill et al. 2019; Ouyang et al. 2016).  
 
To estimate for every country the value of cropland in every parcel of land, the study team conducted a 
four-step analytical process to generate crop value maps under the 10 alternative crop management 
alternatives. It used global information on 10 major crops and the biophysical and socioeconomic factors 
affecting their value to  
 

• Generate crop yield maps that vary as a function of location, water supply, and source  
• Allocate crop mixes to specific locations based on the suitability of growing conditions 
• Estimate fertilizer application rates based on predicted yield of each crop in each pixel 
• Calculate gross production value and net production value for each crop at each location. 

Generating crop yield maps 
Crop yield maps for the 10 major global crops (barley, cassava, maize, oil palm, rapeseed, rice, sorghum, 
soybean, sugarcane, and wheat) were based on harvested yield and area data for each crop across 
about 20,000 political units from 1974 to 2012 (Ray et al. 2019). These data were normalized so that 
yield and harvested area matched the national-scale FAOSTAT production data (FAO 2020). The study 
team then generated estimates for each administrative census unit of harvested yield and area for each 
crop and its global extent from 2013 to 2018.  
 
Biophysical data affecting crop yields (such as crop-specific temperature and precipitation indexes and 
soil characteristics) and crop-specific irrigation fractions were then compiled for each administrative 
census unit to estimate the attainable yield for each crop under different conditions. Attainable yields 
were modeled using a yield ceiling as a function of biophysical data and whether crops were grown 
under rainfed or irrigated conditions.  
 
For current ”sustainable management” maps, crop irrigation was changed in those parcels where 
irrigation is unsustainable based on surface and groundwater supply (Rosa et al. 2019). For those parcels 
currently growing crops under unsustainable irrigation, the crop yields were changed to those attainable 
under rainfed conditions, and country average yield gaps were applied (World Bank 2020). 

Allocating crops to specific locations based on suitability of growing conditions 
Suitability of growing conditions for each crop in each country were modeled as a function of landscape 
slope, weather conditions (such as temperature, precipitation, and growing degree days), soils, and 
sustainability of irrigation. Slopes suitable for crop agriculture were determined by computing the 
average slopes on which agriculture is practiced in each country. A parcel of land was considered not 
suitable for agriculture on slopes exceeding the 95th percentile of slopes in crop production in a country 
or on a slope greater than 10 percent (the point at which tractors can no longer be used and 
mechanization becomes more difficult), whichever was higher. 
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In addition to slopes, biophysical suitability for each crop in each country was defined based on climate 
and soil quality attributes. Climatic suitability was quantified using a method analogous to ecological 
niche modeling. The conditions under which a crop is observed to be grown are assumed to be suitable, 
subject to data quality considerations. Soil quality suitability was determined from Zabel, Putzenlechner, 
and Mauser (2014).  
 
Crops were allocated to each parcel under different agricultural production scenarios—extensification 
versus intensification, rainfed versus irrigated. 

Estimating site- and crop-specific fertilizer application rates and yield  
Fertilizer application rates for each crop in each location were estimated using 2000 fertilizer application 
data (Mueller et al. 2012) and crop data (Monfreda, Ramankutty, and Foley 2008). A statistical 
regression model related fertilizer application rates to yield in 2000, and the model was then used to 
estimate fertilizer application rates required to achieve average crop yields for each country observed in 
2015. 

Calculating total production costs and value for each crop at each location 
Gross income from crop production was estimated for each crop and parcel as total production (metric 
tons) multiplied by producer price. Production was calculated as yield multiplied by harvested area for 
each of the 10 crops in each pixel. The average producer price for each crop and country based on Food 
and Agriculture Organization (FAO) data was used for the calculations (FAO 2020). In this analysis, crop 
prices were taken as exogenous—that is, prices do not change with changes in the supply of crops due 
to changes in land use or land management. With large changes in crop production, one would expect 
prices to adjust to meet demand. Equilibrium prices were estimated using a computable general 
equilibrium model such as that of the Global Trade Analysis Project (GTAP)—Hertel (1997). Such an 
approach was recently adopted for a related project described in the World Bank report The Economic 
Case for Nature (Johnson et al. 2021).  
  
The study team calculated transport costs based on travel time to the nearest city from farm fields 
(Weiss et al. 2018), the minimum wage for truck drivers (International Labour Organization), a fuel 
efficiency of 0.4 liters per kilometer, the cost of diesel fuel (World Bank 2020), and the assumption that 
each truck carries 15 metric tons of crop.  
 
The GTAP 10 Data Base (Aguiar et al. 2019) was used to convert gross returns to net returns for 
agricultural crops. The same procedure was used for forestry and grazing. The GTAP 10 Data Base 
provides information on 25 factors of production for 65 economic sectors in 141 regions. 

Table B.2 shows how the study team matched GTAP sectors to the 10 agricultural crops, forestry, and 
grazing activities.  
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Table B.2 Matchups of GTAP sectors and Landscape Efficiency Scores economic activity 

GTAP sector description NCI economic activity 

Rice Rice 

Wheat Wheat 

Maize (corn), sorghum, barley, rye, 
oats, millet, other cereals 

Barley, maize, sorghum 

Vegetables, fruit and nuts, edible 
roots and tubers with high starch or 
inulin content, pulses (dried 
leguminous vegetables) 

Cassava 

Oil seeds and oleaginous fruit Oil palm, soybean, rapeseed 

Sugar crops Sugarcane 

Bovine cattle, sheep and goats, 
horses 

Grazing 

Forestry Forestry 

Source: Original table for this publication. 
Note: GTAP = Global Trade Analysis Project. 
 
The factors of production include types of land (18 agroecological zones, AEZs), five types of labor (such 
as clerks and agricultural and unskilled labor), and two types of capital (capital and natural capital). The 
factor share for land (18 AEZs) was multiplied by the gross returns to generate an estimate of net 
returns. This method nets out costs for labor, produced capital, and other manmade inputs. The GTAP 
10 Data Base has data for most large countries, but it groups smaller countries into regions. For 
example, Bangladesh, India, Nepal, Pakistan, and Sri Lanka are reported separately, whereas 
Afghanistan, Bhutan, and Maldives are combined into a region called “Rest of South Asia.” Individual 
country data were used when available in GTAP and regional data for other countries. 

B.1.4 Livestock grazing production value 

The value of meat production from beef cattle was used as an estimate of grazing value on every parcel 
of land for every country. The study team conducted a four-step process to generate grazing value maps 
at 10 square kilometer (km2) resolution following methods used by Castonguay et al. (2022). First, 
information on meat production and biophysical and socioeconomic factors affecting production based 
on the ORCHIDEE GM model (Chang et al. 2016) were used to generate a mean annual grazed biomass 
value over a 30-year period (1987–2016) for each 10 km2 grid cell. The highest sustainable grazed 
biomass value for each cell was selected from among the three modeled grazing intensities (25 percent, 
37.5 percent, and 50 percent). The resulting highest sustainable grazing intensity is consistent with 
previous work such as that by Fetzel et al. (2017), where grazing intensity is higher in colder regions and 
lower in arid and tropical regions. Meat production (kilograms/hectare) for each cell was calculated 
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based on the amount of biomass multiplied by the energy in grass, the liveweight gain factor, and the 
dressing factor (see table B.3 for parameter values and data sources).  
 
