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Acronyms
AGB 		  Above-Ground Biomass
AFOLU 	 Agriculture Forestry, and Other Land Use
AOH 		  Area of Habitat 
ASTER 	 Advanced Spaceborne Thermal Emission and Reflection Radiometer
AVHRR 	 Advanced Very High-Resolution Radiometer
BII 		  Biodiversity Intactness Index
CBD 		  Convention of Biological Diversity
CCI 		  Climate Change Initiative
DEM 		  Digital Elevation Model
EBV 		  Essential Biodiversity Variable
ETM+ 		 Enhanced Thematic Mapper Plus
ESA 		  European Space Agency
FAO 		  Food and Agriculture Organization of the United Nations
GEDI 		  Global Ecosystem Dynamics Investigation
GEO BON 	 Group on Earth Observations Biodiversity Observation Network
GFW 		  Global Forest Watch
GLAS 		 Geoscience Laser Altimeter System HRV – High Resolution Visible
ICESAT 	 NASA’s Ice, Cloud and Land Elevation Satellite IUCN  
		  – International Union for Conservation of Nature
ISRO 		  Indian Space Research Organization (ISRO)
LAI 		  Leaf Area Index
LiDAR 		 Light Detection and Ranging
MERIS 		 Medium Resolution Imaging Spectrometer
MODIS 	 Moderate Resolution Imaging Spectroradiometer
MRV 		  Measuring, monitoring and verifying
MSI 		  Multispectral Instrument
MSS 		  Multispectral Scanner
NASA 		 National Aeronautics and Space Administration
NDC 		  Nationally Determined Contributions
NDVI 		  Normalised Difference Vegetation Index
NICFI 		  Norway’s International Climate & Forests Initiative
NOAA 		 National Oceanic and Atmospheric Administration
OLI 		  Operational Land Imager
SAR 		  Synthetic Aperture Radar
SDM 		  Species Distribution Model
SDM 		  Structured Decision Making
SPOT 		  Satellite pour l’Observation de la Terre
SRTM 		 Shuttle Radar Topography Mission
TM 		  Thematic Mapper
TIROS 		 Television InfraRed Operational Satellite
TIRS 		  Thermal Infrared Sensor
UNFCCC 	 United Nations Framework Convention on Climate Change
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Executive summary
Background

SPACES is an emerging coalition that aims to mobilise financial and technical 
support for high-ambition countries to design and implement spatially-explicit 
strategies for delivering on the Kunming-Montreal Global Biodiversity Framework 
and related nature and climate objectives. In the first half of 2022, SPACES 
assessed emerging datasets, tools, techniques and state of the art approaches 
relevant to spatial planning. It is also consulting widely on the climate and nature 
spatial intelligence needs of countries and businesses. One of the objectives 
of SPACES is to advance the integration of Remote Sensing and biodiversity 
data. Keeping that objective in mind, the UN Environment Programme World 
Conservation Monitoring Centre (UNEP-WCMC) in partnership with the 
International Institute for Applied Systems Analysis (IIASA) has produced this 
technical paper on the role of Remote Sensing in monitoring impacts of land-use 
change on biodiversity and carbon stocks. 

Aim and structure

Focusing on freely available satellite data, this paper explores the opportunities 
that Remote Sensing technology provides for biodiversity and carbon 
monitoring at global scales. Aimed primarily at non-specialist users, it intends 
to pave the way to integrate Remote Sensing into biodiversity and carbon stock 
analysis systems. It also aims to strengthen insights into the biodiversity and 
carbon implications of land-use change. The paper further documents how  
this information can be used by governments, business and civil society for 
spatial planning.

Remote Sensing technology provides data that supports the different types 
of information that is needed during spatial analysis, as shown in figure 0.1. It 
provides the means to generate global land-cover maps, which can then be 
used to assess the impacts of land-cover change on biodiversity and carbon 
stocks. It can be used to directly monitor biodiversity across the landscape as 
well as to measure the carbon stored in different land-cover types. This paper 
shows how this remotely-sensed information, combined with land cover maps, 
can estimate changes in biodiversity and carbon stocks over space and time 
and how this information comes together in the spatial planning process. 
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This type of monitoring can be done at different scales. This paper focuses 
upon what can be achieved at global scales using open source and freely 
available data. Some chapters are more technical than others allowing for a 
deeper understanding of the underlying technologies. The aim of this paper is 
to inspire decision-makers to embrace the use of this technology.

 

Figure 0.1: Integration of Remote Sensing in data needed for spatial planning for carbon and 
biodiversity assessments 
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Introduction 
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The rapid rate of biodiversity loss, particularly in tropical hotspots (Habel et al. 
2019), has led to the declaration of a biodiversity crisis and the establishment 
of international policies to reverse this decline. In addition, the Earth’s climate 
is changing at an unprecedented rate due to the continued rise of global 
greenhouse gas emissions (IPCC 2021). Again, international policy has  
been set to encourage countries to reduce carbon emissions and enhance 
carbon stocks.

Land-use change can be considered as the processes by which human activity 
modifies the natural landscape. Land use has changed dramatically in recent 
decades. According to the most recent research on the subject land-use 
change has had a significantly larger impact than previously thought, affecting 
almost a third of the world’s land area over the past 60 years (Winkler et al. 
2021). Land-use change has also become a key driver of both biodiversity loss 
and changes in carbon stocks caused by deforestation and forest degradation. 
Habitat loss from land conversion, including changes from forest to agriculture, 
causes fragmentation of populations, reducing genetic diversity and increasing 
the risk of extinction (Pardini, Nichols, and Püttker 2018). In addition, a shift from 
forest to agriculture increases CO2 emissions and reduces carbon sequestration 
and storage, impacting global climate change (Don, Schumacher, and Freibauer 
2011). Assessing the impacts of land-use and land-cover change on biodiversity 
and carbon stocks is therefore critical to making informed conservation and 
land management decisions.

Remote Sensing technology provides a consistent, rapid and scalable means 
of assessing these impacts. The technology is also swiftly advancing. An ever-
increasing number of satellites are being launched and imagery constantly 
becoming more readily available at higher resolutions. In addition, novel ways 
of processing data through the use of artificial intelligence and cloud-based 
platforms are allowing large-scale monitoring of changes to the Earth’s surface. 
As a result, the amount, regularity and quality of data obtained from Remote 
Sensing are increasingly enabling the improved monitoring and analysis of land-
use change and enhancing understanding of land-use impacts.  

Long-term monitoring of global biodiversity from space contributes to the 
knowledge of trends in biodiversity decline and aids decision-making to combat 
further loss. A range of different metrics encompassing many aspects of 
biodiversity can be derived using Remote Sensing. These metrics cover different 
facets of biodiversity ranging from ecosystem level (like land cover) to species 
level (like abundance and distributions). This allows for improved monitoring 
and reporting on the state of biodiversity (Skidmore et al. 2021). 

Remote Sensing provides an invaluable tool to monitor carbon stocks and their 
response to human activities through different dynamics of land-use change. 
Both the soil and the above-ground biomass (in stems, branches and leaves) 
contain terrestrial carbon, but also the below-ground biomass (in roots) of 
vegetated biomes such as forests and grasslands store terrestrial carbon. 
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The above-ground biomass component of carbon stocks can be monitored from 
space (Goetz and Dubayah 2011) by measuring various vegetation attributes, 
including tree canopy height, three-dimensional forest structure and various 
spectral vegetation indices. Aboveground biomass measures are then used to 
estimate the amount of carbon stored in different types of land and vegetation. 
This information, combined with temporal land cover maps, provides a picture 
of how carbon stocks change over time.

Decisions about land use and changes to land management are made by 
governments and landholders, who can use this Remote Sensing derived 
information as part of their spatial planning process. For example, they can use 
it to identify critical hotspots or specific regions of interest for climate and nature 
actions. Spatial planning is a form of decision-making that uses spatially explicit 
data to navigate complex problems, often including multiple objectives and 
trade-offs between them. Spatial information, namely information on current or 
future land use and its relationship with biodiversity and carbon, can be useful 
in all steps of a decision-making process. This includes during social, economic, 
and political decisions on land use to achieve national development, climate and 
nature targets. 

This report focuses on satellite Remote Sensing and describes the latest global 
land cover datasets available. It then describes how they can be used to assess 
the impacts of land-use change on biodiversity and carbon stocks. Expanding on 
these concepts, this paper provides details on how Remote Sensing technology 
plays a crucial role in monitoring global environmental changes affecting 
biodiversity and carbon stocks. 
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1.1 Background
In the broadest sense, Remote Sensing is about gathering information from 
a distance. More specifically, Remote Sensing systems acquire images of the 
Earth’s surface from overhead using energy emitted or reflected from the 
Earth’s surface (Campbell and Wynne 2011). From these images, land cover can 
be derived, which may then indicate how the land is used. Sustainable land 
management relies on information on the influence of past and upcoming land 
use changes as well as the current land use. As such, global datasets of land 
use and land-cover can help managers make decisions.

Land use and land cover are two closely related but separate terms. The physical 
and biological composition of the Earth’s surface is referred to as “land cover” 
(C. P. Giri 2012). Land-cover categories may be natural or anthropogenic and 
may include water bodies, wetlands, artificial surfaces, croplands, snow and 
ice, forests, grasslands, shrublands, bare ground and tundra. Contrarily, land 
use describes how people use and manage land for various purposes. A land-
cover type (like a forest) may have multiple land use purposes (like production 
of timber, recreation and conservation). It could also have varying management 
regimes (for example, minor or intense logging activity), which are often difficult 
to derive from Remote Sensing alone (C. P. Giri 2012). Decision-makers are 
interested in land use and land-use change. However, the Remote Sensing 
community is focused on detecting land cover and land-cover change. In this 
document, “land cover” will be used in the Remote Sensing context and “land 
use” in the context of decision making.

Since the first Landsat satellites launched in the early 1970s, satellite sensors 
have been monitoring the surface of the Earth (Figure 1.1). Prior to the satellite era, 
land cover was mapped using aerial photography, but these assessments were 
costly and could only be done for small areas (Woodcock, Strahler, and Franklin 
1983). Remote Sensing using sensors mounted on satellites that orbit the Earth 
has enabled scientists to map large areas of the Earth’s surface. Sensors record 
electromagnetic radiation emitted by the Earth’s surface or reflected off of it 
at different wavelengths (Figure 1.2). Data recorded by the sensors are then 
transmitted to a receiver on the ground and processed into an image (Sherbinin 
et al. 2002). The image is interpreted using a range of techniques that classify 
aspects of the image into different land-cover categories. Over the past fifty 
years, the spatial resolution of openly available global satellite imagery has 
improved dramatically from 1 km to 10 m. Temporal resolution has also greatly 
improved, moving from land-cover maps that can only capture images annually 
to those that can capture many images regularly over a long period of time. In 
2022, a dataset was released showing land cover at 10 m resolution in near-real 
time (Brown et al. 2022). Additionally, the spectral resolution of satellite sensors 
has also increased. This has made it possible for electromagnetic radiation to be 
detected in a greater range of wavelengths and has vastly improved land-cover 
identification (Acharya and Yang 2015).

Initially, land cover was mapped in collaboration with local stakeholders for 
local to regional areas only. Over the years, computer-assisted techniques 
to classify land cover from satellite images have been developed, land-cover 
mapping initiatives have grown and sensors have improved. This has driven 
the progression of land cover maps from local to regional and global scales  
(Loveland and Dwyer 2012). 
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Figure 1.1: Launch of major satellites with sensors to monitor land-cover.

