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Abstract 

Whether and to what extent climatic factors influence migration has received widespread public and scientific 

attention. In this paper, we focus on the impacts of increased aridity and drought on internal migration using 

novel census-based data for 72 countries covering the period 1960-2016. Analyzing information on 107,916 

interregional migration flows, we find that drought and aridity have a significant impact on human mobility, 

particularly in the hyper-arid and arid areas of Southern Europe, the Middle East and North Africa, and Southern 

Asia. Migration is shaped by the level of wealth, agricultural dependency, and urbanization in the area of origin. 

Different age and education groups respond differently to droughts and aridity highlighting the importance of 

differential mobility patterns across population groups in different geographic contexts. 
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Introduction 

Due to rising temperatures and changing precipitation patterns, many parts of the world are experiencing 

protracted drought and aridification trends. Drylands cover over 40% of the world's land area and are inhabited 

by approximately 2.5 billion people, or about one-third of the world's population (Burrell et al., 2020; FAO, 

2019). By the end of the century, they are projected to increase by 11% under a medium Representative 

Concentration Pathway (RCP 4.5) and by up to 23% under a high (RCP 8.5) greenhouse gas emission scenario 

compared with the 1961–1990 baseline (European Commission/Joint Research Centre, 2018; Huang et al., 

2016).  

Changing climatic conditions and anomalies can particularly affect the livelihoods of people living in rural and 

agriculturally dependent areas and pose threats to food security, water availability, and health (Pörtner et al., 

2022). When other adaptation options become limited, households may choose or be forced to migrate in 

response to increasing livelihood insecurity (McLeman and Smit 2006; Hunter, Luna, and Norton 2015). While 

in the public discourse, climate change is often portrayed as a cause of major international migration flows, 

numerous empirical studies and meta-analyses have demonstrated a more significant impact of environmental 

hazards and changes on short-distance, internal as opposed to cross-border mobility (Beine & Jeusette, 2019; 

Borderon et al., 2019; Cattaneo et al., 2019; Hoffmann et al., 2020; Šedová et al., 2021). Local economic, 

socio-political, and demographic conditions are essential in shaping migration patterns and outcomes (Black et 

al., 2011b).  

However, due to data limitations, there is limited comparative evidence on the impact of gradual changes in 

climatic conditions on internal migration and the moderating role of contextual influences. Most evidence to 

date relies on country-specific case studies (Bohra-Mishra et al., 2017; Gray & Mueller, 2012; Mueller et al., 

2014) and, in the case of cross-national analyses, proxy measures of migration, such as cross-country 

urbanization trends or population density estimates (Henderson et al., 2017; Marchiori et al., 2017; Niva et al., 

2021). The World Bank's recent Groundswell Report, for example, uses a scenario-based approach that 

approximates the number of internal migrants in the future. It predicts that 216 million people globally may 

move within their countries’ borders due to climate change by 2050 (Clement et al., 2021) 

Here, we examine the impact of drought and aridification on global internal migration flows using a novel 

census-based internal migration dataset. The migration data are derived from census microdata provided by 

the Integrated Public Use Microdata Series (IPUMS) International for the period 1960-2016 (Minnesota 

Population Center, 2020). Using data from 201 censuses and 72 countries, we created a unique longitudinal 

database at the sub-national regional level (first-level administrative regions). Internal migration is estimated 

based on information on the census takers' previous and current region of residence one or five years prior to 

the census date. This allows us to calculate migration flows between each pair of regions in each country. The 

final dataset is composed of 1,410 census regions with 107,916 bilateral migration flows (Abel et al., 2022; Abel 

& Sander, 2014; Garcia et al., 2015). 

To comprehensively model drought and aridity impacts, we use a range of composite indicators derived from 

different data sources (Beguería et al., 2010; Harris et al., 2020). We employ the UNEP Aridity Index (AI), the 

Palmer Drought Severity Index (PDSI), and the Standardized Precipitation Index measured over a three-month 

(SPEI03) and 12-month time frame (SPEI48). Whereas the first two measures are well-suited to capture long-
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term aridification processes, the SPEI can also reflect shorter-term extreme events. Gravity-type fixed effects 

models are employed to estimate migration impacts across regions over time (26). 

The harmonized data allow for a comprehensive analysis of the relationships between climatic change and inter-

regional migration within a country across different geographical contexts. Although IPUMS also provides 

information on international migration, it does not specify the specific subnational origin regions of cross-border 

migrants. As this makes it more difficult to determine whether an international migrant was exposed to an 

environmental impact or not, we focus our analysis entirely on internal mobility. While previous studies have 

analyzed internal migration using IPUMS census data (Bell et al., 2015; Cirillo et al., 2022; Garcia et al., 2015; 

Lerch, 2020; Thiede et al., 2022), to our knowledge, this is the first large-scale longitudinal study of climate-

induced internal migration that spans across all world regions.  
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Data and Methods 

Data 

Information on migration and socioeconomic conditions were derived from harmonized census microdata 

samples from the Integrated Public Use Microdata Series (IPUMS) International database (Minnesota Population 

Center, 2020). Each set of census microdata contains a small random sample (0.4%-10%) of unidentified 

private households and associated persons based on a full census conducted by the national statistical agency 

in each country. Countries used in the study were selected based on the availability of information on migration. 

In addition, we retrieved additional variables from the censuses on census takers’ age, sex, education, and 

occupational profile.  

The data were drawn from 201 different censuses covering the period 1960-2016 (Figure 1). While for some 

countries, data are available for up to 8 censuses (e.g., Mexico from 1960 to 2015), most countries have fewer 

observations over time, resulting in an unbalanced time series. In our estimation, we control for this by including 

decadal fixed effects in our estimation to rule out any confounding influences of the timing of the censuses. 

The census data were combined with gridded time series data from the Climatic Research Unit (CRU) of the 

University of East Anglia (CRU TS, Version 4.07). The CRU TS dataset uses a 0.5° latitude by 0.5° longitude 

grid covering all land areas of the world, excluding Antarctica (Harris et al., 2020). The data provide monthly 

information from 1901 until 2022 on various climatic indicators, including temperature, precipitation, and 

potential evapotranspiration. The measures are based on interpolations (angular-distance weighting) of climate 

anomalies from an extensive network of weather stations worldwide.  

In addition, information on drought conditions were retrieved from the SPEI database (SPEIbase v2.8: 1), which 

spans the period between January 1901 to December 2020 (Beguería et al., 2010). The SPEI calculations use 

the CRU monthly precipitation and potential evapotranspiration data employing the FAO-56 Penman-Monteith 

estimation for potential evapotranspiration. Like the CRU data, the SPEI database operates at a spatial resolution 

of 0.5 degrees and a monthly time resolution. It provides information on a range of SPEI timescales spanning 

from 1 to 48 months.   

Finally, data were retrieved from the gridded global dataset for the Gross Domestic Product and Human 

Development Index spanning the period of 1990–2015 (Kummu et al., 2018). The database provides details 

about economic prosperity and human development with a resolution of five arcminutes, using various 

subnational sources. Consistency across time and space is ensured by calibrating the gridded estimates with 

reported national values, thereby maintaining representativeness at the national level.  
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Figure 1. Timing of censuses across countries and world regions covered in the migration dataset.  

The unbalanced longitudinal data contain information from 1960 to 2016. 

Information from the gridded data products was extracted to the subnational regional level using harmonized 

first-level administrative regions shapefiles provided by IPUMS. The subnational units were harmonized so that 

their boundaries remain geographically stable over time. To account for changes in administrative boundaries 

over time, affected geographic units were merged to form larger and temporally stable units comprising two or 

more states, provinces, and similar entities. While most boundary changes involve the division of larger units 

into smaller ones, there are also instances where state or province boundaries have shifted. All variables in 

IPUMS align with the corresponding harmonized first-level geography codes, including variables referring to 

migration, allowing us to estimate migration flows between harmonized regions of origin and destination.  
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Estimating global internal migration flows 

The migration measure used in our analysis is based on the census question about the census taker’s previous 

subnational region of residence one or five years prior to the census and their current place of residence. For 

both questions, information on the first-level administrative region is provided in the data. This enables us to 

calculate the total flows of migrants between subnational regions of origin and destination in each country.  

The question on the previous place of residence is asked differently in each country using a different temporal 

resolution, either (1) one year ago, (2) five years ago, or (3) length of stay in the current location. For the 

latter, where the continuous temporal period of stay is available, we reduced the information to a binary 

measure indicating whether or not the respondent has migrated in the past five years as a benchmark value. 

In total, 21.0% of all internal migration flows refer to migration within the past year and 79.0% to migration in 

the past five years. 

Based on the information on the current and previous regions of residence, we calculate bilateral migration 

flows between region i and region j and vice versa in the past one or five years. The harmonized first-level 

administrative regions represent the units of analysis in our study. In total, we derived information on 107,916 

bilateral migration flows covering a sample of 1,410 subnational regions. From the bilateral migration flows 𝐹𝑖𝑗𝑡, 

we derive an estimate of the annual migration rate 𝑀𝑖𝑗𝑡 by dividing the flow measure by the total population P 

of region i  at time t  and by (2) the time interval 𝐼𝑖𝑡 of one or five years considered for the migration 

measurement in the respective census: 

𝑀𝑖𝑗𝑡 =  
𝐹𝑖𝑗𝑡

𝑃𝑖𝑡 ∙ 𝐼𝑖𝑡
 (1) 

The constructed annual migration is typically lower for censuses that capture migration over a five-year instead 

of a one-year period. This is because circular migration patterns within that time frame are not recorded. To 

account for this, we control for the migration window considered in each census. Since the time intervals usually 

do not change between censuses, the differences should not largely affect our estimation of migration between 

subnational regions over time. 

The map in Figure 2 shows the 72 countries included in this study: 2 countries from North America, 12 from 

Central America and the Caribbean, 11 from South America, 3 from Southern Europe, 9 from Northeastern 

Europe and Central Asia, 3 from the Middle East & North Africa (MENA), 19 from sub-Saharan Africa, 2 from 

South Asia, and 11 from East Asia and the Pacific. The inlay in the figure illustrates four exemplary migration 

flows between four regions in China. In Figure 3, we present actual migration data for six countries during the 

most recent census period. Circular migration plots (also known as chord diagrams) are used to visually 

represent the total number of migrants between different regions in each country.  
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Figure 2. Countries and subnational regions included in the census migration database.  

The map shows the boundaries of the subnational regions, which form the basis of the migration flow estimation. The inlay 

to the right shows exemplary migration flows between four regions in China.  
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Figure 3. Circular migration plots showing migration flows between subnational regions in 

exemplary countries.  

The migration flows were estimated using the latest available census. Panels A Spain, B China, C Brazil, D Tanzania, E USA, 

F Russia. Subnational regions in the USA and Russia were further aggregated due to the large number of regions. 
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Drought and aridity indicators 

Based on the derived climate data, we prepare four key indicators to measure changes in aridity and drought 

in the subnational regions over time.  

(1) The aridity index (AI) measures dryness as the ratio between the yearly precipitation and potential 

evapotranspiration (PET) in an area. Lower values of the AI represent higher dryness, with areas with an AI 

below 0.05 being classified as hyper-arid, below 0.20 as arid, below 0.5 as semi-arid, below 0.65 as dry 

subhumid, and above 0.65 as humid. The AI is particularly suitable to reflect longer-term changes in aridity and 

persistent drought conditions.  

(2) As a second measure of dryness, we consider the Palmer Drought Severity Index (PDSI), which is based on 

temperature and precipitation data to assess relative dryness. This standardized index typically ranges from -

10 (dry) to +10 (wet), although more extreme values are possible. Like the AI, the PDSI is used to quantify 

long-term drought and aridity by considering potential evapotranspiration through temperature data and a 

water balance model. However, it has limitations in detecting droughts on time scales shorter than 12 months. 

It also lacks multi-timescale features found in other indices like SPI and SPEI, making it difficult to correlate 

with specific water resources such as runoff, snowpack, and reservoir storage. In our analysis, we use the self-

calibrating version of the PDSI, which helps to address comparability issues across different regions. 

(3) For the final two climate indicators, our analyses use the Standardized Precipitation Evapotranspiration Index 

(SPEI). The SPEI measures the water balance in a region based on both the local precipitation and potential 

evapotranspiration. The SPEI measure is particularly useful for detecting drought events over a shorter or 

medium time period. The SPEI is centered around the value of zero, with positive values indicating higher 

humidity and negative values drier conditions. Areas with a SPEI below -1.5 are considered severely dry, and 

areas with a value below -2.0 extremely dry. Here, we use two SPEI-based variables, one which considers the 

water balance accumulated over a rolling 3-month period and one over a longer 12-month period, allowing us 

to capture water imbalances and drought conditions over shorter periods to complement the other climatic 

indicators.  

