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Abstract

Eutrophication is a major global concern in lakes, caused by excessive nutrient loadings (nitrogen
and phosphorus) from human activities and likely exacerbated by climate change. Present use of
indicators to monitor and assess lake eutrophication is restricted to water quality constituents (e.g.
total phosphorus, total nitrogen) and does not necessarily represent global environmental changes
and the anthropogenic influences within the lake’s drainage basin. Nutrients interact in multiple
ways with climate, basin conditions (e.g. socio-economic development, point-source, diffuse
source pollutants), and lake systems. It is therefore essential to account for complex feedback
mechanisms and non-linear interactions that exist between nutrients and lake ecosystems in
eutrophication assessments. However, the lack of a set of water quality indicators that represent a
holistic understanding of lake eutrophication challenges such assessments, in addition to the
limited water quality monitoring data available. In this review, we synthesize the main indicators of
eutrophication for global freshwater lake basins that not only include the water quality constituents
but also the sources, biogeochemical pathways and responses of nutrient emissions. We develop a
new causal network (i.e. multiple links of indicators) using the DPSIR (drivers-pressure-state-
impact-response) framework that highlights complex interrelationships among the indicators and
provides a holistic perspective of eutrophication dynamics in freshwater lake basins. We further
review the 30 key indicators of drivers and pressures using seven cross-cutting themes: (i) hydro-
climatology, (ii) socio-economy, (iii) land use, (iv) lake characteristics, (v) crop farming and
livestock, (vi) hydrology and water management, and (vii) fishing and aquaculture. This study
indicates a need for more comprehensive indicators that represent the complex mechanisms of
eutrophication in lake systems, to guide the global expansion of water quality monitoring
networks, and support integrated assessments to manage eutrophication. Finally, the indicators
proposed in this study can be used by managers and decision-makers to monitor water quality and
set realistic targets for sustainable water quality management to achieve clean water for all, in line
with Sustainable Development Goal 6.

1. Introduction rising nutrient loads from human activities threat-

ening future water and food security (Chidammodzi
Freshwater lakes are increasingly vulnerable to global and Muhandiki 2015, Ma et al 2020, Yao et al
changes such as climate change and pressures of 2021). By 2050, one-sixth and one-fourth of the

© 2023 The Author(s). Published by IOP Publishing Ltd


https://doi.org/10.1088/1748-9326/acd071
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/acd071&domain=pdf&date_stamp=2023-6-9
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-1930-9318
https://orcid.org/0000-0002-2867-9241
https://orcid.org/0000-0002-2597-8422
https://orcid.org/0000-0002-7411-6562
https://orcid.org/0000-0002-8063-7743
https://orcid.org/0000-0002-5403-8472
https://orcid.org/0000-0003-4770-2539
mailto:suresh@iiasa.ac.at
http://doi.org/10.1088/1748-9326/acd071

10P Publishing

Environ. Res. Lett. 18 (2023) 063004

projected world’s population are estimated to be
exposed to high-water-quality risks due to excess-
ive N and P, respectively (Ifpri 2015), making nutri-
ent pollution one of the most threatening water
quality issues. According to Steffen et al (2015), N
and P loadings already exceed the planetary bound-
aries, especially from the fertilizers use in agri-
culture. Nutrient management is thus critical to
reduce pollution and achieve water-related targets in
the global Sustainable Development Goals (SDGs)
(Wang et al 2022).‘Eutrophication’ is the enrichment
of nitrogen (N) and phosphorus (P) in water bod-
ies leading to the enhanced growth of harmful algae
and phytoplankton biomass, compromising its qual-
ity, use and ecological integrity (Hutchinson 1973,
European Commission 1991, OECD 1993, UNEP
2001, European Commission and WHO 2002, Khan
and Ansari 2005). Figure 1 summarizes the main
nutrient sources, pathways and impacts of eutroph-
ication in freshwater lake basins with a schematic
overview.

As a result of nutrient enrichment, there is a gen-
eral trend of increased algal bloom risks globally,
although it is more pronounced in the developing
regions like Asia and Africa (Ho et al 2019, Feng
et al 2021, Hou et al 2022). The microcystis (blue-
green algae) cyanobacterial blooms in Lake Erie led
to shutdown of water supply for three days in city
of Toledo, Ohio (Jetoo et al 2015, Carmichael and
Boyer 2016, Watson et al 2016), while the blooms in
Lake Taihu left almost two million people in China
without drinking water for at least two weeks (Qin
et al 2010, Zhang et al 2010). Regions with rap-
idly growing population, food demand and under-
developed sanitation infrastructure are particularly
more vulnerable to the effects of algal blooms. To sup-
port integrated water quality management, the main
goal of the review is to synthesize the main indicators
of eutrophication in the freshwater lake basins glob-
ally to improve mechanistic and holistic understand-
ing of how they impact lake eutrophication dynam-
ics. These indicators go beyond in-situ water quality
status of lakes and also represent anthropogenic activ-
ities, climate change and socio-economic conditions
of the basin to better understand their responses.
We present an interdisciplinary overview of recent
research linked to the indicators that include sources
and pathway of nutrient emissions from surrounding
basins to lakes with the aim to promote their inclusion
in global monitoring and evaluate design of man-
agement options. Our primary target audience is the
community of environmental science while experts in
limnology, ecology or hydrology could benefit from
the broad and integrated scope of the review.

Several reviews have covered a few themes con-
sidered in this work, but to our knowledge the level of
comprehensiveness and the incorporation of a broad
range of relevant indicators of lake eutrophication in
a systematic manner has not been done before. Some
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examples of recent thematic review on the topic are
from de Paul Obade and Moore (2018), Uddin et al
(2021) focusing on water quality indices, le Moal et al
(2019) with special attention to the land-water-sea
continuum of eutrophication, Schneider et al (2020)
on the littoral eutrophication indicators and Mishra
et al (2021) analysing the studies concerning impacts
of extreme climate events on water quality. In our
work, the main novelties lie in three aspects. First, we
review the main indicators of freshwater eutrophic-
ation with a special focus on the influencing role of
drivers and pressures towards impact in lakes. Second,
we develop a new causal network instead of a uni-
directional causal chain, to signify the complex sys-
tem interactions in a lake basin. Lastly, we provide
a comprehensive overview of nutrient dynamics of
the key indicators of drivers and pressures using
seven cross-cutting themes: (i) hydro-climatology,
(ii) socio-economy, (iii) land use, (iv) lake character-
istics, (v) crop farming and livestock, (vi) hydrology
and water management, (vii) fishing and aquacul-
ture. The findings of this review are organized in
four sections. Sections 1.1 and 1.2 provide the back-
ground on research challenges related to indicat-
ors and their relevance in eutrophication manage-
ment, section 2 describes the review methodology,
section 3 summarizes the main eutrophication indic-
ators using the new causal network and provides an
overview of the nutrient mechanisms of the drivers
and pressures, and section 4 provides an outlook on
the insights for advancing eutrophication manage-
ment using indicators.

1.1. Indicators for eutrophication

In environmental sciences, an indicator is conven-
tionally defined as a parameter, or a value derived
from parameters that describe the state of the envir-
onment and its impact on human beings, ecosystems
and materials, the pressures on the environment, the
driving forces and the responses steering that system
(OECD 1993, EEA 1999, USEPA 2006). Indicators
are already a widely-used criteria to characterize the
impacts in aquatic systems and consistently compare
different regions across the world. However, the use
of water quality indicators, water quality parameters
and a water quality index or indices (Gholizadeh et al
2016, Wilder 2016, Uddin et al 2021) interchange-
ably often focus only on physical, chemical, biolo-
gical and ecological characteristics of water. It fails
to account for direct anthropogenic influences in the
monitoring and evaluation of water quality, which
hinders holistic assessments of lake eutrophication
and sustainable nutrient management. Therefore, we
first define water quality indicators specifically as
(1) qualitative and quantitative metrics that describe
natural and anthropogenic forcings on the system;
(ii) metrics estimated based on spatiotemporal vari-
ation of known parameters such as total P, total N,
dissolved oxygen; (iii) allow for long-term trends
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Figure 1. Schematic overview of main nutrient sources (the purple color), pathways (the red color), and impacts (the green color)
of eutrophication in freshwater lakes. Population and economic growth drive nutrient emissions. The main sources are

1- croplands, 2- livestock, 3- domestic sewage from rural and urban areas, 4- industrial effluents, 5- legacy nutrients (from
surplus in soil on agricultural lands and green areas). These nutrient loads are delivered to lakes via two main hydrological
pathways: 6- surface runoff, 7- leaching to groundwater subsequently discharged into streams. The increase of nutrient
concentrations cause 8- algal blooms, increased floating macrophytes and 9- hypoxia. The extent of these impacts depend on the
nutrient loads from land, rivers, and in-lake nutrient mechanisms i.e. P recycling from sediments, stratification, nitrification, fish
abundance, plankton dynamics and climate change factors (e.g. temperature, precipitation). The dashed lines refer to links of
population growth, economic growth and climate change with sources, pathways and impact. Refer to the web version of the
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assessment, hotspots identification and future projec-
tions; (iv) help to set realistic targets and management
actions towards a clean water supply. This review
starts from the premise that indicators that describe
the various dimensions of eutrophication, including
impacts of global changes, can be a firm basis for
integrated assessments of causes, impacts, responses
and feedback. These type of comprehensive indicat-
ors can benefit the forthcoming progression of water
quality monitoring networks especially in the devel-
oping regions, emerging economies and international
policy making such as the SDGs.