Second, the study team calculated methane emissions measured in terms of CO2 equivalents (kilograms 
of CO2eq per hectare per kilogram of beef, or kg CO2eq/ha/kg) for each pixel of grazing land as a 
function of grazed biomass and a methane emissions conversion factor (kg CO2 eq/ha), manure as a 
function of grazed biomass and a manure emissions factor (kg CO2 eq/ha), and transportation (kg CO2 

eq/ha), which depends on travel time to the nearest urban center, average speed, fuel efficiency, and a 
road emissions factor (see table B.3 for parameter values and data sources). Methane emissions based 
on livestock density were aggregated over 20 years and were subtracted from carbon emissions.  
 
Table B.3 Parameters used in estimating livestock production value 
 

Parameter Description Value Unit Source 
BMi Grazed biomass — t/ha Chang et al. (2016) 
MErz Energy in grass — MJ/t DM Herrero et al. (2013) 
LWrz Liveweight gain conversion factor — kg/MJ Herrero et al. (2013) 
Dressing Dressing percentage 60 % FAO (2021a) 
MethEFrz Methane emission factor — kg CO2 eq/t DM Herrero et al. (2013) 
ManEFrz Manure emission factor — kg CO2 eq/t DM Herrero et al. (2013) 
Capacity Truck payload capacity 15,000 kg Delgado et al. (2016) 
Traveli Travel time to nearest urban centre 

(50,000 inhabitants or more) 
— Minutes Weiss et al. (2018) 

Speed Average speed 1 km/min Delgado et al. (2016) 
FE Fuel efficiency 0.4 l/km Waldron et al. (2006) 
Dieselc Cost of diesel — US$/l GIZ (2019) 
REF Road emission factor 2.7 kg CO2 eq/l Waldron et al. (2006) 

Source: Original table for this publication. 
Note: — = not available; kg CO2 eq/l= kilogram CO2 equivalent/liter; kg CO2 eq/t DM= kilogram of CO2 
equivalent/tonne; kg/MJ= kilogram/megajoule; l/km=liter per kilometer; MJ/t DM= megajoule/tonne dry matter; 
t/ha = tonnes/hectare; FAO = Food and Agriculture Organization of the United Nations. 
 
Third, meat production (kg/ha) in each grid cell was multiplied by the price of meat ($/kg) for each 
country, using a 10-year average price for cattle meat (2006–2015) as reported by FAO producer prices 
(FAO 2021b). Transport costs (US$/ha/kg of beef) to production in each pixel were subtracted. The costs 
were based on travel time to the nearest city from the pixel (Weiss et al. 2018), the minimum wage for 
truck drivers (ILO 2021), a fuel efficiency of 0.4 liters per kilometer (l/km) (Delgado et al. 2016), the cost 
of diesel fuel (World Bank 2020), and the assumption that each truck carries 15 tons.  
 
Finally, the potential meat production costs were calculated using the method just described for 
agricultural crops. Production costs were subtracted from gross revenue to determine net revenue from 
meat production.  
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Where needed, gaps were filled in the potential beef layer by using a nonlinear regression with net 
primary productivity (NPP; MOD17A3 v055) as the independent variable and grazed biomass as the 
dependent variable, so that 

 . (B.1) 
 
The three different grazing intensities (25 percent, 37.5 percent, and 50 percent), and the highest grazed 
biomass value was selected, as earlier. One regression was run for each grazing intensity–fertilizer 
scenario to first fill the gaps for each scenario and then to create a layer of “best-grazed biomass” by 
selecting the highest biomass value across the three grazing intensities. 

B.1.5 Forestry production value 

Forestry yield for each parcel and scenario was estimated by first using a global forest vegetation map 
generated by the MC2 dynamic global vegetation model from Kim et al. (2017). Forest biomass for each 
vegetation type was estimated using a growth function based on the empirical equation from Favero et 
al. (2020), 

 , (B.2) 
where Vi

a,t is yield in cubic meter per hectare; h is tree stocking density that depends on management 
intensity; 𝜹𝜹 and 𝜋𝜋 are species-dependent growth parameters; and a is tree age in decades. 
Timber growth functions were specified for each type of vegetation in each of 16 global timber regions 
(from Tian et al. 2016). These growth functions were applied to generate potential forest yield for each 
parcel and scenario. Some regions do not have sufficient information to estimate distinct forest types 
(for example, the African continent had one type). In these areas, 15-year average net primary 
productivity (NPP) was used to scale annual biomass yield, and the nearest neighborhood convolutions 
technique was used to fill the gap of the potential annual biomass yield. Gaps in the potential yield map 
were filled-in based on a nearest neighbor approximation with a Gaussian kernel of 25 kilometers. 
Forestry yields within each global timber region were then scaled linearly using net primary productivity, 
so that a pixel with twice the average NPP will have twice the timber returns, while a pixel with half the 
average NPP will have 50 percent of the timber returns. 
 
From potential forest yield, monetary returns were calculated by multiplying harvest volumes by 
regional log prices (Siikamäki and Santiago-Ávila 2014). Transportation costs, calculated using the same 
method as for crop transportation cost (except the truckload is assumed to be 40 square meters per 
truck and volume rather than weight assumed), were then subtracted. For countries with missing log 
prices, the nearest neighborhood analysis was used to fill the gap. Net monetary return from managed 
forestry was calculated by subtracting transportation cost from monetary return. The same method was 
used to calculate production costs as described earlier for agricultural crops to convert from gross 
production value to net production value.  

B.1.6 Exposure to nitrates in drinking water 
Excess nitrogen concentrations in ground and surface water is the result of (1) excess nitrogen 
application from farming and livestock; (2) insufficient natural capital and poor management resulting in 



17 
 

excess export of nitrogen to ground and surface water bodies; and (3) point sources of nitrogen such as 
insufficiently treated urban wastewater. Land use change, in particular the conversion to agricultural 
lands, modifies the natural nutrient cycle. Nitrogen loads are likely to increase under scenarios with 
intensified agriculture—that is, expansion of agricultural area or heavier nitrogen application. When it 
rains or snows, water flows over the landscape carrying pollutants from these sources into streams, 
rivers, lakes, groundwater bodies, and eventually the ocean. The health or well-being of people is 
directly affected (Keeler et al. 2012), as well as the aquatic ecosystems that have a limited capacity to 
adapt to these nutrient loads. One way to reduce nonpoint source pollution is to reduce the amount of 
anthropogenic inputs (that is, fertilizer management). In addition, ecosystems can provide a purification 
service by retaining or degrading pollutants before they enter the stream. For example, vegetation can 
remove pollutants by storing them in tissue or releasing them back to the environment in another form. 
Soils can also store and trap some soluble pollutants. Wetlands can slow flow long enough for pollutants 
to be taken up by vegetation or, in the case of nitrogen, to be returned to the atmosphere. Riparian 
vegetation is particularly important in this regard; it often serves as a last barrier to block nutrient runoff 
from upland areas before it enters a stream. 
 