For sensitivity analyses, we use the Normalized Difference Vegetation Index (NDVI) as an additional indicator. 

The NDVI is a remote sensing measure showing the amount of green vegetation and can thus serve as a proxy 

for dryness in an area. By design, it is limited to values between -1.0 and +1.0, with lower values indicating 

drier conditions. The indicator is available from 1981 and hence covers a shorter time period compared to the 

other indicators, which are available from 1901. All aridity indicators are similarly scaled, with smaller values 

indicating drier and larger values indicating more humid conditions. For our analysis, the indicators were 

rescaled so that larger values indicate greater dryness. 

Standardization and rescaling of climate indicators 

The use of complementary climatic indicators allows us to comprehensively explore drought and aridity impacts 

over longer and shorter periods. To allow for comparisons across the different measures, all indicators were 

standardized. For this, we use the information on the measures' distribution across different geographical scales. 
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For the main models, all indicators were standardized at the subnational regional level. For this, the long-run 

regional mean of the drought and aridity variables 𝐶�̅� in a region 𝑖 was subtracted from the observed annual 

values 𝐶𝑖𝑡 and divided by the long-run standard deviation 𝜎(𝐶)𝑖 of the variable. The resulting standardized 

anomaly measures 𝐶𝑠𝑡𝑎𝑛,𝑖𝑡 show the standardized deviation in drought conditions and aridity in a region from 

the long-run normal conditions in a reference period: 

𝐶𝑠𝑡𝑎𝑛,𝑖𝑡 =  
𝐶𝑖𝑡 − 𝐶�̅�

𝜎𝐶𝑖

 (2) 

Here, we consider as reference the period from 1901 to 2016 for the calculation of the long-run mean and 

standard deviation. All results are robust to using shorter reference periods (1960-2016) and to using a rolling 

reference period window (50 years prior to each census date), allowing to account for adaptation effects (Dell 

et al., 2014; Hsiang, 2016). For additional robustness tests, we used the unstandardized climatic indicators and 

indicators using the country-wide distribution or the global distribution of the variables as the basis for the 

standardization.  

The original versions of the drought and aridity variables considered are scaled so that negative values indicate 

drier and positive values more humid conditions. To facilitate the interpretation of the results, we rescaled the 

variables so that positive values indicate greater dryness and negative values more humid conditions. 

Accordingly, positive model coefficients refer to a positive effect of drought and greater aridity on migration, 

and negative coefficients to a negative effect, making the interpretation more intuitive for readers. The findings 

show the effect of a one standard deviation increase in dryness for the respective indicators on migration.   

Statistical modeling  

The impacts of climatic changes and hazards on migration are estimated using a series of fixed effects panel 

models, which regress the bilateral out-migration rate between regions of origin 𝑖 and destination 𝑗 on the 

different aridity and drought indicators 𝐶𝑠𝑡𝑎𝑛,𝑖𝑡. Our models are estimated parsimoniously to avoid 

overcontrolling issues (Hsiang, 2016). All models control for the respective time interval (five vs. one year) used 

for measuring migration flows between the region of origin and destination. The full model can be written as: 

𝑙𝑛(𝑀𝑖𝑗𝑡) = 𝛽𝐶𝑠𝑡𝑎𝑛,𝑖𝑡+ 𝐼𝑖𝑡𝛾 + 𝑙𝑜𝑔 (𝐷𝑖𝑗)𝛿 + 𝐴𝑖𝑗𝜌 + 𝛼𝑖 + 𝛿𝑗 + 𝑊𝑟𝜃𝑡 + 휀𝑖𝑗,𝑡 (3) 

Where 𝑀𝑖𝑗𝑡 is the annual out-migration rate from a region i  to a region j  at time t. 𝐶𝑠𝑡𝑎𝑛,𝑖𝑡 refers to the vector 

of climate indicators in the origin region (Beine & Parsons, 2015). In further models, we extend this baseline 

specification by simultaneously considering changes in environmental conditions in the destination areas 𝐶𝑠𝑡𝑎𝑛,𝑗𝑡 

(Supplementary Table S16). 𝐼𝑖𝑡 captures the migration time interval (one vs. five years) considered in the 

census.  

Unobserved spatial heterogeneity is controlled for via the use of region of origin (𝛼𝑖) and destination (δ𝑗) fixed 

effects. These account for relatively stable characteristics of the regions over time, including cultural differences, 



www.iiasa.ac.at 
14 

political systems, and climatic zones, which could otherwise confound the estimation. For the estimation, we 

follow a gravity-type modeling approach, controlling for the logged distance 𝐷𝑖𝑗  between origin and destination 

as well as an indicator variable 𝐴𝑖𝑗 that measures whether origin and destination regions are adjacent to each 

other (Beine et al., 2016; Beine & Parsons, 2015).   

To account for confounding influences of temporal trends, we control for world region-specific time trends 

through the use of time-fixed effects (𝑊𝑟𝜃𝑡). The time-fixed effects are estimated using decadal period 

dummies, which we interact with world region dummies to capture differing time trends in each macro-region 

in our data. The results are fully robust when controlling for time-fixed effects in the form of five-year time 

steps and estimating country-specific trends.  휀𝑖j,𝑡 is the random error term capturing the remaining unexplained 

variation in the data. To estimate robust standard errors, all standard errors were clustered at the level of the 

origin region. 

In our baseline specification, the climatic indicators are aggregated over a period of ten years prior to the census 

date to capture broader changes in environmental conditions. This time window reflects the typical period 

between two censuses. The results are robust to the use of shorter time windows of five years. We also find 

consistent results for changes in the AI and PDSI for longer time windows of 20 years, but the SPEI coefficients 

are no longer significant. The SPEI measures are especially suitable for capturing shorter-term drought events 

whose influences may vanish when considering longer time periods.  

Equation (3) is estimated using the Poisson-pseudo maximum likelihood (PPML) estimator, which accounts for 

the right-skewness and zero inflation of the migration outcome (Santos Silva & Tenreyro, 2006). The estimator 

also allows for unbiased estimates if any of the covariates of Equation (3) are correlated with higher moments 

of the error term, which can be a problem in log-linear models (Beine et al., 2016). The estimation is 

implemented in r using the fixest package (Bergé, 2018). As we control for origin and destination fixed effects, 

the models build on variation within regions over time. Since changes in environmental conditions over time are 

plausibly exogenous conditional on geographic location and time trends, our model allows estimating the causal 

impacts of changes in drought and aridity on migration. 

We use interaction models to explore differential climatic impacts by ecological and socioeconomic 

characteristics of regions of origin and destination. A particular advantage of our census-based data is that they 

do not only allow us to estimate the extent of the migration flows but also to explore who was migrating based 

on the migrants’ characteristics and where they moved to, based on information about the destination regions. 

For this, we further distinguish migration flows by underlying demographic characteristics of the census 

respondents, distinguishing between the migration of people with different educational backgrounds (no 

education, primary, secondary, or tertiary) and age groups (0-14, 15-20, 21-25, 26-30, 31-45,46-60, >60) by 

sex (male, female). Due to the small size of specific demographic groups in some regions, the estimation of 

accurate migration flows is more challenging. To account for this, outliers with a migration rate larger than 10% 

were removed from the subgroup analysis (<1% of observations).  
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Predictions 

Based on the empirical findings, we provide explorative predictions of potential migration changes under a 4°C 

global warming scenario. For this prediction exercise, we combine (1) the results from statistical models 

estimating differential migration responses to changes in the aridity index by world regions and baseline levels 

of aridity (Supplementary Table S8) with (2) data on projected changes in the aridity index until the end of the 

century (Supplementary Figure S5).  

To define the baseline aridity level, we consider the mean aridity index in the origin regions in the reference 

period 2001-2020. Based on this average, we classify regions into hyper-arid/arid (AI<0.2), semi-arid/sub-

humid (0.2≤AI<0.65), and humid regions (AI≥0.65) and estimate whether changes in drought and aridity over 

time are more impactful in regions characterized by an overall drier climate. Based on the significant estimates, 

we derive predicted marginal effects for each world region and aridity level.  

We combine these effects with gridded projection data on expected changes in the aridity index by the end of 

the century provided by Wang et al. (2021). The projections are based on outputs from 21 Coupled Model 

Intercomparison Project Phase 5 models under the Representative Concentration Pathways 8.5 (RCP8.5) 

scenario. They project changes in the aridity index at 2°C and 4°C levels of global warming. According to the 

projections, more substantial increases in aridity are expected in the northern high latitudes. An expansion of 

drylands is expected in both semi-arid and arid regions.  

Limitations 

The employed migration data and empirical strategy come with certain limitations which are important for the 

interpretation of the results reported in this study. While the harmonized census migration data provide a unique 

dataset to comprehensively analyze internal migration worldwide, the derived information is available only at a 

coarse temporal and spatial scale.  

Given that censuses are collected only every decade for most countries, shorter-term changes in mobility are 

difficult to capture. Also, most censuses employ a broad time window of five years when asking census takers 

about their previous place of residence. While this enables us to capture mobility over longer time horizons, we 

may miss migration over shorter periods and more circular forms of mobility. At the time of the census, some 

people may have already migrated back to their origin regions or moved on to another region in the country. 

Also, more seasonal forms of mobility are not captured in our migration measures.  

Although we can use migration data to estimate the movement of people between regions, we cannot capture 

mobility at a more granular level within subnational regions. As most climate-related mobility occurs within 

shorter distances (Hunter et al., 2015), our models will likely produce conservative estimates of drought and 

aridity impacts on migration. Also, due to differences in the size of administrative units across countries, short-

distance mobility may be better reflected in some areas than others. While this would not affect our model 

estimates, which are entirely based on within regional changes over time, it can be relevant for the external 

validity of our findings for different world regions. Also, due to the unbalanced migration time series, our 

estimates rely more on countries with more observations over time.  
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While the migration data considered in this study comprehensively map internal migration flows, international 

migration is not captured. Although IPUMS census data can provide information on international mobility, it 

only includes the previous country of residence of the census-taker without specifying the subnational regions 

of origin within that country from where the international migrant came. As our models rely on regional changes 

in climatic conditions, an estimation of drought and aridity impacts on international migration was not possible. 

As most climate-related mobility occurs within country borders, international migration flows are expected to 

be less relevant in the context of our study (Hoffmann et al., 2020; Hunter et al., 2015).  

The harmonized migration data provide a unique database for understanding internal mobility and comparing 

climatic impacts across different contexts and for different subgroups in the population. Due to the high context-

sensitivity of climate-related mobility, this data add essential insights into migration decision-making processes 

and the role of local conditions. Beyond studying environmental impacts on migration, the data offers other 

applications, including studying migration impacts of changes in local economic conditions and conflicts.   
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Results 

Internal migration worldwide 

Patterns of internal migration differ substantially across countries and sub-national regions. Considering areas 

with disproportionately high and low levels of annual out-migration relative to the country mean (Figure 4A), 

we observe high and low mobility clusters. Country-specific topographic and socio-economic characteristics are 

important for shaping migration patterns. For instance, in China, western regions are characterized by higher 

out-migration, whereas lower levels of out-migration and higher immigration are observed in eastern coastal 

regions where major economic activities concentrate. In Russia, on the other hand, out-migration is higher in 

the eastern parts of the country and lower in the more urbanized western parts. In the US, Canada, and Brazil, 

out-migration is highest in the central parts of the countries and in Argentina in the South. 

In extended analyses (Supplementary Table S4), we test for the role of regional characteristics in shaping out-

migration. We find that most migration is over short distances and between neighboring provinces. The bilateral 

migration rate is estimated to be 0.09 percentage points [CI90: 0.074,0.106] higher between adjacent as 

opposed to non-adjacent regions of a country. Regions at the periphery of a country with an international land 

border have an on average 0.03 percentage points [CI90: 0.014,0.046] higher out-migration rate as opposed 

to regions without a border.  

Using census-based information on urban population shares in origin and destination regions, we find 

considerably higher migration to urban as opposed to rural areas, highlighting the importance of rural-urban 

moves for internal migration. Likewise higher out-migration is observed towards regions with a higher GDP per 

capita and a lower agricultural employment share. At the country level, regions in countries with higher income 

inequality exhibit higher out-migration rates on average.  