Figure 1.2: Step-by-step process for developing land-cover datasets using remote sensing 
(adapted from Sherbinin et al. (2002))

Frequently updated categorical land-cover data are useful for monitoring 
substantial shifts in land cover (e.g. forest to cropland) but do not capture more 
subtle changes (Rogan and Chen 2004). For example, measuring above-ground 
biomass may indicate where forests have degraded and now harbour lower 
levels of biodiversity and less carbon even though the forest itself is still there. 
Using data from different sensors (data fusion), such as combining optical and 
SAR data, is a technique that is increasingly being used to overcome some of 
these problems. 
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In addition, time series of continuous data are extremely useful for monitoring 
attributes like forest phenology, which allows, for example, the classification 
of deciduous versus evergreen forest (Cord et al. 2014). However, there are 
specific land-cover classes (such as natural grasslands or primary forests) that 
often cannot be easily identified using Remote Sensing techniques alone and 
frequently require incorporating other spatial data sources (data integration).

1.2 Global remotely sensed land cover datasets
1.2.1 Historical context

Despite the fact that Landsat provided the first terrestrial satellite Remote 
Sensing data in the early 1970’s, global land cover products were not developed 
until lower spatial resolution data were made available from the Advanced Very 
High-Resolution Radiometer (AVHRR) in 1978. Data were freely available at 
that point, and because of the low spatial resolution, data could be more easily 
stored and processed over large areas (Hansen et al. 2000). Following different 
methodologies and classification schemes, a series of 1-km resolution global 
datasets were produced (DeFries and Townshend 1994; Hansen et al. 2000; T. 
R. Loveland et al. 2000). A description of these datasets is included in Table 1.1.

Figure 1.3: GLC2000 1-Km resolution land cover map for the year 2000 (Bartholome and Belward 2005).
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1.2.2. Increasing spatial resolution

The launch of the Moderate Resolution Imaging Spectroradiometer (MODIS)  in 
1999 meant a shift to 500-m resolution with the Terra and Aqua sensors, resulting 
in  the production of a global 500-m resolution land cover product (MCD12Q1) 
(Friedl et al. 2002). As opposed to previous 1-km resolution maps, which were 
produced for a single moment in time (circa 2000), this very successful initiative 
is producing yearly updates of global land-cover maps. 

The European Space Agency (ESA), using Medium Resolution Imaging 
Spectrometer (MERIS) images, introduced two different 300-m resolution 
datasets (Table 1.1). The Climate Change Initiative Land Cover product (CCI LC) 
map is especially relevant as it has adopted a methodology for developing a time 
series that ensures temporal and spatial consistency between successive maps 
and therefore allows for changes to be more readily detected. This map series 
was initially produced because of the relevance of land cover as predictors in 
climate modelling, but the long-term consistency of the product has made it 
useful for a variety of other applications.

Providing higher resolution products, ESA as part of the Copernicus Global Land 
Service released the CGLS-LC100 (Buchhorn et al. 2020) at 100-m resolution. 
These series of land-cover maps are produced every year and primarily target 
the detection of land-cover change.

Figure 1.4: Land-cover maps of South-east Ghana at three spatial resolutions for the year 2015. MCD12 (Friedl et al. 
2010), ESA CCI LC 300 m (Defourny et al. 2017) and CGLS-LC100 (Buchhorn et al. 2020). 

INTEGRATING 
REMOTE SENSING CONCLUSIONSPATIAL  

PLANNING
REMOTE SENSING 
OF BIODIVERSITYINTRODUCTIONEXECUTIVE 

SUMMARY
ESTIMATING 

IMPACTS
GLOBAL 

LAND USE



14       SPACES: Remote Sensing for Monitoring Impacts of Land-use Change on Biodiversity and Carbon Stocks

Table 1.1: Global land cover datasets. 

Dataset Org. Sensor Res Time 
period

Access Citation

GLCC 
2.0 IGBP 
DISCover

USGS AVHRR 1 Km 1992-
1993

 (Loveland et al. 
2000)

Hansen 2000 UMD AVHRR 1 Km 1992-
1993

 (Hansen et al. 
2000)

GLC-SHARE FAO Various* 1 Km Many* https://data.apps.fao.org/
map/catalog/srv/eng/
catalog.search#/metadata/
ba4526fd-cdbf-4028-a1bd-
5a559c4bff38 

(Latham et al. 
2014)

GLC2000 JRC Vegetation 1 Km 2000 https://forobs.jrc.ec.europa.
eu/products/glc2000/
products.php 

(Bartholomé and 
Belward 2005)

GLCNMO ISCGM MODIS 1 Km, 
500 m,
500 m

2003, 
2008, 
2013

https://globalmaps.github.io/
glcnmo.html 

(Kobayashi et al. 
2017; Tateishi et 
al. 2011, 2014)

MCD12 Boston Uni. MODIS 500 2001-
2020

https://lpdaac.usgs.gov/
products/mcd12q1v006/ 

(Friedl et al. 
2010)

ESA CCI LC ESA MERIS 300 1992-
2020

https://www.esa-landcover-
cci.org/?q=node/164 

(Defourny et al. 
2017)

GlobCover ESA MERIS 300 2004-
2006, 
2009

http://due.esrin.esa.
int/page_globcover.
php#:~:text=GlobCover%20
is%20an%20ESA%20
initiative,board%20the%20
ENVISAT%20satellite%20
mission 

(Bicheron et al. 
2008; Bontemps 
et al. 2011)

GLC250 CAS MODIS 250 2001, 
2010

http://data.ess.tsinghua.edu.
cn/ 

(Wang et al. 
2015)

CGLS-LC100 ESA PROBA-V 100 2015-
2019

https://lcviewer.vito.be/
download 

Buchhorn et al. 
2020)

FROM-GLC30 Tsinghua 
Uni.

Landsat 
TM/ETM+

30 2010, 
2015, 
2017

http://data.ess.tsinghua.edu.
cn/ 

(Gong et al. 
2013)

GlobeLand30 NGCC Landsat 
TM/ETM+, 
HJ-1

30 2000, 
2010, 
2020

http://www.globallandcover.
com/defaults_en.html?src=/
Scripts/map/defaults/
En/download_
en.html&head=download 
&type=data 

(Chen et al. 
2015)

GLC_FCS30 CAS Landsat-8 30 2015, 
2020

https://zenodo.org/
record/3986872#.
YuPniD3MK70 

(Zhang et al. 
2021)

Global land-
cover and 
land use 2019 

UMD Landsat 30 2019 https://glad.umd.edu/dataset/
global-land-cover-land-use-v1 

(Hansen et al. 
2022)

FROM-GLC10 Tsinghua 
Uni.

Landsat 8 /
Sentinel 2

10 2017 http://data.ess.tsinghua.edu.
cn/ 

(Gong et al. 
2019)

Esri Land-
cover 10 m

Impact 
Observatory

Sentinel 2 10 2017-
2021

https://www.arcgis.
com/home/item.
html?id=d3da5dd386d140 
cf93fc9ecbf8da5e31 

(Karra et al. 
2021)

Dynamic 
World

WRI Sentinel 2 10 2021-
2022

https://developers.google.
com/earth-engine/
datasets/catalog/GOOGLE_
DYNAMICWORLD_V1 

(Brown et al. 
2022)

WorldCover ESA Sentinel 
1/ 2

10 2020 https://esa-worldcover.org/en/
data-access 

(Zanaga et al. 
2021)

*GLC-SHARE was developed using numerous national and regional land-cover maps spanning 1990-2012 
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1.2.3. Landsat derived land-cover datasets

Improved computing and storage capabilities have resulted in a surge of higher 
resolution land cover maps intended to offer sufficient spatial detail for more 
specific studies like urban expansion natural resource management (C. Giri et al. 
2013; Gong et al. 2013). The Global Land Analysis and Discover (GLAD) lab part 
of the University of Maryland, following a long history of processing Landsat 
data and archives (Wulder et al. 2022), has produced a series of global land-
cover-related products, including the Global Forest Change map (Hansen et al. 
2013), a global change map depicting tree cover change (forest cover gain and 
forest cover loss) at 30-m resolution for 2000 – 2012. This data set, known as 
the Hansen Dataset, provides a free, transparent and globally available record 
of forest loss. 

The Hansen dataset was followed by the development of a 30-m resolution 
global land-cover map for 2019 (Hansen et al. 2022). The dataset is also 
derived from Landsat satellite imagery alongside a series of other metrics for 
estimating the spatial distribution of different land-uses split by climate domain 
and ecozone. Both categorical and continuous variables (vegetation cover and 
height) are included in the dataset. This map is complemented by the global 
land-cover change product developed for 2000-2020. The map, which is also 
based on 30-m resolution Landsat, measures: “changes in forest extent and 
height, cropland, built-up lands, surface water and perennial snow and ice 
extent” globally for the last two decades (Potapov et al. 2022).

Figure 1.5: Global Forest Watch 30 m resolution map of tree cover in South-east Ghana in 2021 
including tree cover loss (Hansen et al. 2013). 
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Furthermore, the Global Land, Analysis and Discovery (GLAD) Lab, in 
collaboration with Google and the World Resources Institute (WRI) as part of 
Global Forest Watch, has developed an alerting system for areas where 50% or 
more of the tree canopy has been lost (Hansen et al. 2016). Known as the GLAD 
alerts, this information is highly relevant for forest management activities and 
enforcement.

1.2.4. The Sentinels and the 10-m resolution challenge

The availability of Sentinel-2 satellite imagery at 10-m resolution has driven 
the development of finer resolution global land-cover maps. Four global 10-m 
resolution land cover maps have been released from four different partnership 
projects. Led by Tsinghua University, the first 10-m global land-cover map 
was released in 2019 (Gong et al. 2019). Land classification was performed on 
Sentinel-2 imagery using an algorithm trained on 30-m resolution Landsat data.  
Impact Observatory, Microsoft and Esri produced land-cover products from 2017 
to 2021, prioritising the time series aspect. Land-cover classes were identified 
using the Impact Observatory deep learning artificial intelligence classification 
model (Karra et al. 2021). The third dataset is Dynamic World, developed by 
Google and the World Resources Institute (Brown et al. 2022). Like the previous 
dataset, Dynamic World was developed using deep learning artificial intelligence 
methods and a large training dataset. The dataset is updated in near real-
time (every few seconds), providing the highest temporal resolution dataset 
currently available. In contrast to the previous three datasets, the WorldCover 
dataset produced by ESA is based on both Sentinel-1 and Sentinel-2 imagery, 
providing land-cover data with a slightly expanded classification scheme for the 
year 2020 (Zanaga et al. 2021).