There is still a lack of understanding of the com-
prehensive water quality indicators that represent the
characteristics explained above. The reasons for their
non-existence for lake eutrophication for wider use
by researchers and practitioners can be summarized
as four-fold. First, eutrophication is a complex envir-
onmental problem, but it lacks integrated assess-
ments that include multiple dimensions of the issue.
Second, water quality is often addressed at local scale
(e.g. point scale, field-scale, river basin) even though
eutrophication is a global issue. Third, the lack and

unequal distribution of water quality monitoring data
limits a comprehensive and large-scale assessment of
lake euthropication. Fourth, nutrient emission and
transport models that used to make up for the lack of
data are missing an explicit representation of lake eco-
systems. On the other hand, the existing lake models
lack integration with other surface water systems, and
in addition, some biogeochemical processes (e.g. leg-
acy, phosphorus exchanges in sediment-water inter-
face) are also not well characterised. To establish
causal relationships between nutrient enrichment in
lakes, its effects and the underlying nutrient pollution
due to human activities, pathways and their dynamics
with the landscape, quantitative studies to assess the
indicators must be developed. This can help to diver-
sify the monitoring programs and support efficient
lake water quality management.

1.2. Status of eutrophication assessments

There have been significant scientific advances (e.g.
N, P pathways from point-, diffuse-sources, the mod-
eling of nutrient dynamics, field-based monitor-
ing) to understand the long-term nutrient fluxes
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and their implications on global biogeochemical
cycles since the early seminal works (Weber 1907,
Thienemann 1918, Naumann 1919, Vollenweider
1968, Johnson and Vallentype 1971, Schindler
et al 1971, Vollenweider 1975, 1976, Carlson 1977,
Schindler 1978, Rast and Holland 1988). However,
limited systemic studies combining climate, land
use, hydrology and water management to under-
lying eutrophication in lakes exist. Eutrophication
is a ‘wicked’ problem (Thornton et al 2013) that
requires combined knowledge from environmental
science (Smith 2003), climate science (Kosten et al
2012, Glibert 2020, Grant et al 2021), limnology (Jin
2002, Janssen et al 2021b), agronomy (Li et al 2019b,
Vero and Doody 2021), hydrology (Maavara et al
2015, van Vliet et al 2017, 2021), freshwater bio-
logy (Langdon et al 2006, Lin et al 2014), ecology
(Hampton et al 2018, Chang et al 2022), and social
science (van Puijenbroek et al 2015, Yang et al 2019).
The interactions between these dimensions result
in complex responses within lake systems, requiring
attention in eutrophication assessments and design of
mangement scenarios (Lin et al 2021, Su et al 2021).

Historic understanding of N and P dynamics led
to point source control in developed regions of North
America and Europe. However point source pollu-
tion is still a threatening water quality issue in emer-
ging economies such as Asia and Africa. Their impacts
are amplified by climate change. The discovery of
legacy effects from diffuse emissions (e.g. agricul-
ture) (Sharpley et al 2013, van Meter et al 2016), has
further increased concerns and the need to under-
stand the land-water interactions as part of nutri-
ent biogeochemical pathways. Advances in model-
ing studies aimed at understanding legacy nutrient
dynamics (Chen et al 2015, van Meter et al 2017),
revealed large uncertainities in the types of sources
and dynamics and the spatial and temporal effects
thereof (Hamilton 2012). Examples of outstanding
challenges relevant to eutrophication include: estim-
ation of denitrification rates for N, concentrations
of P in sediments, and nutrient residence times in
soils, groundwater bodies and surface waters (Zhang
et al 2020). These limitations in the ability to quantify
nutrient budgets are found to underestimate the
impact of nutrients on the environment and to limit
proactive nutrient management (Chen et al 2017, van
Meter and Basu 2017).

Understanding multitude lake responses, such
that synergistic impact and non-linear interactions
of in-lake mechanisms, the external nutrient load-
ings and global changes are captured, can appropriate
the root causes of nutrient enrichment (Glibert et al
2018, Paerl et al 2019a). An outlook on eutrophica-
tion that goes beyond general conclusions about the
required P reduction (Schindler 2012, Schindler et al
2016) or N loadings (Lathrop 2007, Lewis et al 2011,
Paerl et al 2019b) or both, is required to maintain
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lake ecosystem health and water quality. On the other
hand, there is limited understanding of how cli-
mate change impacts nutrient dynamics in differ-
ent climate zones and how they interactively trigger
algae blooms (Fragoso et al 2011, Kosten et al 2012,
Richardson et al 2019). An integrated understanding
can support sustainable nutrient management and
long-term policy making.

The advancement in water quality research is
heavily constrained by a scarcity of in-situ monitor-
ing data of water quality parameters across scales and
geographies, particularly in Africa, South Amercia
and large parts of Asia. These countries lack details
that hinder local and large-scale assessments. Recent
developments in satellite-based water quality obser-
vation seem promising to address this gap and sup-
port science-based management. A number of large-
scale models have been developed to assess nutrient
emissions and other water quality constitutents and
their impact on surface waters. Examples of these
are MARINA (Strokal ef al 2016), SWAT (Abbaspour
et al 2015), Global-NEWS (Mayorga et al 2010),
SWIM (Krysanova et al 2005), HYPE (Lindstrom
et al 2010), integrated modeling frameworks such
as IMAGE-GNM (Beusen et al 2015), WorldQual
as part of WaterGAP (Reder et al 2013), VIC-Qual
(van Vliet et al 2021) and DynQual linked to PCR-
GLOBWSB (Jones et al 2022). Such models are able
to identify hotspots and long-term nutrient trends
in surface waters. They have, however, severe limit-
ations in their representation of nutrient dynamics in
lakes and lake ecosystems. Some process-based mod-
els such as PCLAKE+ (Janssen et al 2019), DYRESM—
CAEDYM (Hamilton and Schladow 1997, Schladow
and Hamilton 1997, UMEDA and IZUMI 2008) and
LEEDS (Malmaeus and Hakanson 2004) can be spe-
cifically used to assess the eutrophication impact in
lakes. There is a need to couple the existing lake
models with the models that simulate the nutrient
emissions from the surrounding river basin to the lake
environment. In conclusion, the gaps in surface water
quality data can be overcome by the integration of
in-situ monitoring, satellite-based observation, nutri-
ent emission, transport models and lake water quality
models.

2. Methods

The methodology for this review can be explained
in two steps: (i) the main indicators to develop a
causal network; and (ii) nutrient specific mechanisms
of driver and pressure indicators.

2.1. Need to develop a causal network

The drivers-pressure-state impact response (DPSIR)
is a conceptual framework, widely used to categor-
ize indicators in a cause-effect chain for policy-
making and decision support (Duan et al 2021,
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Romanelli et al 2021, Kosamu et al 2022). It is a res-
ult of strategy recommendation for integrated envir-
onmental assessments (EEA 1999) where drivers are
linked to pressure then to state, impact and response
indicators respectively (figure 2). In its vast applica-
tions, variation is observed in the description of each
of these elements and is often open to interpretation
(Patricio et al 2016). In this paper, we define:

e Drivers as activities within the basin (e.g. socio-
economic) and external factors (e.g. climate
change) causing or worsening nutrients enrich-
ment or both;

o Pressure as flows (e.g. fluxes and dynamics) of the
nutrient emissions (e.g. point vs. diffuse) from spe-
cific sources and contributing sectors;

e State as physical or chemical or biological or ecolo-
gical changes in lake ecosystem from nutrient loads,
concentrations and climate;

o Impact as effects on aquatic and dependent ecosys-
tems due to nutrient emissions to different envir-
onments and;

e Response as the actions of decision-making such
as management and policy making to address any
negative impact.

The key advantages of the DPSIR framework are
(i) applicability to a range of ecosystems (e.g. rivers,
lakes) and environmental issues such as eutrophic-
ation, water resource management, ecosystem mon-
itoring (Wang et al 2015, Ramos et al 2018);
(ii) it is a bridging tool among scientists, policy-
makers and the stakeholders that adopts interdiscip-
linary communication and visualization (Karageorgis
et al 2005, Niemeijer and de Groot 2006, Helming
etal 2012).

First, we did a qualitative literature survey to syn-
thesize the existing evidence of the DPSIR studies to
identify and categorize the potential indicators of lake
eutrophication. As a result, 58 representative indic-
ators were selected and categorised into DPSIR ele-
ments. The full set of indicators and its relevance
to eutrophication is provided in the supplementary
information (SI-1). These interactions of the indicat-
ors were mapped to form a causal network—instead
of a causal chain. For this, a wide range of studies were
selected that addressed the causes of eutrophication
(e.g. climate, agriculture), nutrient mechanisms in
the lakes and the application of DPSIR for freshwater
eutrophication either separately or in combination.
The cause-effect chain (solid lines in figure 2) is uni-
directional, which oversimplifies the true complex-
ities of the system. The main aim of the causal net-
work is to address the gap in the representation of the
feedback links (dashed lines in figure 2), to identify
the interrelationships among indicators and feedback
mechanisms of lake eutrophication. The concept of
the causal network is novel in environmental science
and the system interactions of the DPSIR framework
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have been understudied (Lundberg 2005, Niemeijer
and de Groot 2008, Svarstad et al 2008, Srebotnjak
et al 2012, Gregory et al 2013, Dolbeth et al 2016,
Chang et al 2022). It is demonstrated that repres-
enting the system complexity in its entirety is useful
for efficient policymaking and sustainable water qual-
ity management (Smith and Schindler 2009, Friberg
2014, Scharin et al 2016, Teurlincx et al 2019a, Birk
et al 2020, Huang et al 2022).