Analyzing changes in migration flows between regions of origin and destination over time, we find increases in 

internal migration over the past decades, particularly after the 1980s (Figure 4B). In the 2000s, internal 

migration was estimated to be 50.5% [CI90: 45.8, 64.2], and in the 2010s, 79.3% [CI90: 66.3, 89.5] higher 

compared to the 1960s.  

Utilizing the IPUMS census data enable us to further discern the migration patterns of distinct population 

subgroups, considering factors such as age, sex, and educational attainment. In line with the existing migration 

literature (Levy & Wadycki, 1974; Manning & Trimmer, 2020), we find distinct migration patterns by age (Figure 

4C) and education (Figure 4D). Mobility is highest among individuals aged 15 to 30 as well as among the more 

educated. Better labor market prospects and increased mobility among young adults are likely explanations for 

this finding. Across various age and education groups, the mobility is found to be slightly higher for men 

compared to women (Abel & Cohen, 2022). 
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Figure 4. Patterns in internal migration worldwide.  

Panel A shows the standardized deviation of the regional out-migration rates from the country-specific mean for the last 

available census. The standardization ensures the comparability of the information across different country contexts and 

administrative settings. Regions with an above-average out-migration rate are shown in green, and regions with a below-

average out-migration rate are shown in purple. Countries colored in grey are those not available in our database. Panel B 

shows the modeled temporal trends in internal migration worldwide using the period 1960-1969 as a reference 

(Supplementary Table S5). Panel C shows differences in regional out-migration rates by age and sex, and Panel D by 

education and sex. The boxplots show the median, interquartile ranges (IQR), and 1.5 x IQR of the distributions across sub-

national regions. 

Drought and aridity drive regional out-migration 

To test for the impacts of drought and aridity, we combine the sub-national bilateral migration data with 

information on climatic conditions in the regions of origin ten years prior to the census date. All drought and 

aridity measures were rescaled to facilitate interpretation, with positive values reflecting increased drought 

severity or dryness, respectively. Longitudinal models are used to identify the environmental impacts on internal 

migration (Table 1).  
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The models study changes in migration from one region to another and test whether these changes are affected 

by changes in the climatic conditions in the origin areas. All models control for region of origin and destination 

fixed effects and world region-specific time trends. We also performed several robustness and falsification tests 

to check for the sensitivity of the results. All results remain fully robust to variations in the model specification, 

weighting and standardization approaches, time windows considered, and the conceptualization of the migration 

and climate measures.  

 

Table 1 – Baseline models estimating impacts of drought and aridity on out-migration rate 

 Outcome: Annual out-migration rate 

 
(1) (2) (3) (4) (5) 

AI  
   0.0662*** 

(0.0199) 
         

PDSI 
      0.0492*** 

(0.0155) 
      

SPEI03 
         0.0722*** 

(0.0212) 
   

SPEI12 
            0.0583*** 

(0.0190) 

Log(distance) 
-0.7632*** 

(0.0407) 
-0.7636*** 

(0.0407) 
-0.7635*** 
(0.0407) 

-0.7636*** 
(0.0407) 

-0.7635*** 
(0.0407) 

Adjacent regions 
0.6325*** 
(0.0861) 

0.6326*** 
(0.0861) 

0.6324*** 
(0.0861) 

0.6325*** 
(0.0862) 

0.6325*** 
(0.0861) 

Time window of 5 years 
-0.1639 

(0.1246) 

-0.1575 

(0.1252) 

-0.1519 

(0.1250) 

-0.1335 

(0.1269) 

-0.1350 

(0.1284) 

World region x decade FE Yes Yes Yes Yes Yes 

Origin FE Yes Yes Yes Yes Yes 

Destination FE Yes Yes Yes Yes Yes 

S.E.: Clustered by: origin by: origin by: origin by: origin by: origin 

Observations 107,916 107,916 107,916 107,916 107,916 

Pseudo R2 0.22845 0.22857 0.22849 0.22857 0.22854 

BIC 34,224.90 34,236.30 34,201.60 34,236.30 34,236.40 

Note: PPML fixed effects, gravity models. Poisson regression coefficients with cluster robust 
standard errors in parentheses. Clustering of standard errors at the origin region level. Input 
variables: Aridity Index (AI), Palmer Drought Severity Index (PDSI), Standardized Precipitation 
Evapotranspiration Index (SPEI). SPEI03 and SPEI12 refer to aggregated 3 and 12 months SPEI, 
respectively. All drought and aridity variables were rescaled so that larger values indicate more 
severe drought or greater dryness. The outcome variable is the annual out-migration rate. The 
variable distance refers to the Euclidian distance between the centers of two regions. The variable 
time window of 5 years indicates that the census used a five-year time window to capture 
migration. P-values: * 0.1 ** 0.05 *** 0.01    

We find significant and sizeable effects of drought and aridity on migration. A one standard deviation change 

in the aridity index (model 1) is estimated to lead to a 6.62% (CI90: 3.36, 9.88) change in the annual out-

migration rate in the affected region. Similar effect sizes are found for the PDSI (model 2), SPEI03 (model 3), 

and SPEI12 (model 4), which are estimated to lead to an increase in migration of 4.92% [CI90: 2.38,7.46], 

7.22% [CI90: 3.74,10.70], and 5.83% [CI90 2.71,8.95], respectively, pointing to a high consistency in the 

effects of water stress and dryness on human mobility.  
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To ensure the validity of our empirical design, we conducted a placebo test analyzing the correlation between 

the out-migration rate and the lead values of the climate indicators in the period 10 years after the census 

(Supplementary Table S15). We do not find significant evidence that future drought or aridity predict past 

mobility suggesting that our empirical design is valid. In further models (Supplementary Table S16), we tested 

for the impacts of changes in the climatic conditions in the prospective destinations but did not detect any 

consistently significant results. This suggests that the conditions in the origin regions may be more relevant in 

influencing migration decisions. 

We also analyzed non-linearities in drought and aridity impacts on migration (Supplementary Table S6). We 

find evidence that as environmental stress levels rise, the impact on migration increases. The dryer the 

conditions in an area, the more substantial the migration impacts. This finding may be due to nonlinearities in 

the migration responses (McLeman, 2018; Meze-Hausken, 2008; Nawrotzki et al., 2017). When faced with 

significant pressure, households may eventually reach a point where relocation becomes the only viable option, 

as coping and adapting may no longer be feasible (Dow et al., 2013; Hoffmann et al., 2022; Warner et al., 

2012).  

Effects differ by world region and ecological zones 

Using a series of interaction models, we test for differences in migration impacts for different world regions 

(Figure 5), revealing significant geographical and contextual heterogeneity in migration responses. We find the 

most consistent and strongest impacts of all considered climate indicators on migration in Southern Europe, the 

Middle East and North Africa (MENA), and South Asia. A change in the aridity index by one standard deviation 

is estimated to increase out-migration by 58.7% [CI90: 48.3,69.0] in Southern Europe, by 30.2% [CI90: 

7.7,52.6] in the MENA region, and by 41.9% [CI90: 41.9,50.8] in Southern Asia, respectively.  

Positive but weaker effects are observed for countries in South America and sub-Saharan Africa, where changes 

in the aridity index are estimated to lead to a 11.4% [CI90 6.6,16.2] and 4.2 % [CI90 1.0,7.4] increase in 

migration, respectively. No significant impacts are observed in Northeastern Europe and Central Asia, East Asia 

and the Pacific, and North America. For Central America and the Caribbean, negative effects are estimated for 

all climatic indicators, suggesting that wetter periods potentially due to more extreme storms are related to 

higher out-migration from those areas. These results also depend on the subsets of countries available and 

should not be interpreted as a fully representative picture of a particular region. 

In further extended analyses (Supplementary Table S8), we find heterogeneity in the magnitude of the effects 

across baseline levels of dryness in the origin region (reference period 2001-2020). The strongest migration 

responses are found in hyper-arid and arid regions, which are already characterized by high levels of dryness, 

high temperatures, and limited rainfall. Future increases in aridity may lead to desertification and land 

degradation in these areas contributing to lower crop productivity, putting further pressure on the livelihoods 

of the already vulnerable local populations (Dow et al., 2013; Warner et al., 2012). 

We use the results of these extended models for explorative predictions combining the estimated differential 

migration responses by world region and baseline aridity level with projections of future changes in the aridity 

index at two and four degrees of global warming by the end of the century (Wang et al., 2021). The results 
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(Figure 5B) suggest large regional differences in the relevance of drought and aridity for human mobility. 

Particularly in dryland areas in the Mediterranean, South America, Central Asia, and North America migration 

patterns are expected to be affected by future drying trends.  

 

 

Figure 5. Differences in migration impacts of drought and aridity across world regions.  

Panel A shows differences in migration impacts by the geographical location of the sub-national regions distinguishing effects 

across world regions. The x-axis shows the marginal effects and 90% confidence intervals of a one standard deviation 

increase in aridity levels on out-migration rates. The underlying full models are displayed in Supplementary Table S7. Panel 

B shows modeled migration changes under a 4°C global warming scenario based on projected changes in dryness in the 

regions until the end of the century (Wang et al., 2021). For the prediction, extended models (Supplementary Table S8) 

were used to estimate differential migration responses by world region and baseline aridity level (reference period 2001-

2020) distinguishing between hyper-arid/arid, semi-arid/sub-humid, and humid regions. The derived predicted marginal 

effects were combined with the projected changes in the aridity index in the regions to explore potential impacts on internal 

migration.  
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Migration impacts are moderated by contextual characteristics 

The substantial differences across regions suggest that local socio-economic and political conditions may play 

an important role in moderating the effects of increased drought and aridity on migration. Based on a number 

of extended models, Figure 6 shows changes in the estimated migration response (y-axis) by different 

interaction variables measuring local background characteristics at the regional level.  

The graphs illustrate changes in the marginal effects of a one standard deviation increase in the four climate 

indicators. Panel A displays interactions with the GDP per capita, the agricultural employment share, and the 

urban population share in the origin regions. Panel B shows interactions with the standardized deviations of 

these measures from their country-specific means. The first set of measures reveals variations in migration 

responses according to the origin's socio-economic characteristics. The second set focuses on intra-country 

disparities. For the latter measures, we distinguish the influence of characteristics of origin (solid lines) and 

destination regions (dashed lines) in influencing migration impacts. 

The regional income level, agricultural dependency, and level of urbanization influence interregional migration 

in response to environmental changes. Considering first the differences in the characteristics across all regions 

in the sample, we find overall stronger migration responses in wealthier regions, regions with a higher 

agricultural employment, and regions with a lower urban population share. The findings suggest that migration 

barriers or resource constraints hamper mobility attenuating the migration effects in poorer areas. Liquidity 

constraints could, for example, be exacerbated in the face of environmental stress, leading to the possibility of 

populations becoming "trapped" or "immobile" (Benveniste et al., 2022; Cundill et al., 2021; Farbotko et al., 

2020; Mallick & Schanze, 2020; Nawrotzki & DeWaard, 2018; Zickgraf & Perrin, 2016). 

The strong effects in rural and agriculturally dependent areas suggest that these areas are particularly 

vulnerable to drought and aridity due to their impacts on agricultural production and livelihoods. Especially in 

low-income countries, agriculture represents an important economic sector and provider of local food supplies 

(Mendelsohn, 2008; Schlenker & Lobell, 2010). Differential necessities to migrate in response to environmental 

stress can hence moderate the effects (Hoffmann et al., 2020). These results also hold when using country 

instead of region-level background characteristics (Supplementary Figure S6). Considering differences between 

countries, we also find reduced mobility responses the higher the inequality in a country. 

When considering differences within countries, we find that migration flows from less urbanized to more 

urbanized regions to be more impacted by changes in drought and aridity. Additionally, our findings indicate 

that regions with a higher share of agricultural employment experience more out-migration (solid lines). 

However, no clear patterns are visible in terms of destination areas (dashed lines). The agricultural employment 

situation in destination areas does not appear to be a decisive factor in determining the migration destination 

choice of individuals affected by drought and aridity. 
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Figure 6. The role of regional background characteristics in shaping migration responses to 

drought and aridity.  

Panel A illustrates the role of regional characteristics in influencing migration responses to drought and aridity. The y-axis 

shows the marginal effects of a one standard deviation change in the climate indicators on the out-migration rate. The 

figures rely on model estimates considering interactions between the climate indicators and the GDP per capita, the 

agricultural employment share, and the urban population share in the regions of origin (Supplementary Tables S9-S11). 