Figure 1.6: Land-cover maps of South-east Ghana at 10m spatial resolutions from 3 different sources for the year 2020: 
Esri Land-cover (Karra et al. 2021), Dynamic World (Brown et al. 2022) and ESA WorldCover (Zanaga et al. 2021). 
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1.2.5. Further considerations

Spatial resolution is an important aspect of land-cover maps, with a continuous 
trend towards developing higher and higher resolution maps. However, the 
highest resolution maps may not be the best alternative for all applications, 
and consideration must be given to other aspects, such as the classification 
scheme, the date/temporal resolution and the accuracy of the datasets. All 
remotely sensed global land-cover datasets have uncertainties. Evaluating 
the accuracy of land-cover data is critical part of the development process, 
which involves statistical validation using a sample of human-labelled reference 
images, often from other satellite sensors subject to their own spatial and 
spectral limitations (Congalton et al. 2014). Every reliable land-cover map will 
provide some kind of overall measure of accuracy aiming to meet the 85-95% 
Global Climate Observing System (GCOS) class accuracy requirements (Liu et 
al. 2021) (although overall accuracies rarely reach 80%). However, differences in 
validation methods between datasets, in addition to the different classification 
schemes used with different definitions for the different classes, make it difficult 
to compare land cover datasets and their accuracy (Congalton et al. 2014). It is 
common that reported accuracies get significantly smaller when independently 
validated (Grekousis, Mountrakis, and Kavouras 2015). For these reasons, it 
is important not to be tempted to compare individual reported accuracies but 
rather to rely on specific assessments for particular applications.

However, Remote Sensing technology continues to advance rapidly, increasing 
our ability to map global land cover and land-cover change at increasingly high 
spatial and temporal resolution. Future datasets are likely to have higher spatial 
resolution, improved accuracy, finer classification schemes and availability in 
near real-time. For example, very high-resolution (4.77-m) data for the tropics 
are available from Planet Labs imagery as part of Norway’s International Climate 
& Forests Initiative (NICFI). Data are provided biannually from December 2015 to 
August 2020 and monthly from September 2020 to the present and are freely 
available to download for non-commercial purposes in support of NICFI’s mission. 
NICFI aims to support projects that reduce tropical forest and biodiversity loss, 
mitigate climate change and protect the rights of indigenous peoples. 

Cloud computing platforms, like Google Earth Engine, will continue to contribute 
significantly to the advancement of global land-cover datasets in the future 
due to advanced image processing and classification and increased computing 
power (Liu et al. 2021). In addition, integrating the multi-spectral data discussed 
in this chapter with other Remote Sensing data sources will further improve the 
classification of certain land cover types. Radar, Light Detection and Ranging 
(LiDAR) and hyperspectral data can capture land-cover characteristics not 
resolved using multi-spectral data alone. For example, the use of radar and night-
time light sensors has improved the classification of built-up areas resulting 
in an overall accuracy of 95% (Zhang et al. 2020). These sensors, which are 
discussed in more detail in the following chapters, are becoming more common 
as Remote Sensing technology advances.
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2.1 Introduction
There is growing recognition of the great value of biological diversity across the 
world1. However, pressures such as the destruction of natural ecosystems are 
causing rapid population declines and extinctions of species (Ng et al. 2003), 
together with loss of genetic diversity. In response to this biodiversity crisis, 
the Convention on Biological Diversity (CBD) set global targets to safeguard 
biodiversity. Between 2010 and 2020, international biodiversity policy was 
dominated by the CBD’s Strategic Plan for Biodiversity 2011-2020, which 
included the Aichi biodiversity targets. This plan detailed an international 
commitments to halt biodiversity loss, with Target 5, for instance, aiming to 
halve global deforestation rates by 2020, Target 11 aiming to achieve the formal 
protection of at least 17% of all terrestrial areas and Target 12 seeking to prevent 
the extinction of known threatened species. Few of these targets were met 
(Cooper et al. 2020), despite many conservation successes at a smaller scale. 
The long-awaited Kunming-Montreal Global Biodiversity Framework (CBD 
2022a) now sets goals and targets for 2020-2030. The 2030 mission of this 
ambitious framework is to “take urgent action to halt and reverse biodiversity 
loss to put nature on a path to recovery for the benefit of people and planet 
by conserving and sustainably using biodiversity, and ensuring the fair and 
equitable sharing of benefits from the use of genetic resources, while providing 
the necessary means of implementation”. 

According to IPBES, land-use change combined with the direct exploitation 
of nature due to activities like hunting, fishing, logging and harvesting is the 
main cause of declines in nature and biodiversity, being responsible for more 
than half of all the human pressures on terrestrial and freshwater ecosystems 
(Díaz et al. 2019). Habitat loss and fragmentation are the cause of declines in 
biodiversity and health of species and ecosystems worldwide (Davison et al. 
2021). Habitat loss leads to direct and indirect impacts on species populations. 
Habitat fragmentation prevents species from moving between or dispersing to 
other vegetated patches shrinking their available habitat and reducing the gene 
pool (Elias 2018). It can also alter ecosystem structure and species composition. 
The effects of land-use change are also selective, affecting species differently 
because some are able to occupy many different habitat types, make use of a 
range of resources and move to new habitats, making them better able to survive 
land-use changes than those that are not so flexible (Oliver and Morecroft 2014). 

In this context, Remote Sensing plays a crucial role in monitoring Earth’s 
biodiversity. We have identified three areas of impact for this technology. 
First, it offers a way to keep track of biodiversity on a global basis using 
data that are directly recorded by satellite sensors or indirectly by means of 
statistical modelling. It also offers a valuable tool to report progress towards 
biodiversity targets. In addition, as demonstrated in previous sections, it is a 
crucial component for monitoring land use change, which in turn is a major 
driver of biodiversity loss. In the following section, further detail is provided on 
how this technology can be applied to monitor biodiversity, to report against 
biodiversity targets and to use remotely sensed land cover maps for making 
further biodiversity assessments across a changing landscape. 

1 CBD: https://
www.cbd.int/
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2.2 The role of Remote Sensing in monitoring 
biodiversity
Various types of sensors provide biodiversity information either directly or 
indirectly by using a proxy where direct measurements are not possible (Geller 
et al. 2017). Multi-spectral data are widely available and have been providing 
ecosystem-level measurements, such as land-cover classes of different 
vegetation types, for the past 50 years. Hyperspectral sensors detect energy 
in a greater number of spectral bands than multi-spectral sensors enabling 
specific species to be monitored. In addition, LiDAR (a Remote Sensing method 
that uses laser pulses to measure distances) is ideal for measuring tree height 
and tree canopy characteristics while synthetic aperture radar (SAR) estimate 
vegetation structure under cloudy conditions typical of tropical forest areas.

It has long been accepted that Remote Sensing is a useful technique for 
monitoring whether global targets to reduce biodiversity loss are being met. In 
this context, the Group on Earth Observations Biodiversity Observation Network 
(GEO BON) has produced a uniform system of “essential biodiversity variables” 
(EBVs) for monitoring biodiversity (Pereira et al. 2013). Members of the Remote 
Sensing community have embraced this framework as a means of assessing 
the potential of Earth observation products to track progress towards global 
conservation targets (Skidmore et al. 2015). Global EBVs are defined as the 
main biological metrics used to determine the Earth’s biodiversity. They provide 
a framework for monitoring biodiversity, although they are not analytical tools 
themselves. Their main aim is to coordinate biodiversity monitoring efforts 
on a global scale by producing a manageable list of priority variables. EBVs 
are split into six classes: “genetic composition, species populations, species 
traits, community composition, ecosystem function and ecosystem structure” 
(Pereira et al. 2013). All classes have the potential to be measured with the help 
of Remote Sensing data (Figure 2.1). Scientists are in the process of agreeing 
on and prioritising biodiversity variables under the EBV umbrella that can be 
monitored remotely (Skidmore et al. 2021).

Ecosystem structure is commonly measured using Remote Sensing. The 
concept covers the 2D spatial patterns of land cover and land-cover change 
and the 3D component of ecosystems’ vegetation structure. One aspect of the 
2D ecosystem structure is land-cover change. For example, forest loss has a 
major impact on biodiversity, so monitoring forest loss over time is crucial for 
quantifying these impacts. Global Forest Watch2 shows the global tree cover 
extent, loss and gain from 2001 to 2021 based on 30-m resolution Landsat data 
(Hansen et al. 2013). 

2 https://www.
globalforestwatch.
org/
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Figure 2.1: Example of EBVs that can be directly or indirectly measured using Remote Sensing.

Active sensors, such as radar and LiDAR, monitor 3D patterns of ecosystems, 
like tree height and canopy structure. For example, a space-based LiDAR 
sensor known as the Global Ecosystem Dynamics Investigation (GEDI) has been 
developed by NASA with the particular purpose of measuring the structure of 
the Earth’s surface and providing detailed data on the 3D canopy structure of 
terrestrial vegetation (Dubayah et al. 2020). These LiDAR-derived structural 
parameters can be used to help reveal biodiversity patterns of plants and 
animals.

Some aspects of ecosystem function can also be estimated using Remote 
Sensing. For example, the normalized difference vegetation index (NDVI) 
is frequently employed as an indicator for Net Primary Productivity (NPP). In 
addition, net and gross primary production are modelled at 500-m and 1-km 
resolution and 8-day intervals using data from the MODIS (Zhao et al. 2005). 
These MODIS products are based on a range of remotely sensed inputs, 
including the fraction of photosynthetically active radiation, leaf area index (LAI) 
and land cover (Zhao et al. 2014).

Species traits, species populations, and community composition are also being 
directly or indirectly monitored using Remote Sensing. Using direct methods, key 
functional plant traits, such as leaf thickness and leaf carbon content, have been 
detected using satellite imagery from Sentinel-2 for tropical regions (Aguirre-
Gutiérrez et al. 2021). In addition, for species’ populations and community 
composition, very high spatial and spectral resolution sensors can monitor the 
distribution of certain large animals, such as elephants (Duporge et al. 2021), as 
well as tree species (Geller et al. 2017). 
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However, these direct methods are only relevant for a subset of species and, 
until recently, access to such high-resolution data has been very expensive. 
More commonly, indirect methods are used to estimate the current distribution 
of species using environmental data (e.g., temperature) in combination with 
reference data (presence/absence of species) to predict the species occurrence 
in a certain area. The environmental data are increasingly obtained using 
Remote Sensing, and there is also potential to use this technology as a source 
of reference data at high spatial resolution  for large-bodied species. (He et 
al. 2015). 

Of all the components of biodiversity, mapping and monitoring genetic diversity 
using Remote Sensing presents the greatest challenge. Current efforts correlate 
metrics measured using Remote Sensing, such as geographic distance, land-
cover or topography, with genetic differences between individuals in different 
locations (Geller et al. 2017).

Despite these major advances using Remote Sensing for biodiversity monitoring, 
there is still poor alignment between the EBV framework and Remote Sensing 
products (Skidmore et al. 2021). Firstly, there are differences between the 
terminology used in the EBV framework and the Remote Sensing product names. 
This creates confusion on whether EBVs are represented by Remote Sensing 
datasets. Secondly, data from a range of sensors, such as hyperspectral or 
LiDAR, must be integrated as multi-spectral sensors alone cannot capture the 
many aspects of biodiversity. However, hyperspectral sensors are less common 
than multi-spectral sensors and require specialist expertise to process the data 
(Bioucas-Dias et al. 2013). Similarly, LiDAR data are not widely available (both 
in terms of spatial coverage and data accessibility), and radar data can be 
expensive and less user-friendly than multi-spectral data.