2.2. Nutrient-specific mechanisms of drivers and
pressures

To understand the direct and indirect impact on
lakes from human-induced nutrient loads and global
changes, nutrient specific-mechanisms are reviewed
for the key indicators of drivers and pressures using
seven cross-cutting themes: (i) hydro-climatology;
(ii) socio-economys (iii) land use; (iv) lake character-
istics; (v) crop farming and livestock; (vi) hydrology
and water management; (vii) fishing and aquaculture.
The strings of key words for web searches are provided
in the supplementary information (SI-2). Using the
authors’ knowledge, we selected peer-reviewed art-
icles (review and research papers) depending on their
relevance to eutrophication assessment and water
quality indicators. The general search period for the
selected articles is from 2015, however where it is
essential to the discussions of the indicators, we have
included articles before this period. To a limited
extent, we have used international reports and policy
guides to substantiate our discussions and arguments.
A full list of selected articles is provided in SI-2. The
list is categorized according to sections and cross-
cutting themes to guide the readers. This review uses
a traditional approach and is not a meta-analysis. We
emphasize that due to breadth of the topics in this
review, we provide a comprehensive overview based
on recent research but inevitably had to compromise
on the depth in each topic as they are individual study
topics in themselves.

3. Results and discussion

3.1. The new causal network for indicators of
eutrophication

The missing linkages (i) between the DPSIR elements
such as drivers to state, impact and response as shown
in figure 2 and (ii) among drivers, pressures, state and
impacts are explored in this section. The new causal
network in figure 3, depict non-linear complexities
in the lake systems through interactions between and
amongst each other. The cause-effect connections
with each indicator is described in the supplement-
ary information (SI-3). Mapping out these interac-
tions reveals which processes in the cause and effect
nework are poorly represented or require further
investigation. For example, in figure 3(b), the indic-
ators of drivers are mainly linked to the indicators of
state, impact and response which reflect the missing
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feedback (dashed lines from driver) shown in figure 2.
Even in the event that nutrient emissions to lakes and
lake nutrient dynamics are fairly well understood, the
influence of lake characteristics such as light availabil-
ity, residence times and morphometric characteristics
such as lake depth is a relatively new area of research
to assist nutrient management of lakes. For instance,
in figure 3(a), these drivers of the lake characterist-
ics are highly linked to the state indicators such as
macrophytes, phytoplanktons and zooplanktons, how-
ever their relationships with nutrient concentrations
and thereby the occurrence of algal blooms are not
linear. There is an additional pressure on these indic-
ators from human-altered flow regimes, that depends
on specific nutrient forms and its retention in water-
columns (Glibert et al 2018). It is therefore import-
ant to understand their complex interplay and under-
lying mechanisms that can aid specific management
responses (figure 3(f)). Furthermore, evidence sug-
gests the physical traits of the phytoplankton com-
munity can adapt and are resilient to the prevail-
ing nutrient ratios, water temperature, residence times
(i.e. flushing rates) and light available for photosyn-
thetic activity. On the other hand, the direct impact of
temperature and precipitation change such as regime
shifts and stratification are largely known in lake sys-
tems although there are still missing links on the
altering of nutrient dynamics and its effects on con-
centrations and lake ecosystems during floods and
droughts (figures 3(b) and (d)). Also, the way spatial
and temporal variation in land-use characteristics

and different sources such as cropland, livestock and
sewage flow challenge the understanding of nutri-
ents routing i.e. transport and retention from the
landscape into lakes. Furthermore, the impact of
a growing number of alternating drought-flood or
flood-drought events on soil-nutrient dynamics and
associated nutrient export are very uncertain and are
documented to vary according to the catchment char-
acteristics (e.g. land-use).

Similarly, in figure 3(c), the indicators of pres-
sures are mainly linked to impact, responses and
amongst each other show the missing feedback
(dashed lines from pressure) in figure 2. For example,
even though there is evidence of the impact of
aquaculture effluent on lake water quality, they
are rarely integrated in the analyses of eutrophica-
tion. There are also considerable limitations in the
understanding and assessment of nutrients storage in
groundwater. Although nitrogen leaching into sub-
surface pathways is an active research topic (Schilling
et al 2012, Rudolp 2015, Basu et al 2022), due
to longer residence times (even decades) in sub-
surface pathways and lack of long-term monitor-
ing, the assessments of their contribution to the lake
nutrient budgets is difficult. Besides, both terrestrial
and aquatic nutrient budgets apart from being gov-
erned by soil characteristics, soil and groundwater
concentrations depend on land-based agricultural
activities such as fertilizer use, irrigation, and water
abstraction, which consequently play a key role in the
lake-nutrient budget.
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Figure 3. The new causal network of the DPSIR framework with 58 selected indicators. (a) the network connections for all the
DPSIR elements, (b) network connections for drivers, (c) network connections for pressures, (d) network connections for states,
(e) network connections for impact, (f) network connections for responses. The relevance of each of the indicators to
eutrophication is described in SI-1 and to read each connections in the causal network refer to SI-3.

The causal network also elucidates possible two-
way interconnections present in real systems, but are
often simplified in a uni-directional causal chain.
For instance, to maintain ecological balance and
the phytoplankton biomass, the grazing activity of

phytoplanktivore and detritivore fishes (altered by
fish catch) is essential (figure 3(e)). However, the bal-
ance is also dependent on the vegetation dynamics
of the ecosystem—which changes in response to high
nutrients input leading to algal blooms and fish kills

7
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(figures 3(c) and (d)). On the other hand, already
eutrified lakes have reduced water transparency and
influence the vertical light distribution affecting the
growth, distribution, and species interaction of the
submerged macrophytes (Chen et al 2016), which fur-
ther lead to hypoxic or anoxic conditions or both
(Yang and Hao 2008) and alter the trophic levels.

The abovementioned are some examples of the
complex interactions demonstrated in the causal net-
work between climate, human activities and lakes.
The causal network demonstrates the complexit-
ies of allochtonous (external) and autochthonous
(internal) factors in lake basins in the visual frame-
work (figure 3). This causal network is a general
overview for freshwater basins and further details
including quantitative weights of each processes can
be developed based on the application and research
questions to be addressed. The causal network offers
an integrated approach and is able to disect the causes
and mechanisms behind eutrophication in lakes and
thus allows for the comprehensive interpretation of
the water quality indicators. These are essential to
comprehend nutrient dynamics and feedback mech-
anisms and to understand lake eutrophication trends
and the effect on phytoplankton and bloom activities.
We stress that this list of indicators is only an over-
view of the main indicators (by no means exhaustive)
to highlight the requirement of a holistic approach
in eutrophication assessments. The causal network
should be considered only heuristically to include
a similar level of detail to characterise processes in
eutrophication assessments. It is a static network,
but to a certain extent, multiple layers of networks
can be developed for specific cases to represent key
interactions for different timescales. Such complex
representations that are conceptual frameworks can
provide insight on emerging interactions to set real-
istic water quality targets for lakes. It can potentially
assist researchers in discussions and decisions about
the suitability and complexity of the water quality
tools or assessment methods and prioritise the most
important processes. Moreover, the visualization of
such horrendograms (complex network — figure 3)
also makes it easier to communicate the complexity of
the problem to a wider audience of varied disciplines
and by capturing this complexity in measurable indic-
ators to potentially bridge the gap between science
and practice. Studies by Janse (1997), Nikolaidis et al
(1998), Richardson et al (2018), Gonzalez Sagrario
et al (2020) and Chen et al (2021) are examples of
complex lake responses to nutrient enrichment and
demonstrate highly non-linear relationships between
nutrient emissions from land and lakes responses.
More emphasis on the integration of interactions and
multiple feedback loops could spur the development
of new and innovative ways of integrated assessments
for water quality.

K Suresh et al

3.2. Key indicators for the assessment of
eutrophication in global freshwater lakes

Due to the understandable breadth of topics covering
the 58 indicators outlined in section 3.1, the detailed
nutrient cause-effect mechanisms have been reviewed
only for the selected drivers and pressures (30 indicat-
ors in total). While it could be argued that most of the
mechanisms for lake eutrophication are well estab-
lished, the systemmatic understanding and quanti-
ficaton of diverse drivers and pressures from the entire
lake basin lags behind undermining its integrated
management. We have prioritized the indicators of
drivers and pressures to understand the eutrophica-
tion impact due to the following: (i) it covers multiple
dimensions of eutrophication explained using cross-
cutting themes as shown in figure 4 to reiterate the
importance of the lake-basin approach; (ii) explicit
land-water interactions from nutrient sources con-
siders global changes including climate change and
anthropogenic influences; and (iii) understand root
causes of nutrient enrichment. They aim to provide
a holistic, interdisciplinary and systems analysis per-
spective while we highlight some potential know-
ledge gaps. Table 1 summarizes the cause-effect mech-
anisms of all the indicators with their definition in
this study and a detailed explanation is provided in
sections 3.2.1-3.2.7. Additional information on the
global available datasets for the indicators of drivers
and pressures are compiled in the supplementary
information (SI-4) to assist water quality studies on
indicators.