Application of higher quantities of nitrogen during agricultural intensification or the loss of natural 
vegetation from extensification of agricultural and other development can increase nitrogen in water 
bodies and drinking water, which is the focus in this report. Excess nitrogen also has wide-ranging 
impacts on air pollution, thereby affecting human health, climate change and stratospheric ozone 
depletion, eutrophication and other forms of water pollution other than impacts on drinking water, and 
biodiversity loss. These impacts contribute directly and indirectly to a number of human health 
concerns, including respiratory ailments and cardiac disease, as well as impacts on ecosystem services 
and biodiversity that are not factored here. However, the model used in this report only captures one 
such impact, which is colorectal cancer.  
 
Although there is evidence that nitrate is linked to human health outcomes—such as “blue baby 
syndrome” (methemoglobinemia), adverse birth outcomes (low birth weight, preterm birth, and neural 
tube defects), and several forms of cancer—nitrate itself is generally not toxic. However, when ingested 
it can become nitrite, which reacts with hemoglobin to cause methemoglobinemia or to form N-nitroso 
compounds, which are carcinogenic. These health impacts have led to global and national standards for 
nitrogen in drinking water. Temkin et al. (2019) recently estimated a dose–response relationship 
between exposure to nitrate in drinking water and colorectal cancer. Such a relationship presents the 
possibility of incorporating an estimated health impact based on changes in the amount and location of 
natural ecosystems, agriculture, and agricultural management practices. The focus here is on the nitrate 
concentration in drinking water (after considering country-specific rates of drinking water origins from 
surface and groundwater) in order to not discount health outcomes that cannot be modeled.  

Model process and endpoints 
This model links (1) nitrogen loads derived from the InVEST Nutrient Delivery Ratio (NDR) model to (2) 
nitrate concentrations in surface and groundwater and (3) nitrogen concentrations in surface and 
groundwater to colorectal cancer incidence as a function of nitrogen concentrations in drinking water 
sources.  
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An alternative estimate of the impact of excess nitrogen in water supply is to quantify the nitrogen 
abatement costs to treat drinking water to World Health Organization (WHO) standards under different 
land use scenarios. However, the WHO standards for drinking water treatment are based on the very 
high safe thresholds for blue baby syndrome and not cancer impacts, and so will be exceeded in very 
few places. Thus abatement cost measures are not sensitive to changes in natural capital and the study 
team did not integrate abatement costs as an end metric in the landscape efficiency score.  
 
Although drinking water nitrate has been associated with other adverse health consequences (such as 
blue baby syndrome and adverse birth outcomes), no general dose–response relationship or even 
generalized links between health outcomes and particular levels of exposure have been established for 
these other effects. This model therefore captures only an illustrative, lower estimate for the negative 
health effects of nitrate in drinking water based on the available data linking to colorectal cancer rates. 
Globally, there are an estimated 15,000–75,000 nitrate-attributable colorectal cancer cases per year 
(Temkin et al. 2019). Similarly, no methods currently exist to quantitatively link nitrogen concentrations, 
aquatic ecosystems, and associated services (such as impacts on fisheries) on a global scale. These 
impacts were thus also omitted from this study’s estimates of nutrient impacts.  

Modeling nitrogen loads using the InVEST NDR model 
The InVEST Nutrient Delivery Ratio model was used to model nitrate loads in water sources as a function 
of changes in land use/land cover (Sharp et al. 2020). In a first step, the NDR model quantified the 
delivery of nitrogen from agriculture and other diffuse LU/LC-based sources to rivers (nitrogen export) 
as a function of nitrogen fertilizer application rates and background rates of nitrogen loading from 
nonagricultural land covers and the capacity for nitrogen retention by vegetation on the landscape. The 
model uses a simple mass balance approach, describing the movement of a mass of nutrients through 
space. Unlike more detailed nutrient models, it does not represent nutrient cycle dynamics, but rather 
represents the long-term, steady-state flow of nutrients through empirical relationships. Sources of 
nutrients across the landscape, also called nutrient loads, are determined based on a LU/LC map and 
associated loading rates as well as spatially explicit fertilizer application rates (corresponding to the 
rates used to model crop production). In a second step, delivery factors are computed for each parcel 
based on the properties of pixels belonging to the same flow path (in particular, their slope and the 
retention efficiency of the land use). Thus the model captures two mechanisms relevant for nutrient 
exports to streams: (1) spatial variability in application and (2) spatial variability and vegetation impacts 
on export. Each pixel's value for nitrogen export reflects its contribution to the total amount of nitrogen 
reaching the stream.  
 
Nitrogen fertilizer application rates are derived by extrapolating observed global application rates for 
intensive and extensive cropping practices for the top 10 crops by harvested area (barley, maize, oil 
palm, potato, rice, soy, sugar beet, sugarcane, sunflower, wheat), using a weighted average based on 
their proportional area. It is assumed that the crop compositions will remain constant in current 
agroclimatic zones. For extensification, current average nitrogen fertilizer application rates are applied 
to each 5 arc min grid cell; for intensification, the nitrogen application rates required to close yield gaps 
are set (Mueller et al. 2012). Background rates of nitrogen loading and nitrogen retention coefficients 
are set according to land cover type (Chaplin-Kramer et al. 2019). The model uses long-term average 
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climate conditions for precipitation runoff (Fick and Hijmans 2017) and is routed using a Digital Elevation 
Model at 90-meter resolution (NASA STRM 2013).  

Modeling nitrogen concentrations in surface and groundwater 

The next step is to use the NDR model outputs to model the resulting nitrogen concentration in water 
bodies on which nitrate-attributable cancer risks depend. In a recent study, the World Bank compiled a 
list of available observations of surface and groundwater quality, including concentrations of nitrogen 
compounds (Damania et al. 2019). These observations cover a significant area of the globe (though with 
a spatial bias) and a considerable timespan. The empirical observations allowed the team to build data-
driven models that link environmental covariates of climate, hydrology, hydrogeology, and urban extent 
with nitrate concentrations in surface and groundwater (for a list of covariates, see Damania et al. 2019 
technical appendix 
[https://openknowledge.worldbank.org/bitstream/handle/10986/32245/211459App.pdf] or 
Desbureaux et al. 2022). The team updated this approach by adding the outputs of the NDR model 
(nitrogen delivery to streams in in kilograms per year) to other environmental covariates to train a 
machine learning model that predicts nitrate concentrations (mass/volume) in surface and groundwater 
from modeled nitrogen export and environmental covariates with a global 10 × 10 square klometer 
resolution. The machine learning model thus links observed NOX-N data, environmental covariates, and 
InVEST NDR outputs to predict NOX-N concentrations in surface and groundwater.  

B.2 Sustainability  

Sustainable outcomes for all solutions along the efficiency frontier and for the analysis of the current 
situation were modeled. Sustainability was incorporated into the analysis by assuming that whatever 
land use and land management option was designated for a pixel does not change through time. These 
LU-LM options were constrained to not deplete natural capital. The constraint ruling out depletion of 
natural capital came into play in modeling grazing intensity and water use for irrigation. For grazing, 
animal density was selected based on the amount that maximizes biomass production and maintains at 
least 25 percent of standing biomass after grazing. For water use, irrigation was not allowed in areas 
where such irrigation is supplied by the unsustainable mining of groundwater aquifers (Rosa et al. 2019). 
In these areas, any agricultural crop production must be rainfed and not irrigated. However, one area in 
which the data are inadequate to model depletion of natural capital is soil degradation from 
unsustainable agricultural practices. 