Increasing (decreasing) functions indicate increasing (decreasing) migration impacts with higher levels of the interaction 

variable. All models estimating interactions with agricultural employment and urban population share also control for 

interactions with GDP per capita to rule out confounding wealth effects. Panel B shows the results of interaction models 

interacting the climate indicators with regional deviations in GDP per capita, agricultural employment, and urban population 

share from the country-specific mean (Supplementary Tables S12-S14).  Considering standardized deviations as opposed to 

the overall level values of the variables allows testing for differences in migration responses by within-country differences 

in wealth, agricultural dependency, and urban population. Solid lines show the results where interaction variables refer to 

deviations in origin areas. Dashed lines show the results for deviations in destination areas. 

 

Although migration responses were overall stronger in richer regions, indicating that a certain level of wealth is 

necessary to enable mobility, the within-country analysis reveals a more nuanced pattern. Here, we find that 

regions with comparatively lower wealth in a country experience a higher rate of out-migration. A one standard 

deviation increase in within-country GDP, on the other hand, is associated with a 3.39% [CI90, -5.59, -1.19%] 

reduction in the migration impact of a one standard deviation increase in the aridity index. This suggests that 

while we see overall higher levels of mobility in wealthier countries, it is often the poorer regions within those 

countries where populations respond more strongly when exposed to drought or increased aridity. We find an 

inconsistent influence of the wealth levels in destination areas suggesting more mixed patterns when it comes 

to the role of destination area characteristics in shaping climate mobility. 
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Migration responses differ for different population groups 

As a final step, we examine which population groups are most likely to migrate in response to increased aridity 

and drought. For this, we categorize the census participants into different subgroups and estimate group-

specific migration flows from one region to another. We classify migration flows by sex, age groups (0-14, 15-

20, 21-25, 26-30, 31-45,46-60, >60), and education levels (less than primary, primary, secondary, or tertiary). 

Figure 7 shows marginal effect plots where the coefficient and confidence intervals are plotted (y-axis) for the 

different subgroups (x-axis). In the analysis, we further distinguish between less developed (top figures) and 

more developed (bottom figures) countries, two groups that reveal significant differences in age and education-

specific migration responses.  

Focusing on differences by age and sex (Figure 7A), we find highly consistent patterns across the different 

climate indicators. Overall, migration responses across age groups are more pronounced in more developed 

than in less developed contexts. While we find a hump-shaped distribution in less developed countries, with the 

middle age groups showing the strongest migration response, it is the older age groups in more developed 

countries who show the strongest response.  

Whereas the pattern in lower-income contexts suggests a higher out-migration of the working-age population, 

we see an opposite effect in higher-income contexts, where older population groups are more mobile. This 

could be due to a generally higher mobility among older groups or retirement migration, where individuals move 

to areas with a more pleasant climate (Savaş et al., 2023). In less developed countries, men are more likely to 

migrate in response to environmental stress in some age groups (e.g., 26-30). However, the gender differences 

are not consistent across all age groups considered.  

Also, for education (Figure 7B), differences in patterns are visible between less and more developed countries 

in the sample. Our results indicate a positive education gradient in less developed countries where the mobility 

of population groups with secondary education is particularly affected by drought and aridity. This difference 

may be due to migration constraints among the lower-educated or reflect differential migration prospects for 

lower and higher-educated individuals (Levy & Wadycki, 1974; UNESCO, 2019). For more developed countries, 

while overall migration responses are more uniform across education groups, out-migration rates appear to be 

higher among groups with a primary level of education, although the very low number of individuals in this 

group results in large error bars. 
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Figure 7. Migration impacts by different population subgroups in more and less developed 

countries.  

Panel A shows estimated differences in migration responses for men (green dots and whiskers) and women (blue dots and 

whiskers) in different age groups (y-axis) for populations in more and less developed countries. Panel B shows differences 

in migration responses for men and women by ISCED education levels in more and less developed countries. The x-axis 

shows the marginal effects of a one standard deviation increase in drought and aridity measured with the four climate 

indicators. The classification into more and less developed countries is based on data from the UN World Population 

Prospects (UN, 2022).  

 



www.iiasa.ac.at 
26 

Discussion and conclusion 

Analyzing census-based migration data, our study shows significant and sizeable impacts of drought and aridity 

on internal migration worldwide. The effects are particularly pronounced in agriculturally dependent, rural 

regions, especially in drylands in Southern Europe, the Middle East and North Africa, Southern Asia, and North 

America. Economic prosperity and development also influence the relationships. Mobility tends to be higher in 

relatively poorer regions (compared to the country average) that are still wealthy enough to finance migration. 

Also, individual characteristics are found to play an important role in shaping migration responses. While mobility 

is higher among the better-educated working-age population in developing countries, we observe stronger 

impacts on the mobility for the older age groups across all education strata in wealthier countries. These findings 

highlight the importance of differing mobility patterns among distinct population groups in diverse contexts. 

Our study adds to the growing body of literature emphasizing the important role of environmental factors in 

shaping (im)mobility outcomes (Beine & Jeusette, 2019; Cattaneo et al., 2019; Hoffmann et al., 2020; Hunter 

et al., 2015; Šedová et al., 2021). The relationships are not simple but are characterized by non-linearities 

(McLeman, 2018; Nawrotzki et al., 2017; Pasini & Amendola, 2019) and a high context dependency (Hoffmann, 

2022; McLeman & Hunter, 2010; Upadhyay et al., 2015). Socio-economic conditions, political and cultural 

influences, and population characteristics can shape mobility responses to increased environmental stress (Black 

et al., 2011b, 2011a). These factors can lead to differences in migration patterns between, but also within 

countries, highlighting the need for a sub-national perspective to understand climate mobility and the role of 

local conditions (Muttarak, 2021).   

Aside from spatial heterogeneity, our results reveal large differences in migration responses for different 

subgroups of the population. Both demographic and socio-economic characteristics can influence a person's 

ability and willingness to migrate, as well as the exposure and vulnerability to hazards (de Haas, 2021; de 

Sherbinin et al., 2022). Vulnerable communities, particularly those with limited resources and adaptive 

capacities, are likely to be disproportionately affected by environmental stress but may lack resources or 

information to engage in inter-regional migration (Cundill et al., 2021; Nawrotzki & DeWaard, 2018; Zickgraf & 

Perrin, 2016). Taking a holistic perspective that accounts for both spatial and social differences is key to 

comprehensively understanding the multifaceted links between the environment and human (im)mobility. 

Advancements in data availability and modeling techniques have improved migration assessment and 

estimation. Despite these improvements, the limited availability and comparability of internal migration data 

pose considerable challenges to reflect mobility within countries accurately (Hoffmann et al., 2021; Vinke & 

Hoffmann, 2020). Inconsistent collection and reporting of data across regions and countries, gaps in the 

systematic collection of migration data, and a lack of standardized classifications and categories for internal 

migration make it challenging to establish consistent analytical frameworks and hinder efforts to compare 

migration patterns and trends across regions and countries over time. Consequently, it has been challenging to 

present consistent evidence to what extent and how climatic factors influence internal migration.  

To that end, the longitudinal migration dataset extracted from the IPUMS census microdata can address some 

of these issues (Minnesota Population Center, 2020). Through extensive data harmonization and cleaning 

efforts, this dataset offers comparable information on migration across 72 countries, facilitating a systematic 

examination of geographic disparities in internal migration patterns. In addition to modeling climatic influences 
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on human mobility, the data can be utilized in various other relevant applications. While the data provide a 

comprehensive picture of global bilateral internal migration, they have limitations. In particular, certain forms 

of climate-related mobility, including short-distance and temporal migration, may be omitted from the analysis. 

Our work contributes to the assessment of the impact of drought and aridity, which can have severe 

consequences for agricultural production, water security, and livelihoods, on internal migration patterns 

(Straffelini & Tarolli, 2023). As climate change continues to unfold, projections suggest an increase in the 

frequency and severity of arid conditions in various regions across the globe (Huang et al., 2016; Wang et al., 

2021). Populations living in areas experiencing chronic water scarcity and agricultural challenges will likely face 

heightened pressures to seek alternative livelihoods and better living conditions elsewhere (Rigaud et al., 2018).  

The findings that drier conditions lead to higher internal migration among subgroups of populations based on 

socio-economic characteristics present an empirical ground for targeted policies. Under elevated environmental 

stress, those who need to migrate but do not have the resources to do so would need support to facilitate 

migration and better means to protect themselves and their communities. Likewise, given the vital role of the 

rural-to-urban migration corridor, the challenge is to ensure adequate facilities, infrastructure, and social and 

health services in destination regions for a growing urban population (Hoffmann & Muttarak, 2021).  

Proactive policy measures are needed to address challenges related to climate change and human mobility and 

to reduce vulnerabilities of communities affected by environmental stress (Blake et al., 2021; Thalheimer et al., 

2022). Enhancing water management strategies, promoting resilient agricultural practices, and implementing 

climate adaptation measures can help mitigate the adverse effects of drought and aridity. Furthermore, policies 

that support livelihood diversification and social safety nets can assist in reducing forced migration and 

displacement, promote resilience in vulnerable communities, and support mobile populations. 
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Supplementary Materials 

Extended descriptive statistics 

Figures S1 to S4 show temporal trends in the drought and aridity indicators for the different world regions 

considered in our analysis. Table S1 provides summary statistics for the main population variables used in our 

analysis, including the different migration measures. Table S2 shows summary statistics for the drought and 

aridity indicators. Table S3 presents background statistics for the 72 countries included in the analysis.  

 

 

Figure S1. Temporal trends in the standardized aridity index (AI) 1920 – 2020 by world regions.  

The boxplots show the median, interquartile ranges (IQR), and 1.5 x IQR of the distribution across subnational regions. 

Only countries covered in the migration data are included in the calculation. The original AI was rescaled so that positive 

values indicate greater and negative values reduced dryness. 
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Figure S2. Temporal trends in the standardized Palmer Drought Severity Index (PDSI) 1920 – 

2020 by world regions.  

The boxplots show the median, interquartile ranges (IQR), and 1.5 x IQR of the distribution across subnational regions. 

Only countries covered in the migration data are included in the calculation. The original PDSI was rescaled so that positive 

values indicate greater and negative values reduced dryness. 
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Figure S3. Temporal trends in the standardized Standardized Precipitation Evapotranspiration 

Index measured over a three months time window (SPEI03) 1920 – 2020 by world regions.  

The boxplots show the median, interquartile ranges (IQR), and 1.5 x IQR of the distribution across subnational regions. 

Only countries covered in the migration data are included in the calculation. The original SPEI03 was rescaled so that positive 

values indicate greater and negative values reduced dryness. 
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Figure S4. Temporal trends in the standardized Standardized Precipitation Evapotranspiration 

Index measured over a 12 months time window (SPEI12) 1920 – 2020 by world regions.  

The boxplots show the median, interquartile ranges (IQR), and 1.5 x IQR of the distribution across subnational regions. 