3.2.1. Hydro-climatology

The key indicators of hydro-climatology drivers are
temperature, precipitation, floods and droughts. An
increase in surface water temperature is positively cor-
related with an increase in air temperature and a
decline in water availability. The latter reduces the
thermal capacity of water and increases the sensit-
ivity of water bodies to atmospheric warming (van
Vliet et al 2011). Higher temperatures and evapo-
transpiration also cause droughts impacting the bio-
physical processes on land that directly influence
nutrient concentrations in lakes (Vicente-Serrano
et al 2020). Examples of impacted processes are
enhanced internal P recycling (Nazari-Sharabian et al
2018) and denitrification processes (Ballard et al
2019), possibly leading to regime shifts (van Cleave
etal 2014). A recent study by Woolway and Merchant
(2019) projected a higher annual mean lake surface
temperature of 2.5 °C and an increase of extreme tem-
perature of 5.5 °C for a medium-high emissions scen-
ario (RCP 6.0) worldwide for 2080-2100 relative to
the period of 1985-2005. This can result in less fre-
quent and reduced lake mixing regimes with earlier
stratification that ends later (Woolway et al 2021b). It
further leads to increased light availability favorable
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Figure 4. This figure provides an overview of the indicators of drivers and pressures categorized into seven cross-cutting themes:
(i) hydro-climatology, (ii) socio-economy, (iii) land use, (iv) lake characteristics, (v) crop farming and livestock, (vi) hydrology
and water management, and (vii) fishing and aquaculture. These 30 indicators represent spatial or temporal changes or both.
Refer to table 1 for the definition of each indicators and summary on their cause-effect eutrophication mechanism.

Fertilizer use

to promote phytoplankton communities and alter
species composition creating ecological stress (Kim
et al 2018). The thermal structure of lakes are also
associated with deep water temperatures and ver-
tical thermal gradients that potentially govern ver-
tical mixing and alter dissolved oxygen levels (Friberg
2014). Studies even indicate variations of these pro-
cesses in shallow and deep lakes (Kosten et al 2012,
Pillaeral 2020, Zhao et al 2022) although an optimum
temperature of 25 °C seems to favor the growth of
harmful species of cyanobacteria and dinoflagellates
(Butterwick et al 2005). However, there is new evid-
ence of their physiological adaptations such as the
favor of small sized cells to stay buoyant in a water
column to further high photosynthesis (Glibert 2020)
that need research attention to understand the impact
of nutrient dynamics under the influence of lake tem-
perature.

Next to this, drought impacts water availabil-
ity and water levels (Aldous et al 2010). This may
increase nutrient concentration (Vicente-Serrano
et al 2020) and water temperature alike, which influ-
ence internal processes like denitrification, (van
Vliet and Zwolsman 2008, Glibert 2017, Jankowiak
et al 2019) and resuspension from the hypolimnion
in lakes (Mosley 2015). This particularly increases
primary productivity (also due to low flushing rates)
(Mosley et al 2012) thus reducing water clarity and
oxygen levels (Genkai-Kato and Carpenter 2005).
Under the conditions of low flow, the water nutrient

concentration can remain high due to prolonged lake
residence times and resulting sediment-water column
exchanges (Meerhoff et al 2022). This is ideal for
the incubation and growth of algal blooms enhan-
cing eutrophication risks (Nazari-Sharabian et al
2018). In some cases, lower N and P loads in inflows
into lakes are observed during droughts attributed
to the reduced surface and subsurface flows. This
may lead to increased nutrients accumulation in the
soil (Alvarez-Clare and Mack 2011) and particularly
slower denitrification under dry conditions (Greaver
et al 2016). However, in-lake concentrations of N and
P can still be high due to constant point source dis-
charges and reduced dilution capacity under lower
water availability (Mishra et al 2021).

Similarly, changing spatial and temporal precip-
itation patterns impact algal bloom formation and
occurrence (Paerl et al 2011) in lakes by on-site mobil-
ization and the off-site transport of dissolved and
sediment-absorbed nutrients (from upstream areas
into the lakes) via three pathways: (i) transport of
the N and P from land (farm and livestock, urban
areas) to lakes via runoff (Roy and White 2012, Bargu
et al 2019, El-Sheekh et al 2021); (ii) in-stream pro-
cesses (altering nutrient fluxes and internal cycling
due to increased delivery of sediments) (Schindler
et al 2012, Coftey et al 2018, Romero et al 2020); and
(iii) nutrient leaching to groundwater. Studies show
a decrease in soil N and P concentrations (Hafeez
et al 2019) but high nutrient (Ballard et al 2019) and
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sediment loads (Ramos et al 2018) transported via
surface runoff that are attributed to intense precip-
itation and floods. Apart from the impact on nutri-
entloads, precipitation and subsequent surface runoff
may affect cyanobacterial blooms and phytoplank-
ton in lakes, by altering mineralization, concentra-
tion of solutes, water temperature, and the propor-
tion of sediments (Greaver et al 2016) as well as by
influencing internal nutrient cycling from changes
in nutrient ratios (TN:TP) (Dodds 2007). In addi-
tion, future projections of precipitation under climate
change show increases in annual TN and TP loads and
sediments (Ockenden et al 2017, Qiu et al 2021) due
to flushing. Additionally, reduced water levels attrib-
uted to precipitation variability were found to impact
fish abundance and average size (Sanon et al 2020).

There are concerns in the synergistic effects
from growing flood-drought regimes are recognized
because they favor the incubation of algae and bloom
development, however limited understanding exists
regarding these flood-drought events. For instance,
in 2015 heavy precipitation 7 inches from the upper
catchment of Lake Erie transported large amounts of
bioavailable and reactive phosphorus leading to the
outbreak of cyanobacterial blooms during summer
(Coffey et al 2018). In some cases, floods can limit
the photosynthetic activity of the blooms by flush-
ing (depending on the residence time of lakes) the
biomass from the lakes, while also increasing nutri-
ent emissions due to sewage overflows from urban
areas. In addition, Qiu et al (2021) reported complex
interactions of drought and precipitation events lead-
ing to the rapid flushing of accumulated sediments
and nutrients influenced by soil water content, ante-
cedent drought duration and other climatic variables.
(Reichwaldt and Ghadouani 2012) analysed the effect
of rainfall patterns on toxic cyanobacterial blooms
and reported that: (i) increased frequency will reduce
bloom occurrences due to disturbances in stratifica-
tion, however (ii) the length of the dry period before
rainfall combined with the intensity decides the ulti-
mate effect of nutrient enrichment in lakes.

3.2.2. Socio-economy

The key socio-economic indicators of drivers are pop-
ulation density, gross domestic product (GDP) and
water abstraction. Population growth and affluence
(linked to GDP) are known global stressors that have
resulted in increased N and P loadings in freshwater
basins (Li et al 2019a, Olokotum et al 2020, Gilarranz
et al 2022), which in turn stimulate cyanobacterial
blooms. For example, (Duan et al 2009) studied the
Lake Taihu basin from 1998-2007 and found a high
correlation between annual duration and the ini-
tial blooming date of cyanobacterial blooms with
total GDP and GDP per capita, outweighing climatic
impact. Sometimes, the nutrient emissions due to a
temporary increase of population by tourism play a
role in the seasonal nutrient emissions (Guo et al
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2001, Liu 2017) but are not always estimated. Further
assessments of quantitative relationships related to
population density, GDP and algal bloom occurences
in lakes are required due to known linkages realized
between economic development, nutrient emissions
and eutrophication (Song et al 2021, Fang et al 2022).

To meet the rapidly growing freshwater demand,
maintaining water quality is vital (van Vliet et al
2017). To meet the sectoral demands (e.g. agricul-
ture, industry, domestic use), water abstraction dir-
ectly from lakes or upstream area can lead to lower
lake levels as well as reduced lake inflow (Hampton
et al 2018). Water level decline can promote eutroph-
ication and cyanobacterical blooms (Wu et al 2018)
generally attributed to increased residence time, light
availability and the internal nutrient loads espe-
cially in sediment-rich lakes (Hilt 2016). Additionally,
Li et al (2020) reported high nutrient concentra-
tion during low water levels especially in dry sea-
son due to lower dilution capacity. On the other
hand, an increase in water abstraction caused by more
intense human activities in the lake basin are often
associated with increased nutrient loadings into the
lakes through return flow. Flint et al (2022) repor-
ted 417 kt nitrate-nitrogen (NOs5-N), equivalent to
2% of global N-abstraction flux, is annually retained
due to freshwater abstraction for the United States.
But spatial or temporal distribution of the nutrient
fluxes in the return flow due to human water use
is largely unknown for lake basins. Their considera-
tion in nutrient budgets is highly relavant for long-
term nutrient management. There are still significant
gaps in lake-response curves integrated with multiple
indicators to connect basin nutrient loads to phys-
ical and biogeochemical impact in lakes (Mohamed
et al 2019, Ersoy et al 2020). Other uncertainties
driven by socio-political factors like friction to plan-
ning policies, conflicts of interests between various
users and political interference pose challenges for
developing future quantitative projections of nutrient
loads to lakes.