B.3 Scenarios of land use and land management 
Thirteen land use and land management alternatives that can be applied to any given land were 
modeled. Each different LU-LM alternative for each parcel was scored using the models described earlier 
for agricultural crops, grazing, and forestry production, as well as biodiversity, greenhouse gas storage 
and emissions reduction, and nitrate concentration in drinking water. The optimization procedure 
(described shortly) chooses among the 13 LU-LM alternatives for each land parcel to achieve outcomes 
along the efficiency frontier.  

https://openknowledge.worldbank.org/bitstream/handle/10986/32245/211459App.pdf
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Land use and land management alternatives  
There are 13 land use and land management alternatives in addition to the sustainable current land use: 
restoration, forestry, grazing, and 10 crop production alternatives.  
 
For protected areas as denoted by the IUCN, the addition of cropland, grazing, or forestry into any IUCN 
classes I–IV protected areas was not allowed. To generate the “sustainable current” scenario, existing 
cropland was removed from land in IUCN classes I–IV and VI. Current uses (but no expansion) were 
allowed on IUCN class V. Grazing and forestry expansion, but not cropland expansion, was allowed in 
IUCN class VI.  
 
Sustainable current. The European Space Agency land use/land cover map was used as the current 
landscape map for every country (ESA 2019), except those areas in which the current land use is 
unsustainably irrigated cropland (that is, withdrawals exceed recharge— Rosa et al. 2019) and has been 
converted to rainfed cropland. Cropland was removed from certain IUCN-designated protected areas. 
 
Restoration. In this alternative, all nonurban pixels were converted to their potential vegetation as 
defined by the ESA land cover map (ESA 2019). Modeling the effects of restoration on landscapes in 
each country requires identifying a logical habitat type that will result from restoration activities in each 
location. To determine what land cover classification could be restored from a parcel that is currently 
under agricultural crop production, grazing, or forestry, the study team used a two-step process. In the 
first step, it restricted the potential vegetation classes to which a parcel can transition using a map of 
global biomes. In this way, it was able to ensure that errors in remote sensing data or human activity 
(for example, the conversion of natural forests to managed grassland or the conversion of natural 
grassland to plantation forests) did not result in inappropriate habitat types under restoration. In the 
second step, it used a spatial algorithm based on Gaussian decay functions with simple rules to select 
the most likely natural land class to which a current agricultural cell will revert after constraining it 
based on the biome it occupies.  
 
Crop production alternatives (10). The cropland scenarios consist of combinations of cropland 
management choices: 
 

• Intensification versus current practices 
• Extensification versus current crop extent 
• Irrigated versus rainfed 
• With or without best management practices. 

 
Agricultural best management practices were represented by converting 10 percent of the agricultural 
parcel (pixel) to native habitat and restoring riparian buffers (the pixels immediately adjacent to 
streams, as delineated in the hydrological modeling) according to their native/potential natural 
vegetation classes (see restoration). This resulted in different areas of natural habitat within parcels, 
depending on the density of the stream network. 
  
The intensification of crop agriculture was split into irrigated and rainfed parcels, depending on the 
sustainability of water for irrigation (Rosa et al. 2019) and the application of fertilizer required to close 
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yield gaps for rainfed or irrigated production, respectively. For BMPs, the fertilizer application rate was 
90 percent of the respective rate for rainfed or irrigated intensified crop production; BMPs were only 
applied to intensified agricultural parcels (not to parcels for current agricultural practices). 
 
The 10 crop production alternatives are summarized in table B.4. Two alternatives use current 
production methods, and eight use intensified production methods. 
 
Table B.4 Alternative crop production management 
 

Crop production 
alternative 

Intensity Extent 
Water 

management BMPs 

Current 

Yield 
gap 

closure Current Maximum Rainfed Irrigated No Yes 
Sustainable current X   X   X   X   

Expanded current X     X X   X   

Intensified production methods 
Current extent, rainfed, 
without BMPs 

  X X   X   X   

Current extent, rainfed, 
with BMPs 

  X X   X     X 

Current extent, 
irrigated, without BMPs 

  X X     X X   

Current extent, 
irrigated, with BMPs 

  X X     X   X 

Expanded extent, 
rainfed, without BMPs 

  X   X X   X   

Expanded extent, 
rainfed, without BMPs 

  X   X X     X 

Expanded extent, 
irrigated, without BMPs 

  X   X   X X   

Expanded extent, 
irrigated, with BMPs 

  X   X   X   X 

Source: Original table for this publication. 
Note: BMPs = best management practices. 
 
For all cropland management alternatives, several suitability rules were applied: 

• Sustainable irrigation. In all scenarios involving irrigation, irrigation was allowed only where it 
was considered sustainable (Rosa et al. 2019). In areas where irrigation was unsustainable, crop 
management alternatives were restricted to include only rainfed cropland. 

• Slope threshold. Expansion of intensified cropland was allowed only into pixels with an average 
slope of less than 10 percent. Pixels steeper than this threshold remained in their current state. 

• Crop suitability. Each specific crop type was constrained by its suitability in climate, slope, and 
soil characteristics and was only able to expand to suitable pixels. In expansion scenarios, 
cropland was only expanded into pixels suitable for at least one crop type. Possible extents for 



22 
 

irrigated and rainfed crop production were defined according to climate (that is, growing degree 
days and precipitation suitability for the top 10 crops). Suitability of a parcel for crop production 
was also defined based on soil type characteristics (Zabel, Putzenlechner, and Mauser 2014) and 
the slope of the parcel. Agricultural expansion (using “current practices”) was not allowed as a 
transition in the optimization analysis on slopes exceeding the 95th percentile of slopes in that 
country or on a slope greater than 10 percent (the point at which tractors can no longer be used 
and mechanization becomes more difficult), whichever was higher. Intensified agricultural 
expansion was not allowed on slopes exceeding 10 percent. 

• Grazing. Grazing was allowed in all suitable pixels as defined by the grazing production model 
but was not allowed in IUCN class I–IV protected areas. 

• Forestry. Forestry was allowed in all suitable pixels as defined by the forestry production model 
but was not allowed in IUCN class I–IV protected areas. 

B.4 Transition costs 

Transitions between land uses typically require an upfront investment cost. For example, converting 
land into agricultural crop fields from natural vegetation entails clearing costs and crop establishment 
costs. Restoring agricultural cropland to natural habitat typically requires replanting and other 
restoration costs. In areas without established irrigation, transitioning to irrigated agriculture requires 
investment to install irrigation infrastructure. Table B.5 describes the costs that apply to various 
potential transitions.  
 