Ongoing cooperation between Remote Sensing scientists and ecologists is 
required to ensure that sensors meet biodiversity data needs. For example, 
merging some EBVs (like live cover fraction and ecosystem vertical profile) that 
can be captured by a single Remote Sensing product (like habitat structure) 
would streamline Remote Sensing data collection for biodiversity (Skidmore et 
al. 2021). In addition, as technological advances continue, more of the species-
level EBVs currently measured using planes and unmanned aerial vehicle-borne 
sensors will be able to be monitored directly from space on a global scale. For 
instance, data integration with data provided by other in situ Earth observation 
systems, such as acoustic sensors or eDNA, can greatly improve the Remote 
Sensing monitoring capability at different scales. 

2.3 Biodiversity Indicators: reporting progress towards 
biodiversity targets 
Biodiversity is challenging to quantify because it is affected by a range of complex 
interactions that vary over space and time (Reddy et al. 2021). Developing 
meaningful biodiversity metrics is a challenging endeavour. Since many metrics 
have been developed that focus on individual aspects of biodiversity, it is 
important to choose the right ones that are meaningful for a specific situation.
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The EBV framework mentioned in the previous section provides the context to 
study, report and manage biodiversity and has been embraced by members 
of the Remote Sensing community as a means to explore how this technology 
can be used to measure biodiversity. They bridge the gap between primary 
observations and the more complex indicators of biodiversity explored in this 
section.

The CBD has adopted a monitoring framework for its Kunming-Montreal Global 
Biodiversity Framework, with headline, binary, component and complementary 
indicators (CBD 2022b). Some, but not all of these indicators can benefit from 
remotely sensed information3.  GEO BON has proposed a set of eight biodiversity 
indicators than can be developed using in-situ observations, remotely sensed 
derived information and modelling techniques4. These range from indicators 
specific to certain ecosystems (e.g., trends in forest extent) to others applicable 
across the entire planet (e.g., rate of invasive alien species spread). Overall, 
biodiversity indicators are a useful tool for planning conservation actions, 
assessing ecosystem health and monitoring progress towards national and 
global policy targets. 

The Biodiversity Intactness Index (BII) is an example of a biodiversity indicator 
focused on degradation status (Figure 2.2). BII is a measure of the change in 
average abundance of wild species in a location relative to a reference period 
or population free from anthropogenic disturbance (Scholes and Biggs 2005). 
BII synthesises “land use, ecosystem extent, species richness and population 
abundance data” (Scholes and Biggs 2005). 

3 https://
www.post-
2020indicators.
org/
4 https://geobon.
org/ebvs/
indicators/

Figure 2.2: Biodiversity intactness index showing the modelled average abundance of species 
relative to their abundance in an intact ecosystem in South-east Ghana (Newbold et al. 2016).
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The Biodiversity Intactness Index is calculated using data from the “Projecting 
Responses of Ecological Diversity In Changing Terrestrial Systems” (PREDICTS) 
project, a comprehensive database with the largest geographical and taxonomic 
extent currently available for undertaking community-level analyses (Hudson et 
al. 2017). Each site in PREDICTS is assigned a land use and land-use intensity 
based on the habitat present when the biodiversity sample was collected 
(reported within a peer-reviewed publication or through interviews with the 
sample collectors). The database contains information that allows many land-
use types to be classified, but the generic land-use types most commonly 
used include primary vegetation, young, mature and intermediate secondary 
vegetation, plantations, annual croplands, perennial croplands, managed 
pastures, rangelands and urban landscapes (Hill et al. 2018). Each land-use 
type can also be further divided into high, medium and low use intensity. The 
occurrence of each land-use activity can also be determined using Remote 
Sensing land-use and ecosystem maps. A range of Remote Sensing land-use 
datasets are used in BII estimates, such as Global Land Cover 2000 (GLC2000) 
(Bartholomé and Belward 2005) and global downscaled 1-km land-use data 
(Hoskins et al. 2016). 

BII is sensitive to habitat losses and declines in habitat condition, which 
impact species populations on various spatial and temporal scales relevant for 
policy-making, such as at local and national levels (Scholes and Biggs 2005). 
In addition, BII is robust to variations in data quality, such as the resolution of 
species richness data. However, various studies have raised concerns about the 
BII metric.

BII can inform policy decisions and monitor progress towards global biodiversity 
targets by providing an early indicator of species extinction risk (Stevenson 
et al. 2021). This statistic may be used to initiate preventative action to limit 
further biodiversity loss. However, the BII metric is only as good as the land-
use/land use intensity layer that is combined with the PREDICTS models to 
provide spatially explicit layers. Remote Sensing data can help to improve land-
use maps, especially when validated using reference data.  

2.3 Mapping biodiversity across land cover types
As described in the previous section, Remote Sensing can be used to monitor 
biodiversity either directly, using measurements derived from satellite sensors, 
or indirectly, using proxies that relate to these measurements. One example of 
these proxies is the use of Remote Sensing derived environmental variables 
such as climatic parameters, vegetation indices or observations of the three-
dimensional structure of the vegetation to biodiversity estimations using 
models, such as species distribution models. Some species distribution models 
can also make use of land-use data as environmental variables or predictors, 
but generally other more explicit methods are preferred when evaluating the 
impacts of land-use change on biodiversity. 
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Including information on land use in the biodiversity analysis is crucial to enabling 
estimates of significant anthropogenic impacts on habitat quantity and quality. 
It also allows assumptions to be made on how biodiversity alters with land-
cover change, as well as extrapolating biodiversity values across the landscape. 
This section now explores metrics that consider land use in their biodiversity 
analysis workflow, including the Area of Habitat (AOH), an approach to mapping 
biodiversity across the landscape based on land-use maps.

The habitat inside a species’ range is often referred as AOH (Brooks et al. 2019), 
and represents “the distribution of suitable habitats at suitable altitudes for a 
species inside its broad geographical range” (Dahal et al. 2022). It is a metric 
broadly used to monitor species-level biodiversity as it can quickly change over 
time as habitats are constantly being altered by land use and climate change. 
By assessing changes in AOH over time, it is possible to assess past habitat loss 
and fragmentation as well as estimate impacts on species using modelled land-
use data for future scenarios. AOH can also be used to evaluate the amount of 
a species’ habitat that is protected, feed into protected area network proposals 
and identify locations for potential field surveys that can inform conservation 
planning.

AOH is usually calculated by identifying the regions in a land-cover map inside 
a species’ range, altitudinal limit and habitat preference (Brooks et al. 2019). 
Land-cover classes from datasets, such as Copernicus Global Land Service 
Land cover (CGLS-LC100) (Buchhorn et al. 2020), are matched to a species’ 
preferred habitat type based on peer-reviewed literature and expert opinion. 
Digital elevation models, often derived from Remote Sensing, provide elevation 
data for selecting the area within a species’ altitudinal limits.

In terms of species data, their ranges and maximum and minimum elevation 
values can be extracted from the International Union for Conservation of 
Nature (IUCN) Red List. Similarly, habitat preferences are often based on those 
identified as suitable or of major importance on the IUCN Red List. The next step 
is to overlay the digital elevation model and species ranges with the land-cover 
map. One of the key steps is to link the range or habitat maps (typically from the 
IUCN Red List database) to land cover classes to select suitable habitats from 
the land cover data for a given species. Typically, this is implemented through 
expert-derived ‘crosswalks’, which are effectively look-up tables (LUTs) with a 
column of IUCN habitats, and next to it all the corresponding land cover types/
classes that would be considered to represent this type of habitat. 

These identified areas within the species range and altitudinal limits and of the 
preferred habitat type are selected as the species’ AOH. Ideally, AOH maps 
should then be validated using point data for each species.
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Figure 2.3: Rarity weighted richness (RWR) data based on area of habitat (AOH) maps for all 
amphibians, mammals and birds with range data on the IUCN Red List (IUCN 2017). RWR dataset 
from (Sassen et al. 2022) and log transformed for visualisation.

Although some conservation decisions focus on single species, most 
conservation problems concern multiple species and therefore require large 
numbers of AOH maps to be combined. Several metrics have been developed 
that represent various facets of biodiversity that benefit from AOH. On its own, 
the commonly known metric of species richness is not a useful measure for 
most conservation decisions. Metrics that include some weighting for range-
rarity (i.e., a higher score for species with small AOH) are more relevant for 
conservation. Such metrics (Figure 2.3), aggregated across many species, 
may be known as rarity weighted richness (Williams et al. 1996)  or weighted 
endemism (Guerin and Lowe 2015). These more closely depict the importance 
of a given area of habitat to that species, which reflects the potential magnitude 
of impact of future changes (loss or gain) of habitat occurring within the species 
range. For understanding change over time, calculating the proportional change 
in AOH for each species is similarly useful. Examples that use this approach 
include the biodiversity impact metric (Buchanan et al. 2011) and the InSIGHTS 
index (Baisero et al. 2020), among other analyses (Brock et al. 2021; van 
Soesbergen et al. 2017).

Recently two metrics have emerged that share similarities with the above 
examples but also help answer additional questions. Firstly, the species 
persistence score links changes in area of habitat to the probability of a 
species persisting over time (Durán et al. 2020). Secondly, the Species Threat 
Abatement and Recovery metric quantifies the reduction of extinction risk that 
can be achieved by abating threats and restoring habitats in specific places  
(Mair et al. 2021).
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3.1 Policy framework – International agreements and 
relevant policies
23% of all carbon emissions5 are produced by the Agriculture, Forestry and 
Other Land Use (AFOLU) sector with significant potential to reduce emissions 
and remove carbon from the atmosphere (like through halting and reversing 
deforestation). The importance of nature’s contribution to climate change 
mitigation has been climbing up the political agenda with increasing pressure 
to set and meet ambitious targets. This has led to landmark agreements like the 
Glasgow Leaders Declaration on Forests and Land Use, the New York Declaration 
on Forests and initiatives like as the UN Decade on Ecosystem Restoration. 
Additionally, more than 60 countries have pledged to restore forest cover under 
the Bonn Challenge6 with 210 million hectares pledged. Remote Sensing should 
play a key role in monitoring progress towards these commitments, measuring 
greenhouse gas benefits and improving the accuracy of the reported results.

3.1.1 National-level reporting

The United Nations Framework Convention on Climate Change (UNFCCC) 
was created in 1994 to protect the global climate system from harmful human 
interventions. A total of 198 countries are members (or “Parties”) of the 
convention (UNEP and IUCN 2021). Key decisions adopted by UNFCCC parties 
include the 2015 Paris Agreement, which intends to keep global warming below 
2°C (preferably 1.5°C). Developing country parties are advised to contribute 
to climate change mitigation through their forestry sector. Activities include 
lowering emissions caused by deforestation and forest degradation, protecting 
and improving carbon pools in forests and managing forests sustainably. These 
activities are commonly referred to as “REDD+”. 

At the national (or subnational) level, developing parties report to the UNFCCC 
on emissions and removals in forests, indicating where carbon from the 
atmosphere is sequestered into biomass and soils. This is usually done in 
two parts. First, a forest reference emissions level is set, which is typically 
based on the average historical emissions (and sometimes removals) over a 
given reference period. Future emissions (and removals, if relevant) are then 
compared to this reference level to estimate whether emissions reductions or 
removals exceeding this baseline have been achieved. These results may then 
be eligible for results-based payments and be used to demonstrate progress 
towards Nationally Determined Contributions (NDCs). Alongside reporting on 
emissions and removals, parties are asked to produce a national REDD+ strategy, 
a reliable, consistent and transparent forest monitoring system for reporting 
REDD+ results and a method for delivering evidence on how safety measures 
are being considered and maintain during the implementation of REDD+. 