The key socio-economy indicators of pressures
are wastewater treatment and access to sanitation.
About 80% of the wastewater generated is estim-
ated to be directly discharged into the environment
without treatment (WWAP, UNESCO 2017) while
a recent assessment of Jones et al (2021) suggest
that this number is in the order of 50%. The inad-
equate wastewater collection and treatment increases
risk from nutrient loads in lakes and rivers (van
Puijenbroek et al 2015). Point source control of
nutrient pollution has been studied since the 1960s
(Sawyer 1968, UNDP and GEP 1999) and resulted
in management actions such as P removal in the
detergents. The nutrients in human waste i.e. urine
and feces depends on dietary pattern, mainly proteins
(Rose et al 2015) and significantly contribute to global
N and P flows (Morée et al 2013). van Puijenbroek
et al (2019) evaluated a possiblity of decrease in
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future nutrient discharges globally from wastewater,
by incorporating at least tertiary treatment in devel-
oping countries and advanced treatment in developed
countries. Tong et al (2020) demonstrated higher
P removal capacities (~90%) than N (~60%-70%)
led to higher of TN:TP ratios in lakes, conducive
for non-N, fixing cyanobacteria such as Microcystis,
Planktothix. In addition, the removal of bioavailable
nutrients from the treated wastewater and sludge
management are of concern to reduce their eutroph-
ication potential (Preisner et al 2020, Kakade et al
2021, Preisner et al 2021).

The expansion of the wastewater treament net-
work and its subsequent reuse reduces pressure on
freshwater withdrawal by increasing freshwater avail-
ability and reducing the risk of waste loads. There
are global efforts to expand access to sanitation espe-
cially both in rural and urban areas of developing
countries. For instance, Tong et al (2017) observed
the reduction of N loads in the lakes of China
linked to improved sanitation facilities and indic-
ated a potential reduction of future N discharges
for less-developed regions through improved san-
itation. Similarly, Fuhrmeister et al (2015) quanti-
fied N and P emissions due to inadequate sanita-
tion in 108 low- and middle-income countries and
found high nutrient pollution due to human excreta
in densely populated regions like India, Comoros,
Bangladesh, Rwanda and Haiti. While these emis-
sions were low in other densely populated countries
such as Chile due to improved sanitation infrastruc-
ture, to achieve maximum nutrients removal before
disposure to freshwater, the study demonstrated the
need to combine sanitation access with wastewater
and sanitation treatment efficiencies. Research trends
also indicate assessments to integrate human waste,
especially from rural areas with on-site treament as
a potential fertilizer resource for agriculture (Akram
etal 2019, Harder et al 2020, Kelova et al 2021) as well
as to manage lake water quality.

3.2.3. Land use

The key land use indicators of drivers are agricul-
tural, urban and natural green areas. There is grow-
ing pressure on land to meet the increasing popu-
lation demand and economic development (Lambin
and Meyfroidt 2011, Stehfest et al 2019) and land-
use change is therefore a global concern (Hurtt et al
2020). Land-use changes are reported to alter basin
edaphic properties that influence their long-term
nutrient dynamics causing eutrophication (Keatley
et al 2011, Borrelli et al 2017, Njagi et al 2022).
The land use condition impacts surface conditions,
the overall runoff and erosion response to precipit-
ation and resulting water and sediment flows (Chang
et al 2008) thereby linked to nutrient transport and
delivery to lakes (Zia et al 2016, McLellan et al
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2018). Agricultural lands are hotspots of point, dif-
fuse sources of N and P due to fertilizers use (Lu
and Tian 2017) and improper fertilizer management
(Withers et al 2014). Urban areas can have high popu-
lation density, impervious surface, inadequate sewage
and stormwater infrastructure, heavily contribute to
point source nutrients discharge (McLellan et al 2018,
Teurlincx et al 2019a, Strokal et al 2021). Geologic
records of diatoms, algal biomass and nutrients in
lake sediments are used to study the land-use change
and its impacts on lakes. Such long-term studies can
evaluate baseline conditions for lake nutrient status
(Battarbee et al 2005, Bradshaw et al 2006, Leavitt
et al 2009, Battarbee et al 2011), useful to set water
quality targets, and further understand their sensitiv-
ity to interactive effects of changes in the landscape
and climate (Smol and Cumming 2000, Pham et al
2008, Battarbee et al 2012). The review by Dubois
etal (2018) highlighted the need to specifically use the
global long-term records to investigate effects on an
aquatic ecosystem functioning to better understand
their linkages with landuse changes.

Natural green cover such as wetlands and flood-
plain ecosystems, which are located upstream of lakes
act as natural sinks that retain or uptake nutrients
(Knowlton and Jones 1997, Atkinson et al 2019).
Nutrient retention (Janse et al 2019), transformation
(Dupas et al 2015) and denitrification (Wu et al 2019)
are key nutrient (re)cycling mechanisms in this con-
text. The decline of green cover threatens the release
of long-term stored nutrients to downstream lakes,
while the advancement of upstream natural green
cover provide opportunities to improve nutrient buf-
fering and retention to control lake eutrophication
(Yang et al 2020). Liu et al (2019) observed a decline
in the nitrogen and phosphorus loadings in Changan
Lake attributed to upstream wetland area. Cheng et al
(2020) showed spatially targeted restoration, partic-
ularly in nutrient hotspot regions, can increase N
removal from wetlands and reduce the loadings to
downstream. The direct impact of natural green cover
on algal bloom development in lakes is not exactly
known. Studies that quantify nutrient accumulation
and removal efficiencies are needed to incentivise
decision-making on the protection of wetland eco-
systems and management of downstream water qual-
ity. The effects of hydrological and seasonal variabil-
ity in wetlands impacting nutrient dynamics are also
understudied (Cheng et al 2023). Thus, to reduce
nutrientloadings into lakes, proper land management
practices, conservation of wetlands (Alvarez-Rogel
et al 2020) and sustainable agriculture technologies,
practices, and drainage management (Alvarez et al
2017), together can be beneficial.

Land TN and TP inputs is the key indicator of
pressures in the land use theme. It is an import-
ant metric for the overall nutrient budgets in
lakes. Nutrient emissions from indicators such as
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wastewater treatment (point source), nutrients from
cropland and livestock (diffuse), hydrologic con-
nectivity (nutrients retention) of a basin can be col-
lectively used to determine the total nutrient inputs
from land. For instance, Horppila et al (2019) used
the catchment to lake area including all landuse types
as a metric to evaluate the eutrophication risk of
lakes. Silvino and Barbosa (2015) performed an integ-
rated analysis to examine the trophic state of Lake
Sumidouro linked with catchment land use, land
occupation and lake morphometry. However, much
research is required to understand interactions of
basin nutrient inputs from different sources, nutri-
ent retention on landscapes and in rivers to analyze
their cumulative impact in lakes (Pirrone et al 2005,
Damania et al 2019, Birk et al 2020, Wang et al 2021).
The assessment of this indicator can provide clar-
ity in the overall nutriet budgets in lakes that aids the
study of sources of nutrient emissions impacting their
fluxes and eutrophication potential to design feasible
measures for eutrophication control.

3.2.4. Lake characteristics

The key lake characteristic indicators of drivers
are lake N:P ratio,light availability, hydraulic resid-
ence time, and lake depth. Lake characteristics could
explain their vulnerability to algal blooms and vari-
ation in response to nutrient concentrations among
lakes (Janssen et al 2021a). For instance, nutrient stoi-
chiometry (i.e. TN:TP ratio)-informs management
on the control of external loading and internal stor-
age (Tong et al 2018) and trophic interactions (Dodds
2007). In recent decades, studies of co-limitation and
dual nutrient control has taken precendance over
the historical paradigm of phosphorus limitation in
lakes (Lewis and Wurtsbaugh 2008, Sterner 2008,
Paerl et al 2016). Mesocosm studies on primary pro-
ductivity of shallow lakes resulted in favorable growth
and the increase of a phytoplankton biomass with N
and P enrichment, compared with N or P enrich-
ment separately (Zhang et al 2015, Ding et al 2019).
Zhou et al (2022a) revealed low TN:TP ratios and
high probability of N and P co-limitation, was pre-
valant in eutrophic waters and urged the assessment
of lake trophic status to evaluate dual nutrient con-
trol. A shift from the nitrogen fixing cyanobacteria
species to non-nitrogen-fixing cyanobacteria recog-
nized dual control of N and P loads as a nutrient man-
agement strategy in Lake Erie (Lewis et al 2011). The
largest freshwater lakes in the Chinese eastern plain
(e.g. Lake Taihu, Poyang, Chaohu) demonstrated low
N:P induced growth of nitrogen fixing cyanobacteria
that would be further exacerbated due to PO}~ in
sediments often promoted by temperature increase
(Zhao et al 2022). In large lakes of North America
and Europe, low N:P combined with low silica and
carbon supply rates led to early onset of cyanobac-
terial blooms and replace spring diatoms in some
cases (Schindler 2006). The seasonal variability of the
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phytoplankton biomass proved control of N-input
into Lake Taihu is critical to control severity, extent
and duration of cyanobacterial blooms, in addition to
the abatement of P-input (Xu et al 2010). The seasonal
activities of the nitrogen fixing and non-nitrogen fix-
ing bacteria are regulated by this ratio (Schindler et al
2012) and modeling studies indicate that certain spe-
cies (Stephanodiscus, Aphanocapsa) possess adaptive
traits that enable them to exploit the prevailing sea-
sonal flow (Elliott and Defew 2012).