Table B.5 Transition costs included in scenarios 

To 

 

 From 

Natural 
habitat 

Current 
agriculture Forestry Grazing 

Intensive 
agriculture, 
rainfed 

Intensive 
agriculture, 
irrigated 

  
Natural 
habitat 
  

  
0 

Cost of 
clearing land 
and 
establishing 
crops 

Cost of 
establishing 
forest (will 
vary by 
habitat type) 

Cost of 
clearing land 

Cost of 
clearing land, 
establishing 
crops, and 
improvements 
for 
intensification 

Cost of clearing 
land, establishing 
crops, and 
improvements for 
intensification 
and irrigation 

Current 
agriculture 
  

Restoration 
costs (will 
vary by 
habitat 
type) 

  
0 

Cost of 
establishing 
forest 

 
0 

Costs of 
improvements 
for 
intensification 

Costs of 
improvements for 
intensification 
and irrigation 
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To 

 

 From 

Natural 
habitat 

Current 
agriculture Forestry Grazing 

Intensive 
agriculture, 
rainfed 

Intensive 
agriculture, 
irrigated 

Forestry Restoration 
costs (will 
vary by 
habitat 
type) 

Cost of 
clearing land 
and 
establishing 
crops 

 
0 

Cost of 
clearing land 

Cost of 
clearing land, 
establishing 
crops, and 
improvements 
for 
intensification 

Cost of clearing 
land, establishing 
crops, and 
improvements for 
intensification 
and irrigation 

Grazing Restoration 
costs (will 
vary by 
habitat 
type) 

Cost of 
establishing 
crops 

  
0 

Cost of 
establishing 
crops and 
improvements 
for 
intensification 
 

 Cost of 
establishing crops 
and 
improvements for 
intensification 
and irrigation 

Intensive 
agriculture, 
rainfed 

  
n.a. 

  
n.a. 

 
n.a. 

 
n.a. 

  
0 

  
n.a. 

Intensive 
agriculture, 
irrigated 

  
n.a. 

  
n.a. 

 
n.a. 

 
n.a. 

  
n.a. 

  
0 

Source: Original table for this publication. 
Note: n.a. = not applicable. 

Restoration costs  
The independent study Economics of Ecosystems and Biodiversity (TEEB) has estimated the costs of 
restoring natural habitat by habitat type (TEEB 2009). TEEB reports the “typical” costs per hectare (table 
B.6). The study team scaled costs per hectare to countries based on relative wages (ILO 2021). Each 
country's labor costs were divided by the median labor cost globally, and then that scaling factor was 
multiplied by these restoration costs per hectare to estimate a country-specific cost of restoration. 
These scaled costs were comparable to country- and habitat-specific costs from Bayraktarov et al. 
(2016), the only global meta-analysis of restoration costs for marine and coastal habitats. The list of 
average hourly wages for skilled fishery, agricultural, and forestry industries compiled by the 
International Labour Organization (ILO) provided data for 48 countries. If data were not available for a 
country, the average of the subregion was used. If data for none of the counties in a subregion were 
available, the data for the country were adjusted based on the minimum wage database of ILO (2021). 
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To weight by labor differential, the study team took the average or median labor cost globally from ILO 
data and then divided each country's (or region's) labor cost by it. It then multiplied that scaling factor 
by these global costs to get the country- (or region-) specific cost of restoration. 
 
Table B.6 Estimate of restoration costs, by habitat type 
 

 Habitat type 

Restoration cost 
estimate 
(US$/hectare) 

Inland wetlands 33,000 

Lakes/rivers 4,000 

Tropical forests 3,450 

Other forests 2,390 

Woodlands/shrubland 990 

Grasslands 260 

Source: TEEB 2009. 

Land clearing and land establishment cost 
Estimates of land clearing costs were based on the assumption that land clearing would be carried out 
by machine mulching of existing vegetation. Cost estimates were based on a vertical shaft mulcher. For 
land clearing, the study team estimated the cost of the vertical shaft mulcher, the operation cost, and 
the maintenance cost using Iowa State University’s guide for the cost of owning agricultural machinery. 
The cost of the machine over its useful life was estimated by deducting salvage value from list price. 
Operation cost included fuel cost and labor cost. Fuel and labor costs vary by geographic location. Fuel 
cost per liter was collected from the World Bank’s World Development Indicators (WDI) database. For 
labor costs, the study team used the International Labour Organization database (ILO 2021). The list of 
average hourly wages for skilled fishery, agricultural, and forestry industries compiled by ILO provided 
data for 48 countries. If data were not available for a country, the average of the subregion was used. If 
data for none of the counties in a subregion were available, the data for the country were adjusted 
based on the minimum wage database of ILO (ILO 2021).  
 
Three field operations are required to convert pastureland to agricultural crop production. Illinois State 
University provided the cost of these three operations. Using this guide and adjusting for fuel and labor 
costs for all the countries, the study team estimated the cost of land establishment. 

Irrigation costs 

The International Water Management Institute provided irrigation setup costs for subregions. The study 
team used the value for successful projects, which are defined as having a greater than 10 percent 
economic internal rate of return at project completion. 
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Annualizing transition costs 
All transition costs were annualized assuming a 20-year amortization with a 3 percent discount rate.  

B.5 Optimization  
An optimization analysis was used to construct the efficiency frontier, which shows the range of Pareto-
efficient combinations of sustainable environmental and economic objectives that can be attained 
through different land use and land management choices. The optimization analysis used a discrete 
choice (integer programming) model in which a land use decision is made for each land parcel in a given 
country. A land parcel is a larger spatial unit that contains multiple smaller land units (pixels). The scale 
of pixels is defined by the resolution of spatially explicit data—in this analysis the scale was 300 square 
meters. A parcel’s score for an objective is the sum of the values of its constituent pixels. In the 
optimization analysis, a parcel can be assigned to one of several alternative land use and land 
management options. Some pixels were precluded from certain land uses or management options (as 
described earlier). For example, agriculture was excluded from some areas because the land is 
unsuitable for crop production either because of poor soil or steep slopes, or because the land is in a 
protected area. Each parcel was given a score for each objective under each land use and land 
management alternative according to the models for biodiversity, carbon storage, agricultural crop 
production, grazing, forestry, and drinking water quality. The optimization procedure is as follows:  
 

● Evaluate each objective (o) in each parcel (p) for each LU-LM alternative (m). Doing so generates 
the value for each objective on each parcel for each LU-LM alternative: 𝑣𝑣𝑚𝑚𝑚𝑚𝑜𝑜 . 

● Run a sequence of optimizations with weights, 𝑤𝑤𝑜𝑜 , assigned to each objective, 0≤ 𝑤𝑤0 ≤ 1, 
∑ 𝑤𝑤0� = 1 , and solve the optimization problem 

 
 ∑ ∑ 𝑥𝑥𝑚𝑚𝑚𝑚𝑤𝑤𝑜𝑜𝑣𝑣𝑚𝑚𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚 ,    (B.3) 

  
where 𝑥𝑥𝑚𝑚𝑚𝑚 ∈ [0,1] and ∑ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = 1 for each p.  

● These optimizations identify the optimal landscape, consisting of the optimal decisions (choice 
of management option) for each parcel, given 𝑤𝑤𝑜𝑜. The collection of these individual 
optimizations with different weights outlines the frontier. 