Only countries covered in the migration data are included in the calculation. The original SPEI12 was rescaled so that positive 

values indicate greater and negative values reduced dryness. 
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Table S2 – Summary of variables at the subnational regional level 

 Less developed economies 

 N Mean SD Min Max 

Migration      

Annual out-migration rate 3192 0.014 0.055 0 2.543 

Annual out-migration flow 3192 15309 39613 3 103726 

Migration interval 1 year 3192 0.084 0.277 0 1 

Migration interval 5 years 3192 0.916 0.277 0 1 

Population & geography      

Population in origin region 3192 3042513.37 9876053.81 9060 160415922 

Area of origin region 2968 50445516 135917675 12437.96 1632612236 

Origin region has coastal border 2968 0.489 0.5 0 1 

Origin region has land border 2968 0.438 0.496 0 1 

Origin region has no border 2968 0.228 0.42 0 1 

Population density (per 1000km²) 2968 0.362 1.954 0 44.003 

Number of destination regions 3192 30.649 19.916 3 76 

Distance origin to destination 3192 591225 474370 17521 2883161 

Destination is adjacent 3192 0.212 0.16 0 1 

Socioeconomic background      

Unemployment rate 2499 0.050 0.059 0.000 0.525 

GDP per capita 2135 6592 6472 260 105303 

HDI 2135 0.594 0.121 0.267 0.969 

Share agricultural employment 2794 0.455 0.262 0.003 0.97 

Share urban  2567 0.42 0.288 0 1 

Country GINI coefficient 3115 0.422 0.06 0.297 0.63 

Country % crop land 3182 0.392 0.168 0.005 0.873 

Country GDP per capita 3185 2261 2890 76 15046 

 More developed economies 

 N Mean SD Min Max 

Migration      

Annual out-migration rate 1075 0.025 0.077 0.001 1.504 

Annual out-migration flow 1075 42577 81929 238 732686 

Migration interval 1 year 1075 0.58 0.494 0 1 

Migration interval 5 years 1075 0.42 0.494 0 1 

Population & geography      

Population in origin region 1075 2371531.25 4276953.86 18830 39144818 

Area of origin region 1075 107056980 305305205 13988.634 3944158051 

Origin region has coastal border 1075 0.529 0.499 0 1 

Origin region has land border 1075 0.302 0.459 0 1 

Origin region has no border 1075 0.3 0.458 0 1 

Population density (per 1000km²) 1075 0.207 0.863 0 10.463 

Number of destination regions 1075 44.171 19.051 4 82 

Distance origin to destination 1075 1002283 998742 66086 6403459 
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Destination is adjacent 1075 0.149 0.146 0 1 

Socioeconomic background      

Unemployment rate 1034 0.066 0.044 0.006 0.415 

GDP per capita 787 29885 18008 2124 182907 

HDI 787 0.815 0.077 0.452 0.955 

Share agricultural employment 984 0.157 0.177 0 0.762 

Share urban  409 0.56 0.207 0.025 1 

Country GINI coefficient 1075 0.364 0.043 0.246 0.63 

Country % crop land 1075 0.512 0.176 0.068 0.82 

Country GDP per capita 1038 19250 16390 1102 56763 

 

 

Table S3 - Summary of aridity and drought indicators 

 N Mean SD Min Max 

Subnational standardization      

AI averaged over 10 years 4267 0.019 1.042 -3.802 3.167 

SPEI03 averaged over 10 years 4267 0.119 1.041 -3.824 2.832 

SPEI12 averaged over 10 years 4267 0.085 1.039 -3.693 3.122 

PDSI averaged over 10 years 4267 0.083 1.028 -3.673 2.71 

Country-level standardization      

AI averaged over 10 years 4267 0.009 0.999 -4.057 2.785 

SPEI03 averaged over 10 years 4267 0.121 1.053 -4.738 3.445 

SPEI12 averaged over 10 years 4267 0.086 1.044 -4.44 3.591 

PDSI averaged over 10 years 4267 0.076 0.984 -3.677 3.167 

Global standardization      

AI averaged over 10 years 4267 0.049 0.951 -5.181 2.196 

SPEI03 averaged over 10 years 4267 0.14 1.067 -3.664 4.709 

SPEI12 averaged over 10 years 4267 0.096 1.044 -3.285 3.733 

PDSI averaged over 10 years 4267 0.09 0.928 -2.801 3.016 

No standardization      

AI averaged over 10 years 4267 1.172 0.672 0.009 4.691 

SPEI03 averaged over 10 years 4267 -0.029 0.246 -1.142 0.842 

SPEI12 averaged over 10 years 4267 -0.031 0.389 -1.386 1.137 

PDSI averaged over 10 years 4267 -0.278 1.05 -3.557 2.61 
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Table S4 – Overview of countries included in the bilateral migration database 

# 
Country 
name 

World region 
Max 
year 

Min 
year 

Distinct 
censuses 

Number 
regions 

Average 
distance 

Adjacent 
regions 

Area size 

1 Argentina South America 2001 1970 3 24 1139441 0.16 115813204 

2 Armenia 
Northeastern Europe 
& Central Asia 

2011 2001 2 11 100263.6 0.38 2593559 

3 Belarus 
Northeastern Europe 
& Central Asia 

1999 1999 1 6 253817.8 0.67 34600157 

4 Benin Sub-Saharan Africa 2013 1979 4 12 235205 0.30 9607942 

5 Bolivia South America 2012 1976 4 9 570850.6 0.44 120066351 

6 Botswana Sub-Saharan Africa 2011 1981 4 21 387926.1 0.20 27531437 

7 Brazil South America 2010 1970 5 25 1771232 0.15 339183618 

8 Cambodia East Asia & Pacific 2013 2004 3 21 203337.7 0.28 8525248 

9 Cameroon Sub-Saharan Africa 2005 1976 3 7 352001.4 0.57 66449854 

10 Canada North America 2001 1981 3 10 2090917 0.31 989833410 

11 Chile South America 2017 1982 4 42 859555.4 0.08 17066290 

12 China East Asia & Pacific 2000 1990 2 29 1457587 0.16 323533448 

13 Colombia South America 1973 1964 2 21 535011.2 0.22 54122108 

14 Costa Rica Central America 2011 1963 5 7 120637.7 0.57 7336134 

15 Cuba Caribbean 2012 2012 1 14 365978.9 0.19 110860 

16 
Dominican 
Republic 

Caribbean 2010 1981 2 23 125432.7 0.22 2090818 

17 Ecuador South America 2010 1962 5 14 263956.6 0.34 18289510 

18 
Egypt, Arab 
Rep. 

Middle East & North 
Africa 

2006 1996 2 12 308028.9 0.19 20994608 

19 El Salvador Central America 2007 1992 2 14 85547.93 0.30 1482132 

20 Fiji East Asia & Pacific 2007 1976 4 4 368433.8 0.17 4762085 

21 Ghana Sub-Saharan Africa 2000 2000 1 10 301479.2 0.40 23909277 

22 Greece Southern Europe 2011 1971 5 54 283686 0.09 2462101 

23 Guatemala Central America 2002 1964 5 22 140494.5 0.23 4915813 

24 Guinea Sub-Saharan Africa 2014 1996 2 33 296337.7 0.16 7815534 

25 Haiti Caribbean 2003 1971 3 4 143785.8 0.67 6785627 

26 Honduras Central America 2001 1974 3 18 184386.3 0.25 6233781 

27 India South Asia 1999 1983 3 30 1031018 0.28 32870000 

28 Indonesia East Asia & Pacific 2010 1971 9 26 1414599 0.08 72819849 

29 Ireland 
Northeastern Europe 
& Central Asia 

2011 1981 7 6 146255.7 0.53 8315782 

30 Israel 
Middle East & North 
Africa 

1983 1983 1 7 88972.81 0.52 3847195 

31 Jamaica Caribbean 2001 1982 3 14 75782.78 0.28 785653 

32 Kenya Sub-Saharan Africa 2009 1979 4 8 354155.8 0.46 71834085 

33 
Kyrgyz 
Republic 

Northeastern Europe 
& Central Asia 

1999 1999 1 8 287683.5 0.40 24789651 

34 Malawi Sub-Saharan Africa 2008 2008 1 26 262594.4 0.16 3700823 

35 Malaysia East Asia & Pacific 2000 1991 2 13 612142.9 0.23 25372327 

36 Mali Sub-Saharan Africa 2009 1998 2 8 612685.4 0.32 156549298 

37 Mauritius Sub-Saharan Africa 2011 1990 3 10 125886.9 0.38 2040000 
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38 Mexico Central America 2015 1960 8 32 902341.2 0.14 61158624 

39 Mongolia East Asia & Pacific 2000 2000 1 21 614336.6 0.27 74519559 

40 Morocco 
Middle East & North 
Africa 

2004 2004 1 11 579566.8 0.19 28578884 

41 Mozambique Sub-Saharan Africa 2007 1997 2 11 751620.1 0.29 70889809 

42 Myanmar East Asia & Pacific 2014 2014 1 15 501112.2 0.28 676.578 

43 Nepal South Asia 2011 2001 2 14 300159 0.23 10570495 

44 Nicaragua Central America 2005 1971 3 12 160855.5 0.35 9982357 

45 Panama Central America 1980 1960 2 7 195184.5 0.55 10685146 

46 
Papua New 
Guinea 

East Asia & Pacific 1990 1980 2 19 502504.1 0.21 23899152 

47 Paraguay South America 2002 1972 4 13 252762.4 0.36 30737910 

48 Peru South America 2007 2007 1 24 699348.1 0.18 53632401 

49 Philippines East Asia & Pacific 2010 1990 3 76 461807.3 0.06 3882933 

50 Poland 
Northeastern Europe 
& Central Asia 

2002 2002 1 16 299225.2 0.29 19499181 

51 Portugal Southern Europe 2011 1981 4 22 394716.7 0.17 4186613 

52 Romania 
Northeastern Europe 
& Central Asia 

2002 1977 3 39 247513.4 0.13 6096120 

53 
Russian 
Federation 

Northeastern Europe 
& Central Asia 

2010 2010 1 81 2021745 0.09 198113150 

54 Senegal Sub-Saharan Africa 2013 1988 3 8 239284.8 0.39 9386346 

55 Sierra Leone Sub-Saharan Africa 2015 2015 1 14 148234.5 0.29 5177310 

56 Slovenia 
Northeastern Europe 
& Central Asia 

2002 2002 1 12 87010.38 0.33 1689843 

57 South Africa Sub-Saharan Africa 2016 2001 4 4 543652.4 0.83 304837868 

58 South Sudan Sub-Saharan Africa 2008 2008 1 10 443712.2 0.43 65288821 

59 Spain Southern Europe 2011 1991 2 19 590888.8 0.18 26646977 

60 Sudan Sub-Saharan Africa 2008 2008 1 15 684003 0.28 124020614 

61 Suriname South America 2012 2012 1 7 151449.2 0.51 16381900 

62 Tanzania Sub-Saharan Africa 2012 2002 2 23 511176.4 0.16 39163522 

63 Thailand East Asia & Pacific 2000 1970 4 68 386388.2 0.14 7560669 

64 Togo Sub-Saharan Africa 2010 2010 1 3 308371.8 0.67 18947004 

65 
Trinidad and 
Tobago 

Caribbean 2000 1990 2 4 75922.74 0.33 1295045 

66 Uganda Sub-Saharan Africa 2014 2014 1 35 291360.2 0.05 5412941 

67 
United 
Kingdom 

Northeastern Europe 
& Central Asia 

2001 1991 2 12 302832.4 0.30 20479131 

68 United States North America 2015 1970 7 51 1871185 0.10 182849519 

69 Uruguay South America 2011 1975 5 19 221609.7 0.25 9354044 

70 Venezuela, RB. South America 2001 1981 2 22 470483.3 0.20 41459567 

71 Vietnam East Asia & Pacific 2009 1989 3 38 619237.4 0.10 8634385 

72 Zambia Sub-Saharan Africa 2010 1990 3 8 463674 0.43 93886583 
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Further results and extended analyses 

This section presents additional results and extended analyses, which add further insights to the baseline models 

on the migration impacts of increased drought and aridity. The extended models also explore heterogeneities 

in the effects across different regions and by regional background characteristics.  

Table S4 provides a cross-sectional perspective on the correlates of high out-migration rates at the regional 

level. Table S5 provides estimates of changes in migration flows over the past decades, which serve as a basis 

for Figure 4B in the main text. Table S6 explores non-linear patterns in drought and aridity impacts on migration 

by including quadratic terms of the climatic indicators in the estimation. The results reveal growing marginal 

effects suggesting rising migration pressures with increasing drought and aridity. 

Table S7 shows heterogeneity in the migration impacts of drought and aridity for different world regions. The 

estimated coefficients and confidence intervals are displayed in Figure 5A in the main text. Table S8 further 

extends the model by controlling for different ecological zones, distinguishing hyper-arid/arid, semi-arid/sub-

humid, and humid areas. The estimates from this model are used in combination with the information on 

projected changes in aridity to derive the explorative prediction of drought and aridity impacts on migration 

globally. Figure S5 shows projected changes in the aridity index using data from (Wang et al., 2021). The 

projected changes are used in combination with the results depicted in Table S8 to provide an explorative 

prediction of potential migration responses to increased drought and aridity in different parts of the world. The 

results of this prediction exercise are displayed in Figure 5B. 

Figure S6 illustrates the role of country background characteristics in shaping migration responses to drought 

and aridity. It corresponds to Figure 6A in the main text, which shows the heterogeneity in marginal effects on 

migration by region characteristics. The country-level heterogeneity shown here confirms the findings on the 

regional differences and adds further insights, e.g., regarding the role of inequality. Here, we find weaker 

migration responses to drought and aridity in regions with an overall higher inequality as measured with the 

Gini coefficient under control for the GDP per capita in the country.   