Similarly, the vertical light distribution determ-
ines physiological processes such as protein syn-
thesis in cells that directly affect algal growth. An
optimal light intensity is known to govern the benthic
habitat of shallow lakes by controlling the phyto-
plankton growth and biomass. Dou et al (2019)
evaluated 16 light-nutrients scenarios and observed
algal growth inhibition for low light conditions, des-
pite increased nutrient concentration with a decline
after a threshold irrespective of the light intens-
ity. Also, the effect of increased phosphorus on
algal growth was found to be greater than nitrogen
under constant light conditions. Whereas primary
production in unproductive lakes is suggested to be
controlled by organic matter through light attenu-
ation, which is inconsistent with the philosophy of
nutrient-limitation (Karlsson et al 2009). In con-
trast, in the higher latitudes, invasive cyanobacterium
S aphanizomenoides—predicted to become a nuis-
ance species in the future—showed growth even in
poor light conditions due to increased total phos-
phorus in the lakes (Budzyniska et al 2019). Already
eutrified lakes have reduced water transparency and
influence the vertical light distribution affecting the
growth, distribution, and species interaction of the
submerged macrophytes (Chen et al 2016), which fur-
ther lead to hypoxic or anoxic conditions or both
(Yang and Hao 2008), and alter the trophic levels.

Early studies by Vollenweider (1968, 1975, 1976)
and Schindler (1978) quantified external phosphorus
loadings from water, in-lake P concentration and
primary production in the water column as a func-
tion of mean lake depth and residence time. These
findings set concerted efforts for permissible TP loads
to lakes from the drainage basin. Hydraulic resid-
ence time can determine lake nutrient retention and
their transformation processes. It can thus be a man-
agement tool to alter stratification, internal nutri-
ent loads and potentially regulate bloom develop-
ment (Olsson et al 2022). However, the long-term
success of reduced residence time depends on the
nutrient input, its source, specific form and water-
column retention (Elliott et al 2009, Glibert et al 2018,
Sheferaw Ayele and Atlabachew 2021, Huang et al
2023). Short residence times inhibit nitrogen fixing
capacities (of cyanobacteria), changing N:P ratios and
reduced light utilization rate depending on internal
loads in sediment-water column (Zhao et al 2022).
On the other hand, the increased phosphorus from



10P Publishing

Environ. Res. Lett. 18 (2023) 063004

point sources led to a decline in chlorophyll, while it
increased for increased diffused P sources (Elliott et al
2009) which are more pronounced for summer flows.
As a general rule, for the control of algal growth in
mixed lakes, it is suggested that retention times that
are longer than the doubling time of planktonic algae
promote biomass development at a scale that might
be problematic (Hilton et al 2006). Warming temper-
atures and intense precipitation with episodic nutri-
ent inflow pose a serious threat of bloom profileration
in lakes with longer residence time and require urgent
attention (Malmaeus et al 2006).

The impact of nutrient enrichment is depend-
ent on lake depth and influence key in-lake biogeo-
chemical processes such as denitrification rates, sed-
imentation, stratification, oxygenation and nutrient
fluxes across epilimnion, metalimnion and hypolim-
nion (Qin et al 2020). Zhou et al (2022b) showed a
decreasing trend for trophic levels of the lakes with
increasing depth, in particular the hypereutrophic
status was confined to shallow lakes. In such lakes the
P loadings are more prevalent due to wind-induced
resuspension of sediments dependent also on the sed-
iment density and sand content (Abell et al 2022).
For example, sediments rich in clay contents bind P
under aerobic conditions and releases P under anaer-
obic conditions. While Liu et al (2010) found that
larger lake depths (deep lakes) are negatively correl-
ated to chlorophyll-a concentration due to increased
buffer capacity and plays an important role in the
assessment of trophic status. Understanding critical
thresholds for nutrient loadings play an important
role in nutrient management, by allowing compar-
ison with input loads, as the values differ for each
case depending on lake depth, residence time and
vertical nutrient dynamics (Janse et al 2008, Janse
et al 2010, Lirling Mucci 2020). There are future
research opportunities to implement the character-
isation of phytoplankton dynamics in the context of
global changes (Vadeboncoeur et al 2008, Vingon-
Leite and Casenave 2019). While the prediction of
nutrient ratios is difficult due to the complex and
varible response of lakes across scales and ecological
context, it is an essential metric to understand effects
on primary productivity and the potential implica-
tions on eutrophication control (Collins et al 2017,
Tong et al 2018).

3.2.5. Crop farming and livestock

In section 3.2.3 we explained how the agricultural
area is amongst the key land use drivers and is the
largest contributor of N and P emissions globally
(Hong et al 2021). A separate theme on crop farm-
ing and livestock is considered to explain the main
processes on the agricultural land responsible for
lake eutrophication. Crop yield is the key indicator of
drivers in crop farming. The intensification of agri-
culture meeting the growing global food demand has
emphasised high crop yields forcing the use of mineral
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fertilizers (Liu et al 2015). Essentially, two categor-
ies of fertilizers exist to ensure crop yield i.e. organic
(manure, compost) and synthetic (N, P, K) (Khan
et al 2018). The continuous application of fertilizers
has led to surplus residue of N and P in the soils
(Shen et al 2011, Worrall et al 2015, Zhang et al
2021a). The consequence of high N, particularly NOs,
NH, (Worrall et al 2015), soluble reactive phosphorus
(SRP) (Maccoux et al 2016) and high nutrient stoi-
chiometry (TN:TP) in soils (Penuelas et al 2020) is
that high TP and TN loads enter lakes.

Fertilizer use, its efficiency, N and P soil surplus
and nutrients leaching are the key indicators of pres-
sures in crop farming. Lu and Tian (2017) reported
that since 1961, the N and P fertilizer use rate on
unit cropland areas increased eightfold and threefold,
respectively. As a result, the N and P accumulate in
the soils, especially within croplands and livestock
landscapes (Bouwman et al 2013b). The excess nitro-
gen in the soils, which is very mobile and loosely
binding to the soil, mainly leaches into groundwa-
ter in its most soluble forms (NO; , NO3 ) (Drecht
et al 2003, Puckett et al 2011). The leaching of nutri-
ents from point and diffuse sources to groundwater
depends on the residence times, exfiltration or infilt-
ration rates with lake, type of soil and nutrient con-
centrations amongst other factors (Lewandowski et al
2015, Loewald et al 2020). On the other hand, P is
less soluble and mobile, is either lost in runoff in the
form of dissolved and particulate P, that gets stored
in sediments of lakes or absorbed to soil for longer
timescales (Bouwman et al 2009, Yang et al 2013).
Historical understanding of residual P can determ-
ine its potential to decrease current and future fer-
tilizer applications. The spatial quantification of P
legacies on croplands, at least on a local scale, can
identify vulnerable regions for management inter-
ventions (Pavinato et al 2020). By further integra-
tion with cropping patterns, precise management, cli-
mate and soil type can provide optimised estimates of
excess soil nutrients as a resource (Rowe et al 2016).
Bouwman et al (2016) and Bhattacharyya et al (2021)
suggested high N and P fertilizer use efficiency integ-
rated with crop, irrigation, nutrient and runoff man-
agement considering the impact on downstream sur-
face waters can guide policy making.

Similarly, improved prosperity from global eco-
nomic production is changing the dietary patterns
of people and driving the production of meat and
milk (Alexander et al 2015). The intensive livestock
industry associated with the production of ruminant
animals (cattle, sheep, goats and camels), monogast-
ric animals (pigs, poultry, horses and other small fur
animals) and poultry (chicken, ducks, turkey, geese
and guinea fowl) is a big emittor of nutrients (Liu
et al 2017) that enter lakes. Future assessment of
demands anticipate a pattern shift from poultry or
pork, to more beef (Godfray et al 2018). Relatively,
the N excretion and manure production per kg of
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meat is less for poultry and pork than beef (Bouwman
et al 2013b) implying higher nutrient emissions in
the future with the changing dietary patterns. This
also contributes significantly to the greenhouse gas
emissions (e.g. NxO, NH3) in livestock intensive areas
(Springmann et al 2018). Three types of produc-
tion systems are generally adopted globally—grazing
(milk and meat), mixed (family owned to more man-
aged) or specialized systems (large-scale industrial)—
which play a role in reducing nutrient flows through
integrated management (FAO and ILRI 2011). Also,
the increasing agricultural trade requires the integ-
ration of these production systems and nutrient
budget assessments for future policies and manage-
ment (Schipanski and Bennett 2012).

The key indicators of pressures in livestock are
livestock density and atmospheric deposition of N.
Livestock density is directly correlated to the increase
in meat and milk consumption (Kanianska 2016).
Feed crop production and use of mineral supple-
ments are increasing to aid livestock growth and boost
productivity (Devendra and Sevilla 2002, Spiertz and
Ewert 2009, Ray et al 2022). Typically, the import
of animal feed motivates the food production sys-
tem as the boundary condition to estimate the nutri-
ent balance in livestock systems and therefore also
includes fertilizer application (high yields) and result-
ant surplus residues in soil (Schipanski and Bennett
2012, Liu et al 2017). Livestock trampling on pas-
ture lands causes a secondary impact, such as soil
compaction, that increases soil erosion, surface run-
off and increases the delivery of nutrients to lakes
(Sivakumar 2007, Zacharias et al 2008, Laspidou and
Samantzi 2014, Vero and Doody 2021), particularly
with high livestock density. On the other hand, live-
stock excreta is an important nutrient source to the
soil and the amount of N and P vary depending on
the animal weight, diets and livestock production sys-
tems (Sheldrick et al 2003). Animal manure is a tra-
ditional source of N and P in crop-livestock farming
that threatens eutrophication and hypoxia (Bian et al
2021). Thus, nutrient use efficiency (increased feed
efficiency) and proper manure management, such as
storage, recyling and its proper application on crop-
land, can regulate nutrient loads to surface waters by
livestock (Bouwman et al 2013b, Strokal et al 2016).