B.6 A general equilibrium model of reallocation gains from correcting externalities 

What are the aggregate implications of recognizing the social cost of carbon in different countries? To 
answer this question, the study team considered a general equilibrium model of agriculture featuring 
environmental externalities. Carbon sequestration benefits are modeled as a parameter that has a 
positive impact in the welfare function. A stylized feature in the model is that natural capital such as 
forests provides a positive externality in the welfare function when the value of sequestration is 
recognized. As the importance of the land cover is recognized by the social planner, land will be 
allocated to nature for environmental services (sequestration) of which the benefits are often neglected 
in the economy.  



26 
 

Agriculture sector 
The stylized production unit in agriculture is a farm that requires land and labor as inputs described by a 
constant return to scale technology. Output in agriculture 𝑌𝑌𝑎𝑎 requires the inputs of land 𝐿𝐿𝑎𝑎 and labor 𝑁𝑁, 
where 0 < 𝛾𝛾 < 1 denotes the relative importance of land in producing food, and 𝐴𝐴𝑎𝑎 is agricultural 
total factor productivity (TFP)1:  
 
 𝑌𝑌𝑎𝑎 = 𝐴𝐴𝑎𝑎𝐿𝐿𝑎𝑎

𝛾𝛾𝑁𝑁1−𝛾𝛾 (B.4) 
 
 𝜋𝜋 = 𝐴𝐴𝑎𝑎𝐿𝐿𝑎𝑎

𝛾𝛾𝑁𝑁1−𝛾𝛾 − 𝑞𝑞𝐿𝐿𝑎𝑎 − 𝑤𝑤𝑁𝑁  (B.5) 
 
 𝑑𝑑𝑑𝑑

𝑑𝑑𝐿𝐿𝑎𝑎
⇒ 𝑞𝑞 = 𝛾𝛾𝐴𝐴𝑎𝑎𝐿𝐿𝑎𝑎

𝛾𝛾−1𝑁𝑁1−𝛾𝛾  (B.6) 

 
 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
⇒ 𝑤𝑤 = (1 − 𝛾𝛾)𝐴𝐴𝑎𝑎𝐿𝐿𝑎𝑎

𝛾𝛾𝑁𝑁−𝛾𝛾 = 𝑤𝑤  (B.7) 
 
 𝑤𝑤

𝑞𝑞
= 1−𝛾𝛾

𝛾𝛾
𝐿𝐿𝑎𝑎
𝑑𝑑

. (B.8) 

 
 

Agricultural land is used for production purposes; environmental land cover is used for carbon 
sequestration; and “unusable land” is land that is unsuited for either purpose and cannot be used for 
production or sequestration purposes (for example, deserts). The land market clearing condition 
represents the land inputs as shares, so that 
 
 1 = 𝐿𝐿𝑎𝑎 + 𝐿𝐿𝑒𝑒 + 𝐿𝐿𝑛𝑛. (B.9) 

Social planner’s problem 

A representative household (social planner) chooses to allocate land to the agriculture sector or to 
environmental sequestration to maximize welfare. The household budget constraint is  
 
 𝐴𝐴𝑎𝑎𝐿𝐿𝑎𝑎

𝛾𝛾𝑁𝑁1−𝛾𝛾 = 𝑌𝑌𝑎𝑎 = 𝑐𝑐𝑎𝑎 = 𝑞𝑞𝐿𝐿𝑎𝑎 + 𝑤𝑤𝑁𝑁. (B.10) 
 
Welfare depends on the amount of agricultural goods being consumed, and sequestration benefits from 
land cover. Aside from land input, environmental benefits from sequestration depend on the carbon 
sequestration efficiency 𝐴𝐴𝑒𝑒, the social cost of carbon (carbon taxes) 𝛿𝛿, and the preference of 
environmental services over agricultural consumption 𝜙𝜙 (green preference). Because this is a closed 
economy, the benefits from consumption depend on the amount of agricultural production: 

  
𝑊𝑊 =  𝛿𝛿𝜙𝜙 log(𝐴𝐴𝑒𝑒𝐿𝐿𝑒𝑒)���������

𝐸𝐸𝑛𝑛𝐸𝐸𝐸𝐸𝐸𝐸𝑜𝑜𝑛𝑛𝑚𝑚𝑒𝑒𝑛𝑛𝐸𝐸𝑎𝑎𝐸𝐸 𝐵𝐵𝑒𝑒𝑛𝑛𝑒𝑒𝐵𝐵𝐸𝐸𝐸𝐸𝐵𝐵
+ (1 − 𝜙𝜙) log(𝑐𝑐𝑎𝑎)�����������

𝐶𝐶𝑜𝑜𝑛𝑛𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑜𝑜𝑛𝑛
 

 
1 The study team abstracted from capital and intermediate inputs, both of which are known to magnify the 
productivity and income implications and are discussed in detail in the literature (Adamopoulos and Restuccia 
2014; Restuccia, Yang, and Zhu 2008).  
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 𝑊𝑊 = 𝛿𝛿𝜙𝜙 𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴𝑒𝑒(1 − 𝐿𝐿𝑎𝑎 − 𝐿𝐿𝑛𝑛)) + (1 − 𝜙𝜙) 𝑙𝑙𝑙𝑙𝑙𝑙 (𝐴𝐴𝑎𝑎𝐿𝐿𝑎𝑎
𝛾𝛾𝑁𝑁1−𝛾𝛾) 

  
 𝑑𝑑𝑑𝑑

𝑑𝑑𝐿𝐿𝑎𝑎
⇒ 𝛿𝛿𝜙𝜙 

1−𝐿𝐿𝑎𝑎−𝐿𝐿𝑛𝑛
= 𝛾𝛾(1−𝜙𝜙)

𝐿𝐿𝑎𝑎
⇒ 𝛿𝛿𝜙𝜙 

𝛾𝛾(1−𝜙𝜙)
= 1−𝐿𝐿𝑎𝑎−𝐿𝐿𝑛𝑛

𝐿𝐿𝑎𝑎
. (B.11) 

 
Maximizing for the distribution of land and solving for 𝐿𝐿𝑎𝑎 gives 
 

 𝐿𝐿𝑎𝑎 = (1 − 𝐿𝐿𝑛𝑛) 𝛾𝛾(1−𝜙𝜙)
𝛿𝛿𝜙𝜙 +𝛾𝛾(1−𝜙𝜙)

. (B.12) 

 
From equation (B.8), 𝐿𝐿𝑎𝑎 depends negatively on 𝜙𝜙, 𝛿𝛿 and positively on 𝛾𝛾 assuming 𝜙𝜙 or 𝛿𝛿 is not 0. The 
social planner’s land allocation is restricted by the share of bare area 𝐿𝐿𝑛𝑛. One assumption of the model 
is that land that can be farmed can be reforested but cannot be expanded to the unusable area. 
Therefore, 𝐿𝐿𝑎𝑎 → (1 − 𝐿𝐿𝑛𝑛), when 𝜙𝜙 → 0 or when 𝛿𝛿 → 0. In the model, 𝜙𝜙 could be interpreted as 
either a green preference parameter or the costs of switching land between environment and 
agriculture.  