Tables S9 to S14 show interaction models exploring the role of regional characteristics in influencing migration 

responses to drought and aridity. The models consider interactions between the climate indicators and the GDP 

per capita, the agricultural employment share, and the urban population share in the regions of origin (Tables 

S9-S11) as well as with regional deviations in GDP per capita, agricultural employment, and urban population 

share from the country-specific mean (Tables S12-S14). The regional deviations were standardized to allow for 

comparisons across countries. Considering standardized deviations as opposed to the overall level values of the 

variables allows testing for differences in migration responses by within-country differences in wealth, 

agricultural dependency, and urban population. The tables are the basis of Figure 6 in the main text. 

Tables S15 and S16 show further falsification tests and sensitivity analyses. In addition to the historic climate 

variables, the models displayed in Table S15 control for the lead values of the climate indicators in the period 

ten years after the census. None of these are found to significantly influence migration patterns. At the same 

time, the results for the historic impacts remain robust, suggesting that past experiences of environmental 

changes and stress lead to greater out-migration from affected regions. In addition to analyzing changes in 
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climatic conditions in origin regions, models in Table S16 show the impact of climatic conditions in destination 

regions on migration flows between origin and destination region pairs. 

Table S5 – Extended models: Migration drivers in a cross-sectional comparison 

 Outcome variable: Annual bilateral out-migration rate 

 (1) (2) (3) (4) (5) (6) 

Constant 
0.0003 

(0.0004) 
0.0042*** 
(0.0006) 

0.0045*** 
(0.0006) 

0.0053*** 
(0.0014) 

0.0042*** 
(0.0011) 

0.0021*** 
(0.0004) 

Migration interval 5 years 
-0.0003*** 
(0.0001) 

-0.0002*** 
(0.0001) 

-0.0002*** 
(0.0001) 

-0.0002*** 
(0.0001) 

-0.0017*** 
(0.0002) 

-0.0002*** 
(0.0001) 

Number of destination regions 
0.0001* 
(0.0001) 

0.0001 
(0.0001) 

0.0001 
(0.0001) 

0.0001 
(0.0001) 

0.0001 
(0.0001) 

0.0001 
(0.0001) 

Log(distance)  -0.0003*** 
(0.0001) 

-0.0003*** 
(0.0001) 

-0.0003*** 
(0.0001) 

-0.0003*** 
(0.0001) 

-0.0003*** 
(0.0001) 

Neighboring origin and 
destination 

 0.0009*** 
(0.0001) 

0.0009*** 
(0.0001) 

0.0010*** 
(0.0001) 

0.0009*** 
(0.0001) 

0.0009*** 
(0.0001) 

Origin has land border   0.0003*** 
(0.0001) 

0.0003*** 
(0.0001) 

0.0004*** 
(0.0001) 

0.0003*** 
(0.0001) 

Destination has land border   -0.0001*** 
(0.0001) 

0.0001 
(0.0001) 

0.0001 
(0.0001) 

-0.0001*** 
(0.0001) 

Origin GDP per capita    0.0001 
(0.0001) 

  

Origin agricultural employment     -0.0003*** 
(0.0001) 

  

Destination GDP per capita    0.0001*** 
(0.0001) 

  

Destination agricultural 

employment  
   -0.0016*** 

(0.0001) 
  

Origin urban population share     -0.0004 
(0.0003) 

 

Destination urban population 
share 

    0.0024*** 
(0.0002) 

 

Gini coefficient (country-level)      0.0056*** 
(0.0019) 

Observations 107,916 107,916 102,880 65,711 66,099 101,998 

R2 0.06447 0.06946 0.06985 0.05515 0.06636 0.06986 

Adj. R2 0.0638 0.06877 0.06915 0.05416 0.06534 0.06915 

Note: Linear Ordinary Least Squares (OLS) models. Regression coefficients with heterogeneity robust standard errors in 
parentheses. The sample size of the models varies due to changes in the availability of variables in the IPUMS census data. The 
outcome variable is the annual out-migration rate. P-values: * 0.1 ** 0.05 *** 0.01    
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Table S6 – Extended models: Estimating temporal trends in internal migration 

 

Outcome: Annual 
out-migration 

flows 

 
(1) 

Reference: 1960-1969 period     

1970-1979 period 
-0.0310    

 (0.0508) 

1980-1989 period 
0.2682*** 
(0.0598) 

1990-1999 period 
0.5831*** 
(0.0649) 

2000-2009 period 
0.5501*** 
(0.0562) 

2010-2019 period 
0.7787*** 
(0.0707) 

    

Origin population 
-5.47e-9  
(5.84e-9) 

Log(distance) 
-0.8145*** 
(0.0297) 

Adjacent regions 
0.5806*** 
(0.0473) 

Time interval (5 years) 
-0.3633*** 
(0.0475) 

Origin FE Yes 

Destination FE Yes 

SE: Clustered by: origin 

Observations 107,916 

Pseudo R2 0.87416 

BIC 47,281,808.20 

Note: PPML fixed effects gravity models. Poisson 
regression coefficients with cluster robust standard 
errors in parentheses. Clustering of standard errors at 
the origin region level. The outcome variable is the 
total annual migration flows from origin to destination 
regions. P-values: * 0.1 ** 0.05 *** 0.01    
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Table S7 – Extended analyses: Modeling non-linear drought and aridity impacts 

 Outcome: Annual out-migration rate 

 
(1) (2) (3) (4) (5) 

AI  
   0.0684*** 

(0.0206)          

AI²   
   0.0152 

(0.0103)          

PDSI 
   

   
0.0493*** 
(0.0152)       

PDSI²  
   

   
0.0225** 
(0.0095)       

SPEI03 
   

      
0.0639*** 
(0.0190)    

SPEI03² 
   

      

0.0356*** 

(0.0118)    

SPEI12 
   

         
0.0579*** 
(0.0185) 

SPEI12² 
   

         
0.0221** 
(0.0107) 

Log(distance) 
-0.7632*** 

(0.0407) 
-0.7636*** 

(0.0407) 
-0.7635*** 
(0.0407) 

-0.7635*** 
(0.0408) 

-0.7635*** 
(0.0407) 

Adjacent regions 
0.6325*** 
(0.0861) 

0.6324*** 
(0.0862) 

0.6324*** 
(0.0861) 

0.6325*** 
(0.0862) 

0.6325*** 
(0.0861) 

Time interval (5 years) 
-0.1639 
(0.1246) 

-0.1461 
(0.1293) 

-0.1411 
(0.1272) 

-0.1273 
(0.1260) 

-0.1292 
(0.1295) 

Worldregion x decade FE. Yes Yes Yes Yes Yes 

Origin FE Yes Yes Yes Yes Yes 

Destination FE Yes Yes Yes Yes Yes 

SE: Clustered by: origin by: origin by: origin by: origin by: origin 

Observations 107,916 107,916 107,916 107,916 107,916 

Pseudo R2 0.22845 0.22859 0.22855 0.22865 0.22857 

BIC 34,224.90 34,247.90 34,247.90 34,247.80 34,247.90 

Note: PPML fixed effects gravity models. Poisson regression coefficients with cluster robust 
standard errors in parentheses. Clustering of standard errors at the origin region level. Input 
variables: Aridity Index (AI), Palmer Drought Severity Index (PDSI), Standardized Precipitation 
Evapotranspiration Index (SPEI). The outcome variable is the annual out-migration rate. P-
values: * 0.1 ** 0.05 *** 0.01    
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Table S8 – Extended models: Estimating migration impacts for different world regions 

 Outcome: Annual out-migration rate 
 (1) (2) (3) (4) 

AI 
-0.0866*** 
(0.0243)          

AI x EastAsia&Pacific 
0.0679** 
(0.0311)          

AI x MiddleEast&NorthAfrica 0.3885 (0.2727)          

AI x NorthAmerica 
0.0907*** 
(0.0274)          

AI x NortheasternEurope&CentralAsia 
0.0995*** 
(0.0260)          

AI x SouthAmerica 
0.2006*** 
(0.0532)          

AI x SouthAsia 
0.5054*** 
(0.1065)          

AI x SouthernEurope 
0.6732*** 
(0.1236)          

AI x Sub-SaharanAfrica 
0.1287*** 
(0.0311)          

PDSI 
   

-0.0737*** 
(0.0209)       

PDSI x EastAsia&Pacific 
   

0.0586** 
(0.0262)       

PDSI x MiddleEast&NorthAfrica    0.1778 (0.1986)       

PDSI x NorthAmerica 
   

0.0616** 
(0.0255)       

PDSI x Northeastern 
Europe&CentralAsia    

0.0583** 
(0.0231)       

PDSI x SouthAmerica 
   

0.1160** 
(0.0467)       

PDSI x SouthAsia 
   

0.3320*** 
(0.0933)       

PDSI x SouthernEurope 
   

0.7367*** 
(0.1268)       

PDSI x Sub-SaharanAfrica 
   

0.1002*** 
(0.0264)       

SPEI03  
      

-0.0928*** 
(0.0257)    

SPEI03 x EastAsia&Pacific 
      

0.0761** 
(0.0336)    

SPEI03 x MiddleEast&NorthAfrica       0.1939 (0.2067)    

SPEI03 x NorthAmerica 
      

0.0940*** 
(0.0283)    

SPEI03 x Northeastern 
Europe&CentralAsia       

0.0732*** 
(0.0244)    

SPEI03 x SouthAmerica 
      

0.1618*** 
(0.0560)    

SPEI03 x SouthAsia 
      

0.4112*** 
(0.1207)    

SPEI03 x SouthernEurope 
      

0.5762*** 
(0.1188)    

SPEI03 x Sub-SaharanAfrica 
      

0.1380*** 
(0.0396)    

SPEI12  
         

-0.0824*** 
(0.0242) 

SPEI12 x EastAsia&Pacific 
         

0.0975*** 
(0.0301) 

SPEI12 x MiddleEast&NorthAfrica          0.3450 (0.2366) 

SPEI12 x NorthAmerica 
         

0.0891*** 

(0.0277) 
SPEI12 x Northeastern 
Europe&CentralAsia          

0.0823*** 
(0.0245) 
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SPEI12 x SouthAmerica 
         

0.1594*** 

(0.0531) 

SPEI12 x SouthAsia 
         

0.4484*** 
(0.1192) 

SPEI12 x SouthernEurope 
         

0.7002*** 
(0.1340) 

SPEI12 x Sub-SaharanAfrica 
         

0.1180*** 
(0.0333) 

AI in destination -0.0298 (0.0210)          
PDSI in destination    0.0083 (0.0174)       
SPEI03 in destination       -0.0033 (0.0208)    
SPEI12 in destination          -0.0152 (0.0193) 

Log(distance) 
-0.7638*** 
(0.0407) 

-0.7645*** 
(0.0406) 

-0.7636*** 
(0.0408) 

-0.7637*** 
(0.0407) 

Adjacent regions 
0.6334*** 
(0.0861) 

0.6324*** 
(0.0860) 

0.6329*** 
(0.0862) 

0.6330*** 
(0.0861) 

Time interval (5 years) 0.0764 (0.1416) 0.0903 (0.1389) 0.0933 (0.1532) 0.1824 (0.1667) 

Worldregion x decade FE Yes Yes Yes Yes 
Origin FE Yes Yes Yes Yes 
Destination FE Yes Yes Yes Yes 
Destination climate controlled Yes Yes Yes Yes 
SE: Clustered by: origin by: origin by: origin by: origin 
Observations 107,841 107,446 107,841 107,841 
Squared Cor. 0.22944 0.22923 0.22927 0.22931 
Pseudo R2 34,267.80 34,071.10 34,268.00 34,267.90 
BIC 107,841 107,446 107,841 107,841 

Note: PPML fixed effects, gravity models. Poisson regression coefficients with cluster robust standard errors in 
parentheses. Clustering of standard errors at the origin region level. Input variables: Aridity Index (AI), Palmer 
Drought Severity Index (PDSI), Standardized Precipitation Evapotranspiration Index (SPEI). The outcome variable is 
the annual out-migration rate. P-values: * 0.1 ** 0.05 *** 0.01    
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Table S9 – Extended models: Estimating migration impacts by world regions and ecological zones 

 Outcome: Annual out-migration rate 
 (1) (2) (3) (4) 
 AI PDSI SPEI03 SPEI12 

Climate 
-1.315** 
(0.5340) 

-0.0974*** 
(0.0277) 

-0.3995*** 
(0.1330) 

-0.2344*** 
(0.0756) 

Climate x EastAsia & Pacific 
1.495*** 
(0.4947) 

0.0994*** 
(0.0317) 

0.4646*** 
(0.1524) 

0.3378*** 
(0.0883) 

Climate x MiddleEast & NorthAfrica 
-5.659 
(16.54) 

0.1536 
(0.2771) 