The major anthropogenic nitrogen gas emissions
from fertilizer use and the handling of animal manure
are ammonia (NHj3), nitrous oxide (N,O) and nitric
oxide (NO) (Galloway et al 2010, Uwizeye et al 2020).
A part of the soil nutrient stocks is lost to the N
atmospheric deposition after soil N,O emissions and
this amount is not always well-quantified but even-
tually enriches soils elsewhere (Tian et al 2020). N,O
from agricultural soil is of the highest concern due to
its global warming potential between 265-298 times
greater than CO, (IPCC 2014). NO and NHj are
also known to significantly contribute to N,O in soils
(Cameron et al 2013, Pan et al 2022). Yang et al
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(2021) found that 25% of the soil N, O emissions was
induced by atmospheric N deposition with a projec-
ted 80% increase in N deposition and a 241% increase
in cropland N,O for RCP 8.5. Qasim et al (2021)
estimated N,O and N leaching losses of 0.067 Tg
N,O-N yr~! and 97 + 22 kg N ha~'yr~! respect-
ively from a meta-analysis for vegetable produc-
tion in China mainly due to excessive fertilizers and
low (15-35%) nitrogen use efficiency. Additionally,
ammonia released during nitrification from fertilizers
and manure returns to soil through wet or dry depos-
ition and impacts water quality (Leip et al 2015).
Bergstrom and Jansson (2006) found that increased
N deposition in the unproductive lakes of north-
ern hemisphere increased inorganic N inputs, caus-
ing eutrophication and the increase of phytoplank-
ton biomass. Similar studies from Xu et al (2018)
and Zhan et al (2017) demonstrate the need to integ-
rate the assessment of atmospheric N deposition with
the external N inputs which otherwise may lead to
potential underestimation of lake nutrient budgets
and impact water quality.

3.2.6. Hydrology and water management

The key hydrology and water management drivers
identified are hydrologic river connectivity and irrig-
ation water use efficiency. We know that the compet-
ing upstream freshwater demands, and the associated
construction of reservoirs worldwide, have impacted
the downstream lake water quality (Heino et al 2020,
Jumani et al 2020). Natural geomorphological pro-
cesses such as sedimentation also fragment the rivers
and alter system connectivity (Doretto et al 2020).
The lateral (to floodplain) and longitudinal (frag-
mentation) river connectivity in a basin are important
in understanding spatiotemporal responses of rivers
to external disturbances and nutrient retention mech-
anisms (Tockner et al 1999, Wohl 2017, Zhang et al
2021b) causing algal blooms in lakes. Lakes are con-
nected to rivers in three ways: (i) permanently; or (ii)
pulsing; or (iii) isolated and there are three nutrient
exchange pathways in these ecosystems: (i) floodplain
to rivers, (ii) rivers to floodplain, and (iii) rivers to
lakes.

Kufel and Lesniczuk (2014) identified that hydro-
logical connectivity was driving higher inorganic
nutrients (DIN, SRP) and chlorophyll concentra-
tions in connected lakes as compared to the isolated
lakes. On the other hand, Castillo (2020) revealed
higher nitrate removal in connected lakes while
higher phosphorus and chlorophyll concentrations
were observed in isolated lakes. This favored phyto-
plankton and biomass accumulation due to low
turnover rate and high transparency in lakes. Further,
higher nitrate was observed in lakes upstream with
exception for lakes receiving groundwater discharge,
while P varied depending on the riverine loadings
and sediment loading from the floodplain. Finally, the
construction of dams and reservoir operations alter
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flow regimes and impede the transport of sediments
and nutrients along the river network. The nutrients
in the reservoirs are transformed from dissolved to
particulate forms through primary productivity or
adsorption and gaseous elimination by atmospheric
fixation (Maavara et al 2020) also influencing fish
diversity (Shao et al 2019). Accounting for these pro-
cesses, the incorporation of both nutrient and sedi-
ment delivery and in-stream nutrient retention linked
to connectivity, are important in nutrient load assess-
ments when analyzing the impact of multiple disturb-
ances (Amoros and Bornette 2002, Bouwman et al
2013a). The reservoir operation and management for
water withdrawal based on characterisation of local
stratification has shown to eutrophication control
downstream. While most of the evidence exists for
temperate climate, there is interest towards under-
standing such interventions for tropics, due to dams
(Scott Winton et al 2019, Calamita et al 2021).

As explained in section 3.2.5 due to intensified
fertilizer application, nutrients accumulate in soils
and promote leaching into groundwater and contrib-
ute to legacy nutrients. Over-irrigation is a known
problem that leads to anoxic conditions, nutrients
leaching from the root zone and decrease crop yields
(Blanco-Canqui 2018, Kumar and Kumar 2018). Li
et al (2018) conducted an experiment for cucumbers
under a double-cropping system and reported a signi-
ficant reduction of nutrients leaching under optimal
irrigation water scenarios due to increased irriga-
tion water use efficiency. Liang et al (2020) discusses
that field-scale water management can significantly
reduce nitrogen leaching for a study that reports high
total dissolved nitrogen leaching in vegetable produc-
tion systems but contribution from dissolved organic
nitrogen was much higher for cropping systems with
manure fertilization. Irrigation systems such as vari-
able rate irrigation using sprinklers can reduce nutri-
ents leaching as well as surface runoff and nutrient
delivery to lakes (O’Shaughnessy et al 2019) and drip
irrigation can save more than 30%-50% of fertil-
izer application (Fan et al 2020). Additionally, fertig-
ation systems, i.e. controlled fertilizer input through
optimized water supply to crops, reduces water con-
sumption and fertilizer inputs (Aziz et al 2021).

Groundwater nutrient storage is the key pres-
sure identified under this theme. Traditionally N-
rich fertilizers were more commonly used than P-
rich fertilizers that lead to increase in the soil N:P
ratio. This influenced the total terrestrial budgets
of N and P while impacting the aquatic ecosys-
tem. In addition, the legacy effects of these nutri-
ents elevate the concern of the long-term impact
in surface water and groundwater (Chen et al
2018). The groundwater-lake interaction mechan-
isms and properties like exfiltration, groundwater
discharge, hydraulic conductivity and topography
govern the N and P transport to the lakes via base-
flow (Lewandowski et al 2015). The transfer of legacy
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nutrients via groundwater has only recently gained
attention (Schilling et al 2012, Rudolp 2015). Longer
residence times of groundwater provide opportunit-
ies for microbial reactions depending on redox states
that alter nutrient availability and can promote algal
blooms (Brookfield et al 2021). However, mitigation
of N and P contamination in groundwaters is a grow-
ing concern not only to control eutrophication in
lakes but also to protect drinking water quality (Petit
etal 2008).

Ascott et al (2016) first estimated the nitrate stor-
age in the vadose zone for England and Wales, indic-
ating its importance in terrestrial nutrient budgets
and Ascott e al (2017) followed up with estimation
for global scale and identified that greatest nitrate
storage in groundwater during 1900-2000 was in
North America, China, and Europe with thick vadose
zones and extensive historical agriculture. Especially
denitrification in the subsurface settings add uncer-
tainty to the atmospheric deposition of nitrogen and
the estimation of total nitrogen budgets (Puckett et al
2011, Wang et al 2012). On the other hand, phos-
phorus in groundwater is driving the lake-nutrient
budget in many cases. For example, evidence suggests
53% of overall external P load in Lake Andersee was
from lacustrine groundwater discharge (Meinikmann
et al 2015). Similarly, the transport of dissolved
inorganic phosphate through groundwater seepage
(75%—-81% of lake water budge) at the aquifer-lake
interface was observed to enhance eutrophication
in Lake Vaeng, Denmark (Kazmierczak et al 2020,
Kazmierczak et al 2021).

3.2.7. Fishing and aquaculture
Fish catch is identified as the key indicator of drivers of
this cross-cutting theme. In order to meet the global
increase in protein demand since the 1950s, fish-
ing and aquaculture have increased in many fresh-
water bodies (Welcomme 2011, McIntyre et al 2016,
Deines et al 2017) and have become important eco-
nomic activities to support food demand through
import and export (Jia et al 2013, Lynch et al 2016).
Until recently, overfishing has led to sharply declin-
ing trends in the total fish catch, especially in the
largest lentic freshwater systems such as Lake Victoria,
Lake Baikal and Lake Tana (Gebremedhin et al 2018,
Njiru et al 2018). In addition, due to negligent fishing
activities, such as the use of destructive fishing gears
(Hampton-Smith et al 2021), the capture of imma-
ture fish without enough time for recruitment and the
introduction of non-native (or new) species into the
lake, have altered the food web dynamics (Yongo et al
2021) and increased the risk for eutrophication. Also,
in the upstream of lakes, reservoirs reduce hydrolo-
gic connectivity and restrict the migration of spawning
fish (Shao et al 2019).