Calibration 
Two different scenarios were compared: a world in which the social cost of carbon is not recognized and 
thus without any carbon taxes and a world in which the carbon tax is imposed and thus the 
environmental benefits of land covers are recognized. To calibrate a benchmark economy that is a world 
without carbon taxes, it was assumed that the social cost of carbon is close to 0. In the counterfactual 
experiment, the social planner recognizes the sequestration benefits of environmental land covers, and 
𝛿𝛿 is normalized to 1.  
 
The benchmark economy was compared to the counterfactual scenario for 144 countries. Each country 
differs in three country-specific parameters (𝐴𝐴𝑎𝑎, 𝛾𝛾, 𝐿𝐿𝑛𝑛), so the changes in welfare between the 
countries can be compared when the sequestration benefits of land cover is recognized from the model. 

Parameterization 
The following country-specific parameters are heterogeneous between each country: 
 

• 𝑨𝑨𝒂𝒂 = agricultural TFP and is represented by actual-to-potential yield ratio from Global Agro-
Ecological Zones (GAEZ). 

• 𝜸𝜸 = land elasticity in agricultural production and was assigned based on agricultural income 
shares. 

• 𝑳𝑳𝒏𝒏 = share of “unusable” land and is represented by Organisation for Economic Co-operation 
and Development (OECD) data on bare area. 

 
Without loss of generality, labor input was set at N = 1, and the price of agricultural goods was 
normalized to 1. Similar to Adamopoulos and Retuccia (2020), agricultural TFP 𝑨𝑨𝒂𝒂 was represented by 
the actual-to-potential yield ratio from GAEZ and weighted by each yield ratio group. When 𝐴𝐴𝑎𝑎 = 100, 
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agricultural goods are produced at their full potential. The green preference parameter 𝜙𝜙 was chosen at 
0.74 to reconcile the global environmental land shares to those reported by OECD.2 
 
Span-of-control parameter 𝜸𝜸 was estimated using growth accounting from other sources. There is some 
consensus that the labor share in agriculture should be about one-half for most countries (Gollin, 
Lagakos, and Waugh 2014). The remaining half is normally represented by the sum of capital and land 
shares. This model allows only for land and labor, and so the computation for capital is excluded. Both 
Valentinyi and Herrendorf (2008) and Adamopoulos and Restuccia (2014) use a labor share of 0.46 with 
US data and a land income share of 0.18 with US data. Therefore, excluding the computation for capital, 
for the high-income countries in the model was assigned 0.28. Generally, the land income share in 
agriculture is larger in poor countries (Santaeulalia-Llopis and Restuccia 2014). For low-income 
countries, the estimate from Restuccia and Santaeulalia-Llopis (2015) was used in which the land income 
share is double the capital income share and set at 𝛾𝛾 = 0.44 for low-income countries. For upper-middle-
income and lower-middle-income countries, 𝛾𝛾 was assigned 0.33 and 0.38, respectively, to maintain a 
similar range between the income groups. Table B.7 gives the full set of parameters used. 
 
Table B.7 Parameterization 
 

Parameters Value Target 
Technological parameters Benchmark Counterfactual  

𝑨𝑨𝒂𝒂 Country-specific Country-specific Actual-to-potential yield ratio 
𝑨𝑨𝒆𝒆 100 100 Normalization 
𝜸𝜸 Country-specific Country-specific Agricultural land income share 

Preference parameters    
𝝓𝝓 0.74 0.74 Global land cover share 
𝜹𝜹 0 1 Normalization 
𝑳𝑳𝒏𝒏 Country-specific Country-specific Share of “unusable land” 

Labor endowment    
𝑵𝑵 1 1 Normalization 

Source: Original table for this publication. 

Results 
Table B.8 shows the aggregate welfare of each country group before and after recognition of the social 
cost of carbon. The country-specific parameters are agricultural TFP, relative importance of land in 
agricultural production, and share of bare area. For the aggregate results, 𝑊𝑊𝐵𝐵𝐸𝐸  is the welfare in the 
benchmark economy; 𝑊𝑊𝐸𝐸𝐸𝐸𝐸𝐸  is the welfare in the experiment with externalities; 𝑊𝑊𝐵𝐵𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 and 
𝑊𝑊𝐸𝐸𝐸𝐸𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 are the ranks of the regions; and 𝑊𝑊(Δ %) is the percentage increase in welfare from the 
benchmark to the experiment. In table B.8, country groups that have lower agricultural TFP, lower 𝛾𝛾, 

 
2 𝜙𝜙 = 𝐺𝐺𝐸𝐸𝑜𝑜𝐺𝐺𝑎𝑎𝐸𝐸 𝐸𝐸𝑎𝑎𝑛𝑛𝑑𝑑 𝑐𝑐𝑜𝑜𝐸𝐸𝑒𝑒𝐸𝐸

𝐺𝐺𝐸𝐸𝑜𝑜𝐺𝐺𝑎𝑎𝐸𝐸 𝐸𝐸𝑎𝑎𝑛𝑛𝑑𝑑 𝑐𝑐𝑜𝑜𝐸𝐸𝑒𝑒𝐸𝐸 + 𝐺𝐺𝐸𝐸𝑜𝑜𝐺𝐺𝑎𝑎𝐸𝐸 𝑎𝑎𝑎𝑎𝐸𝐸𝐸𝐸𝑐𝑐𝐶𝐶𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝑎𝑎𝐸𝐸 𝐸𝐸𝑎𝑎𝑛𝑛𝑑𝑑
. For each country, land shares from OECD stats are multiplied with 

land size from World Bank data for 2019 to estimate global land cover and global agricultural land. 𝐿𝐿𝑎𝑎  = crop land; 
𝐿𝐿𝑒𝑒 = tree cover, grassland, wetland, shrubland, sparse vegetation; 𝐿𝐿𝑛𝑛 = artificial surfaces, bare area, inland water. 
See https://stats.oecd.org/Index.aspx?DataSetCode=LAND_COVER#. 
 

https://stats.oecd.org/Index.aspx?DataSetCode=LAND_COVER
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and lower share of unusable land are associated with larger welfare gains from recognizing the 
environmental benefits through the social cost of carbon.  
 
The results reveal that the most welfare gain in terms of percentage increase is in the Sub-Saharan 
African countries. These countries have low agricultural production and low shares of bare area. They 
benefit so much mainly because their agricultural production is poor, resulting in low welfare in the 
benchmark economy. However, recognition of the environmental benefits provided by their land cover 
produces significant gains in welfare. Meanwhile, countries in Western Europe have the highest welfare 
in the benchmark economy, with a large comparative advantage in agricultural production. They still 
have the second-largest welfare among the subregions. However, recognition of environmental benefits 
has resulted in the transfer of land from agriculture to environmental services and in the smallest 
percentage increase in welfare. Incorporating the externalities resulted in a convergence of the relative 
welfare gaps between the subregions. 
 
Absolute welfare is higher in high-income countries when compared with lower-income countries in 
both the benchmark economy and the experiment. However, lower-income countries benefit more 
from recognizing the social cost of carbon in the experiment, resulting in a narrower welfare gap 
between rich and poor countries. Notable are the welfare gains for countries in the Amazon rainforest 
and Congo Basin regions.3 The welfare in the experiment is very high for these regions (known as the 
lungs of the planet) when compared with other subregions. Their initial welfare is fairly high, but they 
benefit more than most of the subregions of the world in terms of their percentage increase in welfare 
resulting in extremely high welfare after the experiment. 
 