0.4152 
(0.4881) 

0.5611 
(0.3537) 

Climate x North America 
1.297** 
(0.5698) 

0.0786** 
(0.0331) 

0.3932*** 
(0.1432) 

0.2551*** 
(0.0834) 

Climate x Northeastern Europe & 
Central Asia 

1.485*** 
(0.5598) 

0.0899*** 
(0.0335) 

0.2282* 
(0.1329) 

0.2418*** 
(0.0830) 

Climate x South America 
2.021*** 

(0.6302) 

0.1429*** 

(0.0502) 

0.5928*** 

(0.1907) 

0.4319*** 

(0.1311) 

Climate x South Asia 
7.460*** 
(1.614) 

0.3908*** 
(0.1302) 

2.031*** 
(0.5930) 

1.253*** 
(0.3324) 

Climate x Southern Europe 
9.775*** 
(1.688) 

0.7904*** 
(0.1525) 

2.545*** 
(0.5894) 

1.631*** 
(0.3564) 

Climate x Sub-Saharan Africa 
1.312** 
(0.6010) 

0.1178*** 
(0.0405) 

0.5348*** 
(0.1704) 

0.3034*** 
(0.0995) 

Climate x Hyper-arid/arid 
3.739** 
(1.799) 

0.0649** 
(0.0298) 

0.2484 
(0.1795) 

0.1106 
(0.1070) 

Climate x Sub-humid/Semi-arid 
0.8883 

(0.5432) 
0.0069 

(0.0401) 
0.1498 

(0.1318) 
0.0290 

(0.0737) 

Climate destination 
0.2076 

(0.4411) 
-0.0083 
(0.0278) 

0.0344 
(0.1042) 

0.0622 
(0.0585) 

Log(distance) 
-0.7644*** 
(0.0406) 

-0.7646*** 
(0.0406) 

-0.7637*** 
(0.0408) 

-0.7639*** 
(0.0407) 

Adjacent regions 
0.6327*** 
(0.0861) 

0.6320*** 
(0.0860) 

0.6325*** 
(0.0862) 

0.6324*** 
(0.0861) 

Time interval (5 years) 
-0.0553 
(0.1233) 

0.0999 
(0.1480) 

0.1000 
(0.1617) 

0.1953 
(0.1857) 

Worldregion x decade FE Yes Yes Yes Yes 
Origin FE Yes Yes Yes Yes 
Destination FE Yes Yes Yes Yes 
Destination climate controlled Yes Yes Yes Yes 
SE: Clustered by: origin by: origin by: origin by: origin 
Observations 107,916 107,916 107,916 107,916 
Squared Cor. 0.71159 0.7161 0.70317 0.70705 
Pseudo R2 0.20294 0.20277 0.20277 0.20269 
BIC 34,369.20 34,369.40 34,369.40 34,369.50 

Note: PPML fixed effects, gravity models. Poisson regression coefficients with cluster robust standard 
errors in parentheses. Clustering of standard errors at the origin region level. Input variables: Aridity Index 

(AI), Palmer Drought Severity Index (PDSI), Standardized Precipitation Evapotranspiration Index (SPEI). 
The outcome variable is the annual out-migration rate. P-values: * 0.1 ** 0.05 *** 0.01    
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Figure S5. Projected changes in the Aridity Index under a 4°C warming scenario (RCP8.5). The 

scaling was changed so that positive values reflect higher dryness. Projection data were obtained from Wang 

et al. (2021). 
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Figure S6. The role of country background characteristics in shaping migration responses to 

drought and aridity. 

Panel A shows interactions in environmental effects on migration by GDP per capita at the country level. Panel 

B shows interactions by the agricultural employment share in the country. Panel C shows interactions by the 

level of inequality in the country as measured with the GINI coefficient. The y-axes show the marginal effects 

of a one standard deviation change in the climate indicators on the out-migration rate. Increasing (decreasing) 

functions indicate increasing (decreasing) migration impacts with higher levels of the interaction variable. All 

models estimating interactions with agricultural employment and the GINI coefficient also control for 

interactions with GDP per capita to rule out confounding wealth effects. 
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Table S10 – Extended analyses: Interactions with GDP per capita at the regional level 

 Outcome: Annual out-migration rate 

 
(1) (2) (3) (4) 

AI  -0.04477          

AI x log(GDP pc)   
0.0384** 
(0.0174)          

PDSI     -0.03973       

PDSI x log(GDP pc)   
   

0.0340** 
(0.0166)       

SPEI03  
      

-0.3538** 
(0.1630)    

SPEI03 x log(GDP pc)   
      

0.0444** 
(0.0181)    

SPEI12          -0.0454 

SPEI12x log(GDP pc)   
         

0.0381** 
(0.0173) 

Log(GDP pc) 
0.0319 

(0.0903) 
0.0576 

(0.0913) 
0.0248 

(0.0914) 
0.0403 

(0.0909) 

Log(distance) 
-0.7565*** 

(0.0468) 
-0.7573*** 

(0.0469) 
-0.7567*** 
(0.0468) 

-0.7566*** 
(0.0468) 

Adjacent regions 
0.6350*** 
(0.0980) 

0.6344*** 
(0.0981) 

0.6347*** 
(0.0980) 

0.6348*** 
(0.0980) 

Time interval (5 years) 
-0.8963*** 

(0.1570) 
-0.8612*** 

(0.1487) 
-0.8596*** 
(0.1526) 

-0.8708*** 
(0.1581) 

Destination climate controlled Yes Yes Yes Yes 

Worldregion x decade FE. Yes Yes Yes Yes 

Origin FE Yes Yes Yes Yes 

Destination FE Yes Yes Yes Yes 

Destination climate controlled Yes Yes Yes Yes 

SE: Clustered by: origin by: origin by: origin by: origin 

Observations 77,226 76,890 77,226 77,226 

Pseudo R2 0.21437 0.21421 0.21444 0.21433 

BIC 31,811.90 31,619.10 31,811.80 31,811.90 

Note: PPML fixed effects, gravity models. Poisson regression coefficients with cluster robust 
standard errors in parentheses. Clustering of standard errors at the origin region level. Input 
variables: Aridity Index (AI), Palmer Drought Severity Index (PDSI), Standardized Precipitation 
Evapotranspiration Index (SPEI). The outcome variable is the annual out-migration rate. P-values: 
* 0.1 ** 0.05 *** 0.01    
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Table S11 – Extended analyses: Interactions with GDP per capita and agricultural 

employment at the regional level 

 Outcome: Annual out-migration rate 

 
(1) (2) (3) (4) 

AI  
-0.6883*** 

(0.2462)          

AI x log(GDP pc)   
0.0973*** 
(0.0312)          

AI x log(% agr. employment)  
0.0622*** 
(0.0205)          

PDSI  
   

-0.5449** 
(0.2185)       

PDSI x log(GDP pc)   
   

0.0766*** 
(0.0271)       

PDSI x log(% agr. employment) 
   

0.0489*** 
(0.0181)       

SPEI03  
      

-0.8357*** 
(0.2872)    

SPEI03 x log(GDP pc)   
      

0.1147*** 
(0.0376)    

SPEI03 x log(% agr. employment) 
      

0.0743*** 
(0.0287)    

SPEI12 
         

-0.7310*** 
(0.2629) 

SPEI12x log(GDP pc)   
         

0.1047*** 
(0.0343) 

SPEI12x log(% agr. employment) 
         

0.0755*** 
(0.0253) 

Log(GDP pc) 
-0.0641 
(0.1049) 

-0.0317 
(0.1062) 

-0.0754 
(0.1009) 

-0.0482 
(0.1032) 

Log((% agr. employment) 
-0.2507 
(0.1524) 

-0.2546 
(0.1554) 

-0.2755* 
(0.1447) 

-0.2491 
(0.1522) 

Log(distance) 
-0.7533*** 

(0.0505) 
-0.7540*** 

(0.0506) 
-0.7539*** 
(0.0506) 

-0.7534*** 
(0.0505) 

Adjacent regions 
0.6349*** 
(0.1044) 

0.6345*** 
(0.1045) 

0.6345*** 
(0.1044) 

0.6346*** 
(0.1044) 

Time interval (5 years) 
-0.2443** 
(0.1238) 

-0.2513** 
(0.1229) 

-0.2410** 
(0.1213) 

-0.2062* 
(0.1215) 

Destination climate controlled Yes Yes Yes Yes 

Worldregion x decade FE. Yes Yes Yes Yes 

Origin FE Yes Yes Yes Yes 

Destination FE Yes Yes Yes Yes 

Destination climate controlled Yes Yes Yes Yes 

SE: Clustered by: origin by: origin by: origin by: origin 

Observations 68182 68182 68182 68182 

Pseudo R2 0.21722 0.21705 0.21729 0.21719 

BIC 27848.6 27848.7 27848.6 27848.6 

Note: PPML fixed effects, gravity models. Poisson regression coefficients with cluster robust 
standard errors in parentheses. Clustering of standard errors at the origin region level. Input 
variables: Aridity Index (AI), Palmer Drought Severity Index (PDSI), Standardized Precipitation 
Evapotranspiration Index (SPEI). The outcome variable is the annual out-migration rate. P-values: 
* 0.1 ** 0.05 *** 0.01    
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Table S12 – Extended analyses: Interactions with GDP per capita and urban population share 

  Outcome: Annual out-migration rate 

 
(1) (2) (3) (4) 

AI  
-1.821*** 
(0.6192)          

AI x log(GDP pc)   
0.2035*** 
(0.0697)          

AI x log(% urban pop)  
-0.1163** 
(0.0549)          

PDSI  
   

-2.028*** 
(0.6881)       

PDSI x log(GDP pc)   
   

0.2271*** 
(0.0779)       

PDSI x log(% urban pop) 
   

-0.1349** 
(0.0639)       

SPEI03  
      

-1.925*** 
(0.6752)    

SPEI03 x log(GDP pc)   
      

0.2142*** 
(0.0775)    

SPEI03 x log(% urban pop) 
      

-0.1108** 
(0.0483)    

SPEI12 
         

0.2204*** 
(0.0773) 

SPEI12x log(GDP pc)   
         

-1.960*** 
(0.6799) 

SPEI12x log(% urban pop) 
         

-0.1122** 
(0.0550) 

Log(GDP pc) 
-0.0961 
(0.1115) 

-0.1288 
(0.1161) 

-0.1233 
(0.1169) 

-0.1157 
(0.1146) 

Log(% urban pop) 
0.1375 

(0.1928) 
0.1549 

(0.1913) 
0.1440 

(0.1907) 
0.1352 

(0.1913) 

Log(distance) 
-0.8262*** 

(0.0737) 
-0.8277*** 

(0.0739) 
-0.8265*** 
(0.0736) 

-0.8261*** 
(0.0738) 

Adjacent regions 
0.6246*** 
(0.1483) 

0.6236*** 
(0.1483) 

0.6245*** 
(0.1482) 

0.6248*** 
(0.1483) 

Time interval (5 years) 
-1.092*** 
(0.2384) 

-1.143*** 
(0.2335) 

-1.225*** 
(0.2303) 

-1.105*** 
(0.2359) 

Destination climate controlled Yes Yes Yes Yes 

Worldregion x decade FE. Yes Yes Yes Yes 

Origin FE Yes Yes Yes Yes 

Destination FE Yes Yes Yes Yes 

Destination climate controlled Yes Yes Yes Yes 

SE: Clustered by: origin by: origin by: origin by: origin 

Observations 50340 50015 50340 50340 

Pseudo R2 0.24541 0.24542 0.24538 0.24543 

BIC 26558 26379.4 26558 26558 

Note: PPML fixed effects, gravity models. Poisson regression coefficients with cluster robust 
standard errors in parentheses. Clustering of standard errors at the origin region level. Input 
variables: Aridity Index (AI), Palmer Drought Severity Index (PDSI), Standardized Precipitation 
Evapotranspiration Index (SPEI). The outcome variable is the annual out-migration rate. P-values: 
* 0.1 ** 0.05 *** 0.01    
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Table S13 – Extended analyses: Interactions with standardized GDP per capita  

 Outcome: Annual out-migration rate 

 
(1) (2) (3) (4) 

AI  
-0.0334** 
(0.0134)          

AI x stand. GDP pc origin 
0.0025 

(0.0157)          

AI x stand. GDP pc destination 
0.0774*** 
(0.0218)          

PDSI  
   

-0.0277** 
(0.0128)       

PDSI x stand. GDP pc origin 
   

-0.0214 
(0.0202)       