The native fish diversity and species interactions
are known to limit eutrophication potential of lakes
through grazing by phytoplanktivore and detritivore
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fishes (Gophen 2015, Njiru et al 2018, Abell et al
2022). The phytoplankton biomass and chlorophyll
concentrations can decrease due to increased fish bio-
mass and cascading trophic interactions (Carpenter
et al 1985). Altering fish biomass to increase graz-
ing of phytoplankton is a food web manipulation
tool to regulate the algal dynamics and manage water
quality, particularly in shallow lakes (Benndorf 1987,
Jeppesen et al 1997, Mehner et al 2002, Goto et al
2020). On the other hand, external nutrient inputs
promote algal growth and change vegetation dens-
ity. This potentially increases anoxia leading to the
decline of species or fish kills in most cases. The
blooms also impact the abundance and diversity
of the fish, threatening food security, as well as
threathening human health due to the bioaccumula-
tion of cyanotoxins (Onyango et al 2020). Moreover,
effects due to multiple drivers and pressures (e.g. tem-
perature change, water abstraction, waste discharge)
have been individually studied, but the combined
impact on fish assemblages is unknown (Nguyen et al
2016, Bourai et al 2020). Indicators such as fish com-
position, abundance and age structure are already
used in the ecological assessment of lakes (Argillier
et al 2013, Lyche-Solheim et al 2013, Jiang et al 2020).
It is thus beneficial to consider the role of fish popu-
lations in assessments of eutrophication.

Dissolved solids in untreated aquaculture effluent is
identified as the key indicator of pressures for fishing
and aquaculture theme. In recent decades, overfish-
ing and a decline in the total fish catch has led to a
wide uptake of aquaculture (Ahmed and Thompson
2019). The contribution of aquaculture to the global
fish production increased from 19.7% in 1990s to
49% in 2020 (FAO 2022a). Some of the popular
inland aquaculture farming systems are open cage
technology (Guo and Li 2003, Nijiru et al 2019) and
recirculating aquaculture systems (RAS) (Ahmed and
Turchini 2021, Ghamkhar et al 2021). In aquacul-
ture production, the discharged effluent from excess
fertilizers and solid waste i.e. fecal and fish feed,
release nitrogen and phosphorus into the farming
ponds (Ahmad et al 2021). Aquaculture production
is often linked to rivers and lakes, and the discharge
of these untreated effluents leads to nutrient enrich-
ment that leads to the increase of phytoplankton bio-
mass and impact the aquatic system (Findlay et al
2009, Lukman et al 2019). For example, in a spatial
distribution study of nutrient pollution in Lake Toba,
Indonesia, aquaculture waste accounted for 71% of
total N and 75% of total P loads and was identi-
fied as a key pressure requiring management attention
(Suffian et al 2018).

Research on the reduction of nutrient emissions
by improving feed efficiency (e.g. precision nutrition,
integrated multitrophic aquaculture to reuse nutri-
ents for taxa like molloscus, algae or with livestock
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production) is vital for limiting eutrophication as
well as for sustainable aquaculture (Zhang et al 2011,
Bohnes er al 2019, Glencross 2020). Aquaculture is
rarely found to be integrated in eutrophication assess-
ments and with other dimensions of global changes.
Newly growing aquaculture production is an oppor-
tunity to reduce the release of nutrients waste into
the lakes. For example, some treatment techniques
such as biological nitrification to remove ammonium,
coagulation-flocculation for phosphate removal from
sludge (Jegatheesan et al 2011, van Rijn 2013, Preena
et al 2021) reduce nutrient loads from aquaculture
effluents. Studies concerning aquaculture produc-
tion processes that effect phytoplankton dynamics, is
found to be particularly limited for lakes. However,
it is gaining interest to promote sustainable aquacul-
ture in the blue transformation programme (Edwards
2015, White 2017, FAO 2022b).

4. Conclusions and outlook

In this review we synthesized the main indicators of
eutrophication for freshwater lake basins and mapped
these indicators by developing a new causal network
of the DPSIR framework. It highlights complex inter-
relationships among indicators that include the miss-
ing linkages of DPSIR elements, especially of the
drivers and pressures. For instance, the direct links
of drivers and pressures to the impact indicators is
missing in the exisiting DPSIR framework. The causal
network is a generic framework for integrated assess-
ments, and the significance of individual links dif-
fer widely (e.g. climate, pollution sources). Tools such
as comprehensive monitoring and modelling studies
can be used to quantify these interactions in specific
cases. The knowledge of multiple feedback mechan-
isms and interactions with lake basin conditions as
viewed from different disciplines is urgently needed,
particularly for developing countries with rapidly
growing population, freshwater and food demand,
to adopt sustainable water quality management. The
estimation of safe operating space and planetary
boundaries assessments for nutrients also mandates
the integration of expertise across various disciplines
(Gerten et al 2020, Kim et al 2020).

Our review on nutrient specific-mechanisms of
the 30 key indicators (out of 58 indicators) of drivers
and pressures using seven cross-cutting themes: (i)
hydro-climatology, (ii) socio-economy, (iii) land use,
(iv) lake characteristics, (v) crop farming and live-
stock, (vi) hydrology and water management, (vii)
fishing and aquaculture; provides an interdiscip-
linary and systems analysis perspective necessary
to understand the nutrient dynamics and address
eutrophication in lake basins. Based on the lit-
erature analysis, we highlight the following main
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recommendations to improve the understanding of
eutrophication dynamics in freshwater lake basins:

e The study of nutrient dynamics during floods and
droughts has become an important area of research
in water quality in the face of climate change.
However, the complex cause-effect mechanisms in
synergistic flood-drought events are poorly under-
stood. One of the main challenges is the high tem-
poral dynamics of nutrient processes during such
events (e.g. daily or weekly). The increasing spati-
otemporal information from satellites and drones
can be combined with in-situ measurements to
better understand the variability of nutrient pro-
cesses and trends in flood-drought events. Further,
developing hydrological or hydrodynamic models
that couple the nutrient processes is beneficial. It
is important to analyse nutrient loadings in con-
junction with flow variables and landuse dynamics
to develop robust nutrient relationships and assess
the future impact of extreme events on nutrient
dynamics.

e Legacy effects of the nutrients in the agricultural
landscape have gained significant importance in
water quality management. The study of these
effects, however, is limited by the lack of long-
term monitoring data, severely challenging assess-
ments of pollution threats for groundwater and
surface water quality. Its quantification has proven
difficult and the legacy effect significantly contrib-
utes to additional uncertainty in the projections
and the long-term management of lake nutrient
concentrations. Besides estimating legacy effects,
their assessment of their potential use as a resource
in intensive crop production areas to reduce the
application of fertilizers is an important area of
research to advance sustainable management.

e The long-term nutrient dynamics impacting
eutrophication potential in the lakes are modulated
by upstream natural green areas, such as wetlands.
They are at the risk of loss due to rapid urbaniza-
tion. Studies to quantify long-term nutrients accu-
mulation and their dynamics in these ecosystems
can promote their protection and restoration. It is
to retain their storage and buffer capacity and avoid
the release of the stored nutrients into freshwater
systems.

e There is a limited understanding on the adapt-
ive capacities of harmful cyanobacterial blooms to
the changing climate, nutrients and basin hydro-
logy, while evidence suggests their adaptation to
the changing environmental conditions (e.g. tem-
perature increase). The cyanobacterial dynamics
and its effects can be better understood by develop-
ing tools and methods to assess interactions of the
individual species and its life cycle, with the sur-
rounding biochemical mechanisms, changing cli-
mate and socio-economic factors.
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e The lack of lake models integrating other water
systems of the basin or limited representation of
lakes in current large-scale modeling frameworks
can be overcome by integrating the well-established
knowledge from different disciplines. It can allow
for considerable progress in integrated assessments
to analyse specific physical, socio-economic and
ecological impacts of nutrients. In addition to pri-
oritizing coupling the models, combining in-situ
data and emerging earth observation techniques
(satellite products of lake water quality) can fur-
ther fill the gap in water quality monitoring data.
There is a need to overcome this data limitation for
a better spatial and temporal (e.g. seasonal) under-
standing of water quality and avoid the unambigu-
ous results for nutrient dynamics.

e The nutrient mechanisms in freshwater lakes are
very complex, but it is highly important to assess
the impact of eutrophication considering cumulat-
ive and interactive effects of multiple drivers and
pressures. The drivers and pressures, such as from
this study, can be used as proxies to develop his-
torical trends of nutrients to better the nutrient
dynamics under global changes.

The final conclusion is that the key indicators of lake
eutrophication is of utmost importance to policy-
makers, practitioners and decision-makers to set real-
istic water quality targets and manage the freshwa-
ter quality in lakes. For instance, the current point
source pollution in developing regions due to rapid
population growth is very similar to historical trends
witnessed in developed regions such as Europe and
North America. The latter now suffer severe diffuse
source pollution due to high intensity crop and live-
stock production systems. Extensive studies in these
regions since the 20th century provided most of the
fundamental knowledge on lake nutrient dynamics.
While quantitative studies in developing regions are
limited, it is essential to understand what and how
lake responses differ in different climatic and devel-
opment patterns. Nevertheless, there is a need to
increase the number of integrated impact assessment
studies globally for: (i) comprehensive assessments
of causal relationships between indicators to assess
short-term and long-term implications to water qual-
ity and its management across regions, and (ii) the
application of lessons learnt from developed regions
to benefit eutrophication management elsewhere,
after they are carefully examined. We can further
reflect from the review that the current impact could
be worse due to changing climatic and environmental
conditions. Arguably the most progressive policies
of water management in the world, like the EU
Water Framework Directive (European Commission
2000), do not consider different nutrient flows
and pathways but rather focus only on cumulat-
ive concentrations (Wassen et al 2022). Indicators
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that holistically represent lake basins encompassing
multiple sources and pathways can guide the global
water quality efforts to manage our freshwater lakes,
restore our polluted ecosystem and potentially mit-
igate the negative effects of climate change by enhan-
cing the health, functioning and resilience of freshwa-
ter ecosystems.
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