The different results among countries are driven by two factors: (1) the share of land suitable for GHG 
sequestration and (2) the comparative advantage between agriculture and sequestration. Three types of 
land are in the model: (1) land used for production purposes, (2) land used for sequestration purposes, 
and (3) bare area (such as deserts) that cannot be used for either production or sequestration. Having a 
higher share of bare area is associated with lower welfare by limiting the land input for both purposes. 
The countries in Amazon rainforest (3.63 percent) and Congo Basin (1.02 percent) have very low shares 
of bare area, which enables higher welfare. The relative marginal payoffs between agriculture and 
sequestration imply that efficiency is maximized by focusing sequestration where agricultural potential 
is relatively lower and where sequestration opportunities are higher. Therefore, countries that have 
higher agricultural productivity (mostly high-income countries) will gain less welfare in the process of 
converting farms to forests.  
 
Table B.8 Experiment results, by country income group 

Country income group Parameters Aggregate results 
Region 𝑨𝑨𝒂𝒂 𝜸𝜸 𝑳𝑳𝒏𝒏(%) 𝑾𝑾𝑩𝑩𝑩𝑩 𝑾𝑾𝑩𝑩𝑩𝑩𝑹𝑹𝒂𝒂𝒏𝒏𝑹𝑹 𝑾𝑾𝑩𝑩𝑬𝑬𝑬𝑬 𝑾𝑾𝑩𝑩𝑬𝑬𝑬𝑬𝑹𝑹𝒂𝒂𝒏𝒏𝑹𝑹 𝑾𝑾(Δ %) 
Sub-Saharan Africa 23.50 0.41 10.62 0.79 6 3.77 6 380.40 
South Asia 32.98 0.39 13.35 0.87 5 3.86 5 346.24 
Europe and Central Asia 47.50 0.30 7.31 0.96 3 4.05 2 327.53 

 
3 Amazon rainforest countries are Bolivia, Brazil, Colombia, Ecuador, Guyana, Peru, República Bolivariana de 
Venezuela, and Suriname. Countries in the Congo Basin are Cameroon, Central African Republic, Democratic 
Republic of Congo, Equatorial Guinea, Gabon, and Republic of Congo. 
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Country income group Parameters Aggregate results 
Region 𝑨𝑨𝒂𝒂 𝜸𝜸 𝑳𝑳𝒏𝒏(%) 𝑾𝑾𝑩𝑩𝑩𝑩 𝑾𝑾𝑩𝑩𝑩𝑩𝑹𝑹𝒂𝒂𝒏𝒏𝑹𝑹 𝑾𝑾𝑩𝑩𝑬𝑬𝑬𝑬 𝑾𝑾𝑩𝑩𝑬𝑬𝑬𝑬𝑹𝑹𝒂𝒂𝒏𝒏𝑹𝑹 𝑾𝑾(Δ %) 
Latin America and the 
 Caribbean 41.57 0.34 4.30 0.95 4 4.05 3 326.44 

East Asia and Pacific 45.96 0.35 6.18 0.97 2 4.04 4 318.77 
North America 60.91 0.28 11.59 1.06 1 4.13 1 290.02 
Middle East and North 
 Africa 33.01 0.36 71.80 0.72 7 2.60 7 263.40 

Subregion 𝑨𝑨𝒂𝒂 𝜸𝜸 𝑳𝑳𝒏𝒏(%) 𝑾𝑾𝑩𝑩𝑩𝑩 𝑾𝑾𝑩𝑩𝑩𝑩𝑹𝑹𝒂𝒂𝒏𝒏𝑹𝑹 𝑾𝑾𝑩𝑩𝑬𝑬𝑬𝑬 𝑾𝑾𝑩𝑩𝑬𝑬𝑬𝑬𝑹𝑹𝒂𝒂𝒏𝒏𝑹𝑹 𝑾𝑾(Δ %) 
Southern Africa 21.25 0.34 5.74 0.73 18 3.81 14 443.73 
Eastern Africa 20.59 0.42 8.99 0.77 17 3.78 15 389.80 
Western Africa 24.62 0.42 15.20 0.80 15 3.69 17 364.61 
Central Africa 27.63 0.39 7.34 0.84 14 3.87 13 361.88 
Eastern Europe 32.04 0.31 4.86 0.88 12 3.99 11 357.09 
Caribbean 40.30 0.34 3.39 0.91 11 4.01 10 348.70 
Melanesia 38.88 0.36 1.92 0.93 10 4.03 9 339.28 
Southern Asia 33.33 0.39 20.07 0.87 13 3.76 16 337.71 
Southern Europe 40.32 0.30 3.87 0.95 9 4.06 5 332.30 
Central America 41.20 0.36 3.18 0.96 8 4.05 8 322.47 
Southeast Asia 42.58 0.37 2.44 0.96 6 4.06 7 322.38 
South America 42.23 0.33 5.35 0.96 7 4.06 6 321.67 
Eastern Asia 48.77 0.34 16.44 0.97 5 3.95 12 309.34 
Northern Europe 63.46 0.28 6.99 1.05 4 4.16 3 299.56 
Western Asia 33.65 0.34 52.21 0.78 16 3.03 18 297.88 
North America 60.91 0.28 11.59 1.06 3 4.13 4 290.02 
Northern Africa 19.66 0.37 72.26 0.61 19 2.42 19 287.50 
Australia and New 
 Zealand 68.36 0.28 5.86 1.09 2 4.21 1 285.05 

Western Europe 79.46 0.28 11.11 1.13 1 4.20 2 272.76 
Income group 𝑨𝑨𝒂𝒂 𝜸𝜸 𝑳𝑳𝒏𝒏(%) 𝑳𝑳𝒆𝒆 (%) 𝑳𝑳𝒂𝒂 (%) 𝑾𝑾𝑩𝑩𝑩𝑩 𝑾𝑾𝑩𝑩𝑬𝑬𝑬𝑬 𝑾𝑾 (Δ %) 
High-income 57.61 0.28 12.11 79.98 7.91 1.02 4.01 295.71 
Upper-middle-income 36.56 0.33 14.59 76.46 8.95 0.88 3.79 331.66 
Lower-middle-income 32.80 0.38 10.15 79.30 10.55 0.88 3.87 345.91 
Low-income 21.33 0.43 16.65 72.40 10.95 0.76 3.66 380.10 
Lungs of the planet 𝑨𝑨𝒂𝒂 𝜸𝜸 𝑳𝑳𝒏𝒏(%) 𝑳𝑳𝒆𝒆 (%) 𝑳𝑳𝒂𝒂 (%) 𝑾𝑾𝑩𝑩𝑩𝑩 𝑾𝑾𝑩𝑩𝑬𝑬𝑬𝑬 𝑾𝑾 (Δ %) 
Amazon rainforest 42.74 0.34 3.63 86.20 10.17 0.97 4.07 321.75 
Congo Basin 27.26 0.38 1.02 87.25 11.73 0.85 3.94 368.82 

Source: Original table for this publication. 
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