Remote Sensing is widely used in producing both the reference levels and the 
emissions and removals estimates during the reporting period. Typically, satellite 
images are used to determine areas of forest converted to other land use, areas 
of forest degradation, and areas of forest regrowth, known as the activity data. 

5  IIPCC 2019. Data 
for 2007 to 2016
6  https://www.
bonnchallenge.org/
progress

INTEGRATING 
REMOTE SENSING CONCLUSIONSPATIAL  

PLANNING
REMOTE SENSING 
OF BIODIVERSITYINTRODUCTIONEXECUTIVE 

SUMMARY
ESTIMATING 

IMPACTS
GLOBAL 

LAND USE

https://www.bonnchallenge.org/progress
https://www.bonnchallenge.org/progress
https://www.bonnchallenge.org/progress


29       SPACES: Remote Sensing for Monitoring Impacts of Land-use Change on Biodiversity and Carbon Stocks

Emissions and removal factors represent the volume of emissions or removals 
of certain greenhouse gases over one year that results from land use or land 
management change. These are then applied to the activity data to estimate 
the emissions or removals over that period. Emissions and removals factors are 
classed into three tiers, from Tier 1 (globally agreed means for broad habitat-
region combinations, collated by the IPCC) to Tier 3, which are site-based 
measurements specific to the habitat studied (IPCC 2006). The accuracy of 
the results depends on both the activity data and the emissions and removals 
factors. 

As Remote Sensing technologies improve (e.g., spatial and temporal resolution 
of satellite imagery), it is essential for countries to have access to this 
technology, to have the capacity to use it and to understand its limitations and 
inherent uncertainties. Furthermore, technologies such as LiDAR may be able 
to complement data collected on the ground through forest inventories by 
providing biomass estimates. 

3.1.2 Voluntary carbon markets 

Voluntary carbon markets are increasingly seen as a mechanism to facilitate 
the flow of finance from private sector actors (‘buyers’) to projects (‘sellers’) 
that reduce or remove emissions (also known as offsets or carbon credits). 
However, projects face numerous challenges, including high upfront and 
ongoing costs associated with measuring, monitoring and verifying their carbon 
credits. Improved Remote Sensing technology presents several opportunities 
to overcome these challenges. Remote Sensing technology could reduce the 
labour and prohibitive costs of measurement reporting and verification (MRV) of 
carbon credits. Historically, forestry projects have been restricted to using field 
measurements when conducting MRV (Cevallos et al. 2019), requiring samples 
and data taken from the site at regular intervals and verified by a third party. 
Carbon standards now typically use a mixture of Remote Sensing and on-site 
data during the MRV process. This can range from simple default methodologies, 
such as those specified in the IPCC guidelines, to complex models based on 
carbon cycling modelling and/or Remote Sensing to quantify potential emissions 
reductions and removals (Smith et al. 2014). Remote Sensing could reduce 
this burden by providing a low-cost method to collect activity data by using 
satellite imagery to estimate areas undergoing land-use change or degradation. 
Furthermore, modelling approaches and Remote Sensing data from satellite 
images and LiDAR can be used to establish baselines and monitor and measure 
the ongoing changes in carbon stocks from within projects. By addressing these 
barriers, Remote Sensing can help to enable the flow of finance to projects that 
contribute to climate change mitigation efforts.

3.2 The Carbon cycle
Carbon has been a central point for discussions in climate mitigation as the 
current flux of CO2 and methane to the atmosphere via the burning of fossil fuels 
and other anthropogenic activities has been a leading cause of greenhouse gas 
emissions and climate change (Le Quéré et al. 2009). 
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The consequences of anthropogenic climate change on human survival and 
sustainability will be significant (Peters, Davis, and Andrew 2012). To halt and 
even reverse the contribution of land use/land-use change to these greenhouse 
gas emissions, it is crucial to assess the Earth system’s carbon sources and 
sinks, understand the drivers of changes in carbon flows, inform management 
plans to safeguard carbon reservoirs and enhance sinks across the world (Gibbs 
et al. 2007; Le Quéré et al. 2009). 

The largest carbon exchange between terrestrial systems and the atmosphere 
occurs when terrestrial ecosystems absorb carbon through photosynthesis. 
Among Terrestrial vegetation, the amount of carbon is almost half to one-third 
of carbon in soils (Anderson-Teixeira et al. 2021; Houghton 2003). Yet, forests 
are key carbon pools because compared to other types of vegetation, trees 
store far more carbon per unit of land. Forest ecosystems store up to 80% of 
total global above-ground carbon and contribute to about 70% of Soil carbon 
through photosynthetic capture by plants and deposition of carbon in soils 
(Simard et al. 2020).

The quantity of carbon held in a system or reservoir is referred to as a stock or 
pool and is determined by the carbon cycle, which comprises carbon exchange 
between different stocks in the land, ocean and atmosphere (Friedlingstein et 
al. 2022; Houghton 1999). In other words, carbon stocks are dynamic and are 
influenced by a range of activities, including photosynthesis and respiration, 
deforestation and fossil fuel combustion. These activities trigger the exchange 
of carbon between stocks, referred to as flux. The understanding of the drivers 
of carbon flux within and between ecosystems across the globe helps identify 
regions and reservoirs where carbon might be most vulnerable to release as 
CO2 or methane to the atmosphere.  

Both terrestrial carbon exchange and pools can be estimated using different 
Remote Sensing methods. The amount of carbon retained in an ecosystem, or 
NPP, is how much carbon is generated during photosynthesis (referred to as 
gross primary production or GPP), excluding the amount of energy used for 
respiration7. GPP and NPP are major components of terrestrial carbon fluxes. 
Traditionally, satellite-derived measurements, such as NDVI, were used to 
estimate GPP and NPP. More recently, Remote Sensing with machine learning 
approaches and other models have been used. When looking at carbon stocks, 
carbon in soils has been estimated at relatively small spatial scales and mainly for 
croplands (Xiao et al. 2019) but it has been frequently employed for quantifying 
biomass carbon stocks. 

The quantification of biomass carbon stocks is highly relevant to estimating 
changes in carbon pools that come from land-use change. The next section will 
now focus on the applications of Remote Sensing to estimate carbon stocks 
through measuring above-ground biomass (AGB). 

7 UN-REDD 
programme

INTEGRATING 
REMOTE SENSING CONCLUSIONSPATIAL  

PLANNING
REMOTE SENSING 
OF BIODIVERSITYINTRODUCTIONEXECUTIVE 

SUMMARY
ESTIMATING 

IMPACTS
GLOBAL 

LAND USE



31       SPACES: Remote Sensing for Monitoring Impacts of Land-use Change on Biodiversity and Carbon Stocks

3.3 Quantifying Carbon stocks: The role of Remote 
Sensing
Land-use changes, such as deforestation and forest degradation, directly impact 
carbon stocks. Large-scale monitoring of AGB complemented by land cover is 
key to monitoring carbon stocks and carbon stock dynamics. This is critical for 
enabling land-use planning to identify feasible management alternatives that 
can reduce emissions. AGB comprises all vegetation above the ground, including 
shrubs and trees with stems and branches, as well as live foliage. Approximately 
50% of its composition is considered to be carbon (Eggleston et al. 2006). Remote 
Sensing can provide a feasible and efficient alternative to more conventional 
methods of quantifying AGB, such as field measurements based on vegetation 
harvesting, which are often subject to severe limitations and costly in terms 
of time and budget (Ketterings et al. 2001). Other non-destructive methods 
are based on developing equations (called allometric equations) that establish 
a relationship between AGB and tree metrics like tree height and diameter at 
breast height that are frequently recorded in forest inventories. However, these 
equations have severe limitations as they are generally only developed for 
temperate and boreal forest ecosystems, are species-dependent and limited to 
relatively small geographic areas.

The cost-effective collection of data associated to the spatial distribution of AGB 
across vast areas is made possible by Remote Sensing technology, particularly 
space-borne sensors (Brewer 2012). However, the lack of geographically spread 
reference data for calibration, as well as the low sensitivity of satellite sensors 
to AGB makes estimating carbon stocks from satellite data a challenging task. 
In addition, variations in species, the consistency of their wood, the amount 
of moisture and different atmospheric conditions, makes the signal received 
by the sensors and the actual AGB display geographical variations (Rodríguez-
veiga et al. 2017).

Different types of Remote Sensing data have been employed to estimate AGB, 
mainly including passive optical, microwave and LiDAR technology. Each type of 
data has advantages and disadvantages for the quantification of AGB. A brief 
description is now provided on how these technologies are used for quantifying 
AGB (Table 3.1).

3.2.1 Optical

Different vegetation canopy features are particularly responsive to optical 
Remote Sensing. Therefore, this technology is frequently used to assess AGB 
at various scales. Vegetation canopy properties, such as NDVI and LAI, can 
be easily detected and used as effective predictors through empirical models 
calibrated through ground measurements for AGB estimation. Low-resolution 
sensors like Advanced Very High-Resolution Radiometer (AVHRR) and MODIS 
have often been used to estimate AGB at global and regional scales for a variety 
of ecosystems such as forests (Chopping et al. 2011; Dong et al. 2003) and 
grasslands (John et al. 2018). 
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Medium-resolution sensors like Landsat and Sentinel-2 are generally preferred 
for regional to local scales but increasing processing power and cloud computing 
capabilities are expected to open the possibilities of these sensors for global 
AGB estimations. Lately, the Harmonized Landsat and Sentinel-2 (HLS) product 
developed by NASA which combines Landsat-8 and Sentinel-2 has been 
developed in near real-time (Claverie et al. 2018), allowing the acquisition of 
30-metre resolution data at less than 5-day intervals.

3.2.2 Synthetic aperture radar

Synthetic aperture radar (SAR) instruments on board of satellites offers unique 
capabilities for forest biomass estimation. The sensitivity of SAR instruments 
depends on the wavelength or frequency at which they operate with X-, 
C-, S-, L- or P-band sensors enumerated in ascending wavelength order. 
Longer wavelengths can penetrate deeper into forest canopies, while shorter 
wavelengths are sensitive to smaller components of the canopy like leaves 
and small branches. Longer wavelengths are potentially better for evaluating 
AGB because stems and tree branches contain the largest proportion of AGB in 
forests (Sinha et al. 2015).

SAR backscattering is not a direct measurement of forest AGB. It provides a 
strong correlation that is used to model biomass, but it is also very sensitive to 
environmental factors like precipitation and soil moisture. The SAR backscattered 
signal increases with higher levels of biomass until it gradually saturates. The 
saturation point also varies with the radar frequency. It reaches its highest point 
with P-band sensors. However, there are no sensors currently in orbit (neither 
optical nor radar) that can deliver accurate estimates for the high AGB frequently 
observed in tropical areas.