PDSI x stand. GDP pc destination 
   

0.0620*** 
(0.0225)       

SPEI03  
      

-0.0330** 
(0.0153)    

SPEI03 x stand. GDP pc origin  
      

0.0416*** 
(0.0113)    

SPEI03 x stand. GDP pc destination 
      

0.0606** 
(0.0237)    

SPEI12 
         

0.0213** 
(0.0107) 

SPEI12 x stand. GDP pc origin   
         

-0.0284** 
(0.0131) 

SPEI12 x stand. GDP pc destination 
         

0.0647*** 
(0.0236) 

stand. GDP pc origin   
-0.0284 
(0.0440) 

-0.0301 
(0.0464) 

-0.0301 
(0.0444) 

-0.0303 
(0.0448) 

stand. GDP pc destination 
-0.0565 
(0.0402) 

-0.0401 
(0.0359) 

-0.0777* 
(0.0465) 

-0.0723* 
(0.0425) 

Log(distance) 
-0.7571*** 

(0.0467) 
-0.7566*** 

(0.0468) 
-0.7592*** 
(0.0468) 

-0.7584*** 
(0.0468) 

Adjacent regions 
0.6345*** 
(0.0980) 

0.6343*** 
(0.0980) 

0.6339*** 
(0.0979) 

0.6340*** 
(0.0980) 

Time interval (5 years) 
-0.9380*** 

(0.1599) 
-0.8785*** 

(0.1485) 
-0.8792*** 
(0.1517) 

-0.9112*** 
(0.1588) 

Destination climate controlled Yes Yes Yes Yes 

Worldregion x decade FE. Yes Yes Yes Yes 

Origin FE Yes Yes Yes Yes 

Destination FE Yes Yes Yes Yes 

Destination climate controlled Yes Yes Yes Yes 

SE: Clustered by: origin by: origin by: origin by: origin 

Observations 77202 76866 77202 77202 

Pseudo R2 0.21439 0.21425 0.21452 0.21436 

BIC 31822.2 31629.4 31822.1 31822.2 

Note: PPML fixed effects, gravity models. Poisson regression coefficients with cluster robust 
standard errors in parentheses. Clustering of standard errors at the origin region level. Input 
variables: Aridity Index (AI), Palmer Drought Severity Index (PDSI), Standardized Precipitation 
Evapotranspiration Index (SPEI). The outcome variable is the annual out-migration rate. P-values: 
* 0.1 ** 0.05 *** 0.01    
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Table S14 – Extended analyses: Interactions with standardized agricultural employment 

 Outcome: Annual out-migration rate 

 
(1) (2) (3) (4) 

AI  
0.0791*** 
(0.0229)          

AI x stand. agr. employment origin 
-0.0014 
(0.0064)          

AI x stand. agr. employment destination 
0.0263 

(0.0168)          

PDSI  
   

0.0554*** 
(0.0183)       

PDSI x stand. agr. employment origin 
   

0.0147* 
(0.0082)       

PDSI x stand. agr. employment destination 
   

0.0152 
(0.0129)       

SPEI03  
      

0.0693*** 
(0.0212)    

SPEI03 x stand. agr. employment origin 
      

-0.0004 
(0.0073)    

SPEI03 x stand. agr. employment 
destination       

0.0575** 
(0.0248)    

SPEI12 
         

0.0014 
(0.0068) 

SPEI12 x stand. agr. employment origin 
         

0.0647*** 
(0.0207) 

SPEI12 x stand. agr. employment 
destination          

0.0402** 
(0.0186) 

stand. agr. employment origin 
-0.1101 
(0.1295) 

-0.1156 
(0.1335) 

-0.1210 
(0.1279) 

-0.1176 
(0.1304) 

stand. agr. employment destination 
-0.0300 
(0.0643) 

-0.0270 
(0.0632) 

-0.0260 
(0.0644) 

-0.0270 
(0.0641) 

Log(distance) 
-0.7627*** 

(0.0432) 
-0.7627*** 

(0.0432) 
-0.7626*** 
(0.0432) 

-0.7625*** 
(0.0433) 

Adjacent regions 
0.6339*** 
(0.0923) 

0.6337*** 
(0.0923) 

0.6335*** 
(0.0922) 

0.6338*** 
(0.0923) 

Time interval (5 years) 
0.0902 

(0.1646) 
0.0895 

(0.1661) 
0.1425 

(0.1635) 
0.1110 

(0.1668) 

Destination climate controlled Yes Yes Yes Yes 

Worldregion x decade FE. Yes Yes Yes Yes 

Origin FE Yes Yes Yes Yes 

Destination FE Yes Yes Yes Yes 

Destination climate controlled Yes Yes Yes Yes 

SE: Clustered by: origin by: origin by: origin by: origin 

Observations 97814 97445 97814 97814 

Pseudo R2 0.21281 0.21267 0.21295 0.2128 

BIC 30388.4 30205.5 30388.2 30388.4 

Note: PPML fixed effects, gravity models. Poisson regression coefficients with cluster robust 
standard errors in parentheses. Clustering of standard errors at the origin region level. Input 
variables: Aridity Index (AI), Palmer Drought Severity Index (PDSI), Standardized Precipitation 
Evapotranspiration Index (SPEI). The outcome variable is the annual out-migration rate. P-values: 
* 0.1 ** 0.05 *** 0.01    
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Table S15 – Extended analyses: Interactions with standardized urban population share 

 Outcome: Annual out-migration rate 

 
(1) (2) (3) (4) 

AI  
0.0562* 
(0.0313)          

AI x stand. urban pop. origin 
0.0368*** 
(0.0104)          

AI x stand. urban pop. destination -0.00048          

PDSI  
   

0.0619* 
(0.0338)       

PDSI x stand. urban pop. origin 
   

-0.0001 
(0.0119)       

PDSI x stand. urban pop. destination    -0.00056       

SPEI03  
      

0.0154 

(0.0304)    

SPEI03 x stand. urban pop. origin  
      

0.0587*** 
(0.0168)    

SPEI03 x stand. urban pop. destination 
      

-0.0201 
(0.0190)    

SPEI12 
         

0.0377*** 
(0.0104) 

SPEI12 x stand. urban pop. origin   
         

0.0431 
(0.0312) 

SPEI12 x stand. urban pop. destination          -0.00044 

stand. urban pop. origin   
0.3920*** 
(0.1160) 

0.4057*** 
(0.1215) 

0.3971*** 
(0.1201) 

0.3965*** 
(0.1188) 

stand. urban pop. destination 
0.2399*** 
(0.0528) 

0.2265*** 
(0.0508) 

0.2430*** 
(0.0528) 

0.2334*** 
(0.0514) 

Log(distance) 
-0.8115*** 

(0.0610) 
-0.8106*** 

(0.0615) 
-0.8150*** 
(0.0609) 

-0.8130*** 
(0.0613) 

Adjacent regions 
0.6340*** 
(0.1278) 

0.6356*** 
(0.1284) 

0.6304*** 
(0.1276) 

0.6327*** 
(0.1281) 

Time interval (5 years) 
-1.223*** 
(0.1085) 

-1.207*** 
(0.1110) 

-1.234*** 
(0.1078) 

-1.216*** 
(0.1078) 

Destination climate controlled Yes Yes Yes Yes 

Worldregion x decade FE. Yes Yes Yes Yes 

Origin FE Yes Yes Yes Yes 

Destination FE Yes Yes Yes Yes 

Destination climate controlled Yes Yes Yes Yes 

SE: Clustered by: origin by: origin by: origin by: origin 

Observations 70830 70446 70830 70830 

Pseudo R2 0.26401 0.26382 0.26407 0.26397 

BIC 29226.4 29044.3 29226.3 29226.4 

Note: PPML fixed effects, gravity models. Poisson regression coefficients with cluster robust 
standard errors in parentheses. Clustering of standard errors at the origin region level. Input 
variables: Aridity Index (AI), Palmer Drought Severity Index (PDSI), Standardized Precipitation 
Evapotranspiration Index (SPEI). The outcome variable is the annual out-migration rate. P-values: 
* 0.1 ** 0.05 *** 0.01    
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Table S15 – Robustness test: Models controlling for lead values of climate indicators 

 Outcome: Annual out-migration rate 

 
(1) (2) (3) (4) (5) 

AI  
   0.0873*** 

(0.0216) 
         

AI lead 
   0.0284 

(0.0222) 
         

PDSI 
      0.0642*** 

(0.0167) 
      

PDSI lead 
      0.0122 

(0.0190) 
      

SPEI03 
         0.0895*** 

(0.0231) 
   

SPEI03 lead 
         0.0247 

(0.0188) 
   

SPEI12 
            0.0806*** 

(0.0209) 

SPEI12 lead 
            0.0036 

(0.0179) 

Log(distance) 
-0.7632*** 

(0.0410) 
-0.7573*** 

(0.0430) 
-0.7572*** 
(0.0430) 

-0.7573*** 
(0.0431) 

-0.7573*** 
(0.0430) 

Adjacent regions 
0.6334*** 
(0.0865) 

0.6337*** 
(0.0907) 

0.6335*** 
(0.0906) 

0.6336*** 
(0.0907) 

0.6336*** 
(0.0906) 

Time interval (5 years) 
-0.4242*** 

(0.1255) 
-0.0122 
(0.1218) 

0.0024 
(0.1298) 

0.0052 
(0.1258) 

0.0387 
(0.1314) 

Worldregion x decade FE. Yes Yes Yes Yes Yes 

Origin FE Yes Yes Yes Yes Yes 

Destination FE Yes Yes Yes Yes Yes 

SE: Clustered by: origin by: origin by: origin by: origin by: origin 

Observations 107,916 100,371 100,371 100,371 100,371 

Pseudo R2 0.23097 0.23524 0.23514 0.23522 0.23518 

BIC 35,079.70 32,476.50 32,476.60 32,476.60 32,476.60 

Note: PPML fixed effects, gravity models. Poisson regression coefficients with cluster robust 
standard errors in parentheses. Clustering of standard errors at the origin region level. Input 
variables: Aridity Index (AI), Palmer Drought Severity Index (PDSI), Standardized Precipitation 
Evapotranspiration Index (SPEI). The outcome variable is the annual out-migration rate. P-values: 
* 0.1 ** 0.05 *** 0.01    

 



www.iiasa.ac.at 
57 

Table S16 – Robustness test: Models controlling for destination region climate 

 Outcome: Annual out-migration rate 

 
(1) (2) (3) (4) (5) 

AI origin 
   0.0778*** 

(0.0279) 
         

AI destination 
   -0.0200 

(0.0217) 
         

PDSI origin 
      0.0463** 

(0.0201) 
      

PDSI destination 
      0.0052 

(0.0168) 
      

SPEI03 origin 
         0.0619** 

(0.0270) 
   

SPEI03 destination 
         0.0173 

(0.0200) 
   

SPEI12 origin 
            0.0638** 

(0.0250) 

SPEI12 destination 
            -0.0092 

(0.0187) 

Log(distance) 
-0.7632*** 

(0.0407) 
-0.7637*** 

(0.0407) 
-0.7639*** 
(0.0408) 

-0.7634*** 
(0.0407) 

-0.7635*** 
(0.0407) 

Adjacent regions 
0.6325*** 
(0.0861) 

0.6327*** 
(0.0862) 

0.6323*** 
(0.0862) 

0.6326*** 
(0.0862) 

0.6327*** 
(0.0862) 

Time interval (5 years) 
-0.1639 
(0.1246) 

-0.1624 
(0.1263) 

-0.1522 
(0.1257) 

-0.1281 
(0.1280) 

-0.1391 
(0.1295) 

Worldregion x decade FE. Yes Yes Yes Yes Yes 

Origin FE Yes Yes Yes Yes Yes 

Destination FE Yes Yes Yes Yes Yes 

SE: Clustered by: origin by: origin by: origin by: origin by: origin 

Observations 107,916 107,841 107,446 107,841 107,841 

Pseudo R2 0.22845 0.22863 0.22852 0.22863 0.22859 

BIC 34,224.90 34,176.00 33,979.30 34,176.00 34,176.00 

Note: PPML fixed effects, gravity models. Poisson regression coefficients with cluster robust 
standard errors in parentheses. Clustering of standard errors at the origin region level. Input 
variables: Aridity Index (AI), Palmer Drought Severity Index (PDSI), Standardized Precipitation 
Evapotranspiration Index (SPEI). The outcome variable is the annual out-migration rate. P-values: 
* 0.1 ** 0.05 *** 0.01    

 

 

 