3.2.3 Light Detection and Ranging (LiDAR)

LiDAR is a form of active Remote Sensing that measures the distance between 
a sensor and an object using laser pulses. LiDAR instruments can deliver precise 
information on the vegetation’s 3-dimensional structure using this technology. 
LiDAR instruments provide canopy height information as well as other three-
dimensional forest structure parameters that are used to estimate AGB through 
allometry (Rodríguez-Veiga et al. 2017). LiDAR data can be acquired from 
terrestrial, airborne and space systems characterizing the vertical vegetation 
information at various scales from individual trees to large areas. The use of 
terrestrial or airborne LiDAR is not viable for large-scale mapping, but it is widely 
used for mapping at local scales and for calibrating space-borne LiDAR, which 
has the capability to collect data routinely over large regions. Terrestrial LiDAR 
sensors provide such dense point cloud data that they can be used to provide 
very accurate 3-D models of individual trees. After classification into points 
from trunk, branch and leaves, biomass volume can be estimated, providing a 
non-destructive method for measuring AGB that can also be used to develop 
allometric equations. LiDAR data is mainly used in forest ecosystems, but has 
also been employed to calculate biomass in other environments, including 
shrublands (Li et al. 2017) and grasslands (Wu et al. 2009).
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Table 3.1: Types and examples of sensors measuring vegetation attributes used to estimate AGB and their pros 
and cons.

Sensor 
type

Sensors Measures Pros Cons

Optical - AVHRR
- MODIS
- Landsat
- Sentinel-2

Canopy 
properties 
(e.g., LAI, 
NDVI)

- Global coverage at a range of 
different resolutions
- Freely-available data
- Extensive archives that allow study 
of changes in vegetation overtime
- High temporal resolution (e.g., 
5-day intervals) improves chance of 
having cloud-free observations 

- Cannot penetrate cloud cover
- Common indices measured 
are mainly related to vegetation 
photosynthetic activity but Branches 
and trunks of trees, which are not 
photosynthetic, make up the majority 
of the forest AGB
- Difficult to measure many 
vegetation attributes (e.g., tree height 
and stem diameter)
- Saturation of the Remote Sensing 
(spectral) signal at high biomass 
implies limited correlation between 
the signal from the optical imagery 
and AGB after canopy closure

SAR - L-band: 
JERS, 
ALOS, 
PALSAR, 
NASA/
ISRO NISAR 
(scheduled 
2024)
- P-band: 
ESA 
BIOMASS 
(scheduled 
2023)
 - C-band: 
Sentinel 1

Tree trunks 
and ground 
surface 
(P-band), 
woody 
components 
of vegetation 
(L-band), 
upper 
surface of 
vegetation 
canopies 
(C-band)

- Able to penetrate through clouds 
in day and night making it the ideal 
candidate for tropical areas with 
persistent cloud cover
- P-band data can penetrate deep 
into forest canopy
- L-band sensors are able to measure 
woody vegetation
- Global, high temporal and spatial 
resolution C-band data is available 
since 2014

-P-band data is not currently 
available at a global scale
-Lack of systematic and dense 
L-band data for global AGB 
estimation

LiDAR ICESAT, 
GEDI

3-D 
structure of 
vegetation, 
canopy 
cover, 
ground 
height and 
canopy 
height

- Not bound to signal saturation 
on estimation of AGB as high point 
density (or full waveform) measures 
through gaps in canopy
- Characterises vertical vegetation 
information at different scales from 
individual trees or plots to large areas

- Short operational period 
- Spatial discontinuity (specific spatial 
sampling patterns) of the footprint
- Discrete footprint biomass 
estimates alone are not suitable to 
map extensive areas but are usually 
combined with other Remote Sensing 
datasets to generate spatially 
continuous biomass

3.4 Mapping Above-Ground Biomass
The first global AGB maps did not use Remote Sensing technology, they were 
generated by downscaling (assigning values at finer scale from coarser scale 
maps) FAO forest inventory statistics and assigning IPCC default AGB averages 
(estimated from country-level carbon stocks) to global land cover maps. 
Methods to map AGB at a global scale using Remote Sensing have since been 
developed. The main constraint for large-area mapping is the non-availability of 
enough ground data to validate the methods. Medium to low resolution satellite 
data (both optical and SAR) combined with ground data are used to derive 
global AGB maps. These data integration approaches overcome the limitations 
of different sensors (such as signal saturation and cloud cover) while providing 
continuous global coverage. 

There have been a number of initiatives to map biomass at a global scale using 
a combination of different Earth observation data sets. Table 3.2 lists the open-
access global biomass maps currently available. 
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Figure 3.1: Carbon maps of South-east Ghana showing above- and below-ground biomass carbon density for 
the reference year 2010 at 300 m resolution (Soto-Navarro et al. 2020; Spawn et al. 2020).

Table 3.2: List of global and open access biomass maps adapted from (Hein et al. 2022). 

AGB map Spatial resolution 
(m)

Epoch RS data Reference

Baccini Global 30 2000 GLAS, Landsat, 
SRTM

(Baccini et al. 2012)

GEOCARBON 1000 2007 - 2010 ENVISAR, MODIS (Pratihast et al. 2014; 
Maurizio Santoro et 
al. 2015)

GlobBiomass 100 2010 ALOS-PALSAR, 
ENVISAT

(Maurizio Santoro et 
al. 2021)

CCI Biomass 100 2017 ALOS-PALSAR, 
Sentinel 1

(Maurizio Santoro et 
al. 2021)

The Baccini Global map8 (epoch 2000) was developed using a method (Baccini 
et al. 2012) that correlates AGB to spaceborne LiDAR data through models 
calibrated with field data directly underneath the LiDAR footprints. A statistical 
algorithm that estimates AGB from Landsat reflectance is then calibrated using 
these AGB estimates and therefore providing global coverage. Following a similar 
data fusion approach, a refined pantropical map (Avitabile et al. 2016) and a 
boreal map (Maurizio Santoro et al. 2015) were combined to generate the GEO-
CARBON (2007–2010) map to achieve worldwide coverage. The GlobBiomass9 
(2010) and the CCI Biomass10 (2017) were produced from SAR images (Santoro 
and Cartus 2021). The GlobBiomass and CCI Biomass maps contain non-forest 
areas, in contrast to the Baccini and GEOCARBON maps which only cover 
forested areas.

8 Available at 
https://www.
globalforestwatch.
org/
9 Available at 
https://climate.esa.
int/en/projects/
biomass/#resources
10 Available at 
https://catalogue.
ceda.ac.uk/uuid/
bedc59f37c95 
45c981a839eb 
552e4084
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The above-mentioned AGB maps have been derived using different sources 
of data and methodologies. This leads them to have strong discrepancies that 
hinder their reliability to derive carbon stocks for global, regional and country 
based applications (Hein et al. 2022). There are many potential sources of errors 
ranging from human bias on the 3-dimensional measurements (including the 
application of wrong allometric models) to those related to the Remote Sensing 
instrument or the environmental conditions. Consistent accuracy assessment 
of these products is required but limited by the lack of global reference data. 
National Forest Inventories are often unavailable (as is the case in many tropical 
areas), inaccessible (lacking open access) or incomplete. 

Furthermore, the fact that these maps have been developed using different 
methodologies and data sources and are bound to different level of accuracy, 
makes them unreliable for biomass change analysis, even though they represent 
different time periods (Herold et al. 2019). This biomass change is key to 
monitoring the carbon emissions from the land surface. Currently, changes in 
carbon stocks (carbon stock dynamics) are estimated through land-use change, 
where the area of change is estimated using land cover maps (or any bespoke 
Remote Sensing product), and the biomass value is estimated through AGB maps 
or by assigning emissions and removal factors. However, when the change is 
not related to land use but to an increase in growth, forest degradation, natural 
disturbances or mortality events, this method becomes unviable. Thus, there 
is an increasing interest in evaluating the ability of Remote Sensing techniques 
to capture rates of regrowth and degradation (Goetz and Dubayah 2011). This 
kind of information is crucial for monitoring the effectiveness of large-scale 
restoration efforts as well as rates of forest regrowth and degradation.

3.5 Mapping carbon storage across land cover types
Most remotely sensed biomass carbon products focus on woody or forest 
biomass and therefore exclude carbon stocks associated with other non-
woody vegetation types such as grasslands, croplands, and scrublands. The 
first attempt to cover above and below-ground biomass in all vegetation types 
was undertaken by the Centre for Sustainability and the Global Environment 
(SAGE), which produced the first IPCC Tier-1 Global Biomass Carbon Map for 
the Year 2000 (Ruesch and Gibbs 2008). The aim was to provide a benchmark 
for starting to look at carbon stocks and emissions in relation to land-use 
change using methods outlined in the IPCC Greenhouse Gas Inventory 
Guidelines (IPCC 2006). This method assigned default carbon stock values for 
above-ground biomass (provided by the IPCC) to 23 land-cover types within 
20 different ecological zones (FAO 2012) and 7 continental regions. At the time 
of production, the best available and most widely accepted land-cover map 
was at 1-km resolution (GLC2000), derived from Remote Sensing and based on 
SPOT-VEGETATION satellite imagery. For Non-Forest classes, values were only 
assigned by continent, meaning that differences in carbon stocks in vegetation 
in different climatic zones were not accounted for. 
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Below-ground biomass (i.e., living biomass in the roots) was calculated using 
a root-to-shoot ratio (the relationship between the above-ground and below-
ground biomass components) provided by IPCC. This was then applied to 
calculate below-ground biomass. 

More recently, three more refined global maps and estimates of carbon storage 
within all vegetation types have been produced by (Soto-Navarro et al. 2020),  
(Spawn et al. 2020) and (García-Rangel et al. In prep). Each has followed a 
similar approach combining remotely sensed above-ground biomass datasets 
with global remotely sensed land cover maps to produce more refined global 
maps and estimates of carbon storage within all vegetation types plus additional 
soil organic carbon layers. All three teams used root-to-shoot relationships to 
estimate below-ground biomass, so the focus here is on these biomass carbon 
components. There were specific differences between the methodologies, 
but the broad methods included the selection of a global land-cover map as a 
starting point. Soto-Navarro and Spawn both used the 300-m ESA CCI land-
cover map for the year 2010. In contrast, García-Rangel used a more recent 
Copernicus product at 100-m resolution for the year 2015. Land-cover types 
were used to select the most appropriate biomass dataset (based on literature 
review and selection criteria including resolution, accuracy, biomass definition). 
Each dataset was resampled to the resolution of the land-cover map and the 
above-ground biomass value was assigned from the chosen source to each 
grid cell within the land-cover type. The above and below-ground biomass 
maps (illustrated in Figure 3.1)  were then combined to produce the harmonised 
global maps of above and below-ground carbon.

In terms of forest carbon change, the most widely used and recognized product 
is that produced by Harris et al. (2021). They used 30-m tree cover change 
data from (Hansen et al. 2013) to map annual greenhouse gas emissions and 
removals (losses and gains in sequestered carbon) that are related to forests, 
for both biomass and soil carbon integrating both ground and Remote Sensing 
data. Along with the 30-m change product, many ancillary datasets were 
required, including mangrove forest extent, primary forest extent, plantations/
tree crops, peatlands, above and below-ground live woody biomass density, 
ecological and climatic zones, activity data (such as burned areas) and emission 
and removal factors.

With the release of higher resolution land-cover products, UNEP-WCMC and 
Impact Observatory have been more recently exploring the potential use of 10-m 
near real-time land-cover change products for looking at the annual change in 
carbon stocks for all land-cover types. This builds on work initiated with the 
National Geographic Society and draws on the methods used for forests by 
(Harris et al. 2021). The outcome of this work is still to be determined, but the 
approach has been to identify areas where land cover change may result in 
significant changes in biomass carbon storage.
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Figure 3.2: Broad overview of the combined approach in development with Impact Observatory 
exploring the use of high-resolution land cover change projects to assess changes in carbon stocks

The methodology combines both the IPCC Tier 1 approach with the more 
detailed maps of land cover and forest types obtained from Remote Sensing 
(Figure 3.2). A transitions table is compiled to apply IPCC default above-ground 
biomass carbon stock values to the different land-cover types in different 
climatic and ecological zones and, for secondary young forest, growth rates for 
calculating annual gains. Below-ground biomass is added using a root-to-shoot 
ratio (IPCC 2006, 2019). Estimating change in this way carries much uncertainty 
and the output from this type of mapping will only provide an indication of the 
trajectory of change rather than accurate measurements. Errors will come from 
a variety of sources including the default values applied, the remotely sensed 
biomass products used for the analysis and the proportions applied to obtain 
the estimate for year 2. By grouping the results into high, medium and low split 
into gains and losses, the results of such analysis can help inform potential 
changes in carbon based on the land-cover change.

One of the main limitations of the 10-m land-cover products for this type of work 
is that they all currently only show 10 broad land-cover types (e.g., trees, grass, 
crops). While these match with the broad IPCC land-cover classes, they do not 
provide adequate detail on their own to either enable the assignment of default 
IPCC carbon values or utilization of remotely sensed biomass datasets without 
heavy reliance on ancillary data (as per the approaches outlined above). Trees, 
for example, need to be split into primary forest, secondary old and secondary 
young forest and mangroves and then split by ecological zones. There is an 
added complication in that mangroves, in some cases, qualify as both trees 
and flooded vegetation. Other categories need to be split by climatic zone. 
This requirement for ancillary data (often at a coarser resolution than the 10-m 
products) eliminates some advantages of using these high-resolution layers for 
this type of work.
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An example of the limitations of these broad land-cover types is the tree category 
that appears to include more than just forest. There is no distinction between 
natural primary/closed canopy forest and more open forest or plantations. This 
can be seen in Figure 3.3 below, which compares the IO ESRI land-cover dataset 
with national land cover product. The latter shows relatively few pockets of 
closed forest left and larger areas of open forest and Cocoa plantations.

Further validation and class refinement are necessary to make these high-
resolution land-cover maps viable and more robust products for this type of 
work. For example, mangroves are included in both the ‘Trees’ and “Flooded 
Vegetation” categories, making the application of appropriate carbon stock 
values difficult. In addition to these issues with the land cover classes, while the 
IPCC provides detailed data for different types of forest in different ecological 
zones, data for other vegetation classes, such as grasslands and wetlands 
(other than mangroves) are less detailed. There are also fewer remotely sensed 
products for other vegetation types.

Figure 3.3 National land-cover map (left) produced by the Ghana Forestry Commission’s Resource 
Management Support Centre (RMSC)  compared to (right) IO ESRI 10m land-cover map (accessed 
on UN Biodiversity Lab September 2022)
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4.1 Foundations of decision-making and spatial planning
Spatial planning is a form of decision-making that uses spatially explicit data 
in a structured process of finding solutions to complex problems. Most often, 
this type of planning occurs after a problem has been identified and involves 
choosing among options to alter current management regimes with the aim 
of achieving specific objectives. Most problems relating to land use, natural 
resource management and conservation are linked to one or more decisions 
that need to be made in the face of multiple management alternatives within 
the land- or seascape. In a conservation context, spatial planning often explores 
the issue of how to spend money and effort on conservation in both space and 
time. Decision-makers need to decide what they want to achieve, what they can 
do to achieve their aims and how they want to measure progress towards their 
aims (Groves and Game 2016; Rittenhouse 2017). Conflicting objectives, such 
as using land for agriculture or for conserving biodiversity, are common and 
introduce trade-offs.

Even though most decision contexts are unique, standards for rigorous, inclusive, 
defensible and transparent processes should guide all decisions, including 
spatial plans (Gregory et al. 2012) (Box 1, Figure 4.1). These standards include 
structuring the problem in a useful way to inform decision-making. A clear and 
transparent structure is key for an efficient planning process and provides a 
robust process to choose the most promising way forward among multiple 
options. In order to structure the planning process, the key points that are 
important to consider in any planning process can be seen as individual steps 
(Box 1, Figure 4.1). There are slight variations of the terminology, grouping and 
order of activities of different steps in strategic planning (Pressey and Bottrill 
2009), and here we follow one of the most condensed versions with roots 
in decision science and multiple applications in complex real-world settings 
(Gregory et al. 2012) (Box 1). The steps provide an evaluation structure that 
helps decision-makers to clearly define relevant objectives and performance 
measures targeted to find solutions to a problem that tick all important boxes 
and foster learning and a shared understanding of the problem context through 
discussion and deliberative thinking. A more detailed description of each step 
in the context of Remote Sensing can be accessed in Telhado et al. (in prep.).

One common spatial planning approach that can benefit from such a stepwise 
approach is to identify priority areas for specific actions based on analysis 
of spatial data. Spatial planning involves working with spatially explicit maps 
throughout the planning process. Early on, they can enable decision-makers to 
develop a thorough understanding of the problem context, and, later, the overall 
aims and details of alternative management actions. In the best case, the final 
map is much more than just a map of implementation plans and also documents 
the whole decision process. Remote Sensing products can be useful during 
all six steps (Figure 4.1), the scoping clarification of the decision context, the 
definition of objectives and measures, the development of alternative actions, 
the estimation of their consequences using the performance measures the 
evaluation of trade-offs, and the implementation, monitoring and review of the 
selected action.
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BOX 1. Structuring a spatial planning process in six key 
steps to create a rigorously thought-out “actionable 
map” that documents a decision-making process.
Problem solving is easier when a problem is well structured. Spatial planning 
benefits from following this sequence of steps:

1.	 Consider the problem: What are the core elements, who are the stakeholders, 
what are the uncertainties and trade-offs? 

2.	 Think about what you (the decision-maker and relevant stakeholders) want: 
What are the objectives and outcomes?

3.	 Think about what you can do: Which actions and strategies are possible?

4.	 Think about how you will monitor and measure the impact of the actions that 
you could take: Which metrics and indicators should be relied upon, based 
on which assumptions?

5.	 Choose the most promising way forward based on previous thinking, 
deliberation and modelling.

6.	 Implement the chosen action and monitor, based on the chosen metrics, 
what happens after the implementation, with the option to re-enter and 
update any of the above if you are not achieving the objectives as planned.

Figure 4.1: The six steps of a decision-making process and the usefulness of information derived from Remote Sensing
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4.2 Examples of the use of Remote Sensing in real 
world applications
This section offers several examples of the use of specific Remote Sensing 
datasets for informing real-world conservation decision-making.

Example 1: Using Remote Sensing for developing 
alternative actions and estimating their consequences 
and trade-offs: Jung et al. 2021, “Spatial optimization of 
areas of importance for biodiversity, carbon and water”.
Resolution: 100 m (biodiversity, above-ground biomass carbon), aggregated to 
10 km (planning unit in prioritization)

Source: Copernicus land cover (ESA PROBA-V), Lesiv et al. (2021) forest 
management (ESA PROBA-V), ESA CCI Biomass (Sentinel 1, Envisat ASAR, JAXA 
ALOS-1 and ALOS-2), Bouvet et al. (2018) above-ground biomass of African 
savannahs and woodlands (JAXA ALOS PALSAR L-band), Santoro et al. (2021) 
global forest above-ground biomass (JAXA ALOS PALSAR L-band, Envisat ASAR 
C-band, Landsat 7)

Data analysis:

Jung et al. (2021) embedded Remote Sensing data within several steps of their 
global spatial optimisation for biodiversity, carbon and water. This work sought 
to identify the potential opportunities that could arise from coordinated action 
for biodiversity conservation and climate change mitigation. It aimed to provide 
broad spatial guidance showing the synergies that could arise from high-level 
conservation policy decisions rather than providing advice implementable on 
the ground.

Remotely sensed land-cover and climate data were used to create a map of 
IUCN Red List habitat types (Jung et al. 2020), from which species’ ranges were 
refined to produce their Area of Habitat (see Chapter 2). Carbon data were 
similarly mapped from remotely sensed above-ground biomass, land cover data 
by García-Rangel et al. (in prep.; see Chapter 3). One key advantage of using 
Remote Sensing for this is that it provides objective, transboundary data that 
crosses social and political contexts. However, such data are only useful if they 
are accurate. Improving validation of these data in under-sampled regions of 
the world is key to ensuring their usefulness. Jung et al. then jointly optimized 
biodiversity and carbon (along with clean water provisioning) to minimize the 
number of species that are threatened and maximize carbon storage and 
regulation of clean water. 
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To develop different alternatives, they weighted species differently according 
to their conservation status, and evolutionary distinctness. They also varied the 
weighting of water and carbon relative to the combined species (biodiversity) 
weight in the prioritization. These different alternatives produced different 
rankings of the importance of each planning unit, with the consequence of each 
alternative being the estimated shortfall of the number of species remaining 
at the Red List’s Least Concern status, and the amount of carbon and water 
left unprotected globally. For example, weighting biodiversity, carbon and water 
equally would adequately conserve 57.9% of species, but giving full weight to 
biodiversity would adequately conserve 81.3% of all species. This reveals the 
biodiversity trade-off depending on the action taken.

Other, more local prioritizations have considered the conflict between 
anthropogenic demand for land alongside the need to conserve land for 
biodiversity and carbon in their development of alternative actions. For instance, 
(Moilanen et al. 2011) prioritized land in Great Britain for biodiversity, carbon, 
urban development potential and agricultural value. Remote Sensing products 
were the basis of the land-cover maps used to assess the urban development 
potential of the land and create these alternatives actions.

How it has been used

Global analyses like Jung et al.’s work should not be implemented at local scales 
because they do not consider locally specific consequences and trade-offs. 
These can include views of stakeholders, as well as discrepancies between 
both local and global data. National level implementations using this framework 
are underway in Mexico11, Colombia12, and Argentina13, to help designate new 
protected areas and other conservation actions to help the countries meet the 
nature conservation goals of the post-2020 global biodiversity framework (for 
instance, 30x30). Remote Sensing products could also be useful in monitoring 
the effectiveness of these actions.  

11 https://www.dof.gob.mx/nota_detalle.php?codigo=5634786&fecha=08/11/2021#gsc.tab=0
12 http://portafolios.humboldt.org.co/
13 https://naturemap-argentina.web.app/
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Example 2: Using remote sensing for the conservation 
of forest and biodiversity: The development of the 
Hansen et al. 2013 data set on forest cover and loss to a 
real time monitoring platform of land-cover change.
Resolution: 30 m

Source: Landsat

Data analysis: 

The initial dataset by Hansen et al. (2013) on global canopy cover and loss 
was developed to include a broader land cover status and land cover change 
product (Hansen et al. 2022), which analysed over 650,000 Landsat 7 Enhanced 
Thematic Mapper Plus (ETM+) scenes acquired during the growing season with 
Google Earth Engine.

How it has been used:

Updates of canopy cover and loss have been included in the Global Forest 
Watch data platform operated by the World Resource Institute and widely 
used by NGOs, policymakers, journalists and industry to inform decisions. The 
initial annual updates have developed into monitoring in real-time, with large 
implications for the use and application of conservation decisions.

Defining problem contexts

A) Actions resulting from prompt alerts about the problem context

NGOs such as the Amazon Conservation Association can now detect illegal gold 
mining and logging within days and alert authorities. 

Journalists in Peru were able to incentivize government action on forest fires in 
protected areas through real-time reporting.

B) Derived data to inform about biodiversity significance

Forest biodiversity significance datasets were created for pixels identified by 
Global Forest Watch as either currently forested or having lost forest between 
2000 and 2018. Ranges for forest-dependent mammals, amphibians and birds 
species as well as conifers were selected from the IUCN Red List. The area 
of forest within each species’ range was calculated. This area value was then 
used to give an inverse weighting so that restricted species with smaller areas 
of forest habitat had higher scores. To distinguish plantations from forests, the 
spatial database on planted trees (Friedlingstein et al. 2022) was overlaid to 
remove areas with plantations from calculations for species only affiliated with 
natural forests. 

INTEGRATING 
REMOTE SENSING CONCLUSIONSPATIAL  

PLANNING
REMOTE SENSING 
OF BIODIVERSITYINTRODUCTIONEXECUTIVE 

SUMMARY
ESTIMATING 

IMPACTS
GLOBAL 

LAND USE



45       SPACES: Remote Sensing for Monitoring Impacts of Land-use Change on Biodiversity and Carbon Stocks

The weighted maps for each species were then summed up to assign a rarity-
weighted richness (significance) to each forest pixel. The resulting significance 
maps complement maps of forest intactness, as instead of providing an 
estimation of community-level intactness, they provide an understanding of 
where the risk of extinctions may be highest if habitat is removed. They have 
the potential to be especially useful for helping prioritize the conservation 
significance of ongoing forest loss events, such as those detected by the near 
real-time Global Land Analysis and Discovery alerts14.

C) The potential of forest to contribute to nature-based solutions for climate 
change mitigation

Harris et al. (2021) used a derived approach from Hansen et al. to map forest 
extent globally. From this above-ground biomass carbon, they further applied 
root-to-shoot ratios to calculate below-ground biomass carbon. These data 
were then used to map the carbon fluxes of global forests, providing important 
information to scope the current contribution of forests to climate change 
mitigation. 

Development of performance measures

The “GFW biodiversity project” aimed to assign values to each forest pixel to 
produce additional datasets showing different facets of biodiversity. To achieve 
this, two metrics were created. One was known as forest biodiversity intactness 
and based on BII and the other was the forest biodiversity significance discussed 
above. Both metrics, as well as the biodiversity datasets underpinning them, 
namely the PREDICTS database and the IUCN Red List, all required some 
ancillary data on land use to complement the remotely sensed imagery. 

Forest biodiversity intactness was based on a subset of sites for forested biomes 
from the database, and biome-specific models were created with population 
density as a continuous variable. To project the values on to a map, a set of rules 
was used to group each pixel into the following categories: “Primary/mature 
secondary forest, Intermediate secondary forest, Young secondary forest, 
Cropland, Pasture and Urban” (Hill et al. 2019). The latter three anthropogenic 
classes were defined by overlaying forest loss pixels with downscaled land-use 
data from Hoskins et al. (2016). The distinction between different forest types, 
however, was dependent on comparing the cover in 2000 with a corresponding 
cover dataset for 2010. The resulting map characterized each pixel of forest 
cover and loss with a value of intactness. This reflects the proportion and 
abundance of the remaining original forest community at any location.

14 https://glad.umd.edu/dataset/glad-forest-alerts
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15 https://www.mars.com/

The datasets have also been used for developing indicators for SDG 6.6.1 and in 
the UNFCCC’s REDD+ initiative.

Assessing consequences

The food company Mars15 has used the website to evaluate Palm Oil suppliers 
and inform decisions on where to source ingredients. 

Impact on biodiversity conservation decisions

Analysis of the initial data (Hansen et al. 2013) has contributed to the most recent 
update of the IUCN red list assessment and the status of hundreds of forest-
dependent species (Tracewski et al. 2016), while (Joshi et al. 2016) used the more 
recent data set for assessing forest loss in priority areas for tiger conservation 
and identifying palm oil plantation as a driver of ongoing loss of habitat. This can 
inform the planning of protection of key habitat and corridors. Expansion of palm 
oil plantations has also been linked to the loss of chimpanzee habitat in Africa. 
Here, the analysis of the Hansen et al. dataset was picked up by the Jane Goodall 
Institute to inform their monitoring and decision-making activities. Indicators of 
habitat condition were aggregated at the relevant level of management areas 
to inform decisions and evaluate management effectiveness. The monitoring 
revealed mixed success, which in turn informed the adoption of new or modified 
conservation strategies. One of the important insights of the project was the 
superiority of multiple indicators compared to a singular index of habitat health, as 
multiple aspects are necessary for a deeper understanding of drivers of healthy 
habitat condition and threats.

Figure 4.2: Bivariate maps of significance and intactness of forest biodiversity within forest biomes 
for 2018, with a focus on areas of (A) Central and South America, (B) Central and West Africa, (C) 
China and Southeast Asia, and (D) Western Europe. Panels reflect different spatial scales. Image 
taken from (Hill et al. 2019).
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Example 3: Using Remote Sensing for the conservation 
of intertidal habitat and the conservation of migratory 
shorebirds: The Murray et al. data set on tidal mudflats, 
wetlands and mangroves.
Resolution: 30 m

Source: Landsat

Data analysis: 

The initial dataset (Murray et al. 2014) provided a classification of the intertidal 
zone by subtracting high and low tide image pairs to provide the first transparent 
and replicable evidence of large-scale losses of intertidal habitat in the Yellow 
Sea, an important part of a major migratory shorebird flyway. A number of 
datasets were consecutively developed (Murray et al. 2019) using Google Earth 
engine and machine learning to analyse over 700,000 satellite scenes to map 
tidal flats both in extent and change across 33 years (1984–2016) at a global 
scale.

How it has been used:

The initial analysis and subsequent products that have come out of ongoing 
development and elaboration have been used in different stages of decision-
making and conservation planning, from describing problem contexts, to 
prioritizing areas to protect for conservation (developing alternative actions) 
and monitoring the protected area effectiveness. 

Dissemination and communication of the loss of intertidal habitat with key 
stakeholders and decision-makers were key in the successful use of this data 
to influence conservation decision-making and spatial planning. The East-
Asian-Australasian Flyway Partnership (EAAFP) disseminated key results to 
governments and NGOs in the region. The new insights into the ongoing loss of 
key habitat sparked new scientific collaborations. Many subsequent analyses 
of the dataset were focused on triggering conservation action, for example, 
a comparison of the performance of China and South Korea’s Protected Area 
Network. The finding that South Korea’s system effectively conserved intertidal 
habitat while China recorded ongoing loss was communicated as a clear 
pathway for action (improving management of protected areas) in workshops 
with government officials.

The dataset and related analysis also contributed to a major international IUCN 
report, which helped a motion at the 2012 IUCN World Conservation Congress 
in Jeju, South Korea, aiming at an agreement to take necessary action for the 
conservation of migratory shorebirds and their intertidal habitat. 

INTEGRATING 
REMOTE SENSING CONCLUSIONSPATIAL  

PLANNING
REMOTE SENSING 
OF BIODIVERSITYINTRODUCTIONEXECUTIVE 

SUMMARY
ESTIMATING 

IMPACTS
GLOBAL 

LAND USE



48       SPACES: Remote Sensing for Monitoring Impacts of Land-use Change on Biodiversity and Carbon Stocks

16 https://www.globalintertidalchange.org/

This further sparked additional workshops and collaborations to take place 
that involved the coordination of conservation activities and agreement on a 
supplementary motion at the IUCN World Conservation Congress in Hawaii in 
2016.

The evidence was a supporting factor for the listing of migratory shorebirds in 
Australia as threatened species and several bird species under the Convention 
for Migratory Species. It also led to the listing of the tidal flat ecosystem of the 
Yellow Sea on the IUCN Red List of Ecosystems.

The initial analysis of intertidal mudflats has been broadened to include wetlands 
and mangroves, as well as a long-running collaborative project providing 
data with financing by Google, the Australian Research Council and James  
Cook University16.

4.3 Limitations of planning and decision-making with 
global data
Users of any map should ask whether the map provides clear and actionable 
messages that can inform decision-makers at the relevant spatial scale for their 
application. This is particularly relevant when considering the use of global data 
for national decision-making. For example, decisions to allow particular land-
use changes are typically made at a sub-national scale, ideally using data at 
a fine spatial resolution and with a locally appropriate thematic classification 
(Ferrier et al. 2004). Other types of decisions, including on resource allocation, 
may apply to broader regions and may be better candidates for incorporating 
global data (Wilson et al. 2007). In many cases, other information might be more 
helpful, or at least needed to support the choices that must be made. Local 
and regional contexts often provide the necessary fine-scale information to fully 
understand biodiversity, which cannot be distilled into a singular indicator or 
performance measure (Wyborn and Evans 2021). Some authors of global maps 
provide guidance on appropriate and inappropriate uses of their data and may 
explicitly point out that these are not suitable to guide on-the-ground decisions 
(e.g. Jung et al. 2021; Strassburg et al. 2020). The pros and cons of using global 
data for national planning are discussed in more detail in UNEP-WCMC (in press).

No map, tool, data or modelling can lift the burden of choice during decision-
making. Analyses can only inform a choice between options, based on available 
information for the values considered. It is up to decision-makers to justify the 
choices they make, and in many cases difficult trade-offs between competing 
objectives need to be evaluated.
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Spatial planning inevitably impacts on people at various scales, and those 
people need to be included in decision-making. Poorly considering the social 
impacts of conservation plans can lead to unintended negative consequences, 
particularly for already marginalized groups of people (Schultz et al. 2022). 
Meaningful conservation plans must therefore represent the needs and values 
of diverse groups of stakeholders. This should help ensure good outcomes 
for society, the economy and conservation, but is not always straightforward 
(Halpern et al. 2013). 

Bringing together objectives from a range of stakeholders and sectors in a single 
analysis, allows spatial planners to estimate likely trade-offs between these 
objectives. These may include cultural heritage, nature’s contributions to people 
and direct socio-economic costs to different groups, identifying who bears the 
costs and who benefits from planned changes (Klein et al. 2015). Data on costs 
and benefits should be subject to scrutiny and methodological rigour, particularly 
when planning across areas with large socio-economic disparities (Naidoo et 
al. 2010; Armsworth 2014; McCreless et al. 2013).The possible trade-offs can 
then be discussed among stakeholders to find acceptable, equitable solutions. 
The values and preferences that lead to the final choice of one option above 
others should be communicated clearly (Keeney et al. 2008; Keeney 1992). Fair, 
equitable planning that involves Indigenous peoples and local communities is 
discussed in more detail in Systemiq (2023).
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In previous sections, this document has discussed how Remote Sensing can 
contribute to biodiversity and carbon assessments, how these datasets are 
produced at increasingly higher resolutions, accuracy, and frequency and how 
this information can be used in the spatial planning process. However, there is 
still the need to integrate data that often come from different sources, services, 
and software applications and make them available as useful information to the 
final users.

A series of web-based platforms, data portals and dashboards have been 
developed by different organizations aiming to integrate land cover maps and 
other Remote Sensing products into biodiversity and carbon workflows in a 
way that this information can be accessed, visualized and easily interpreted. 
Examples include the Map of Life project from Yale University17, NatureServe’s 
habitat modelling framework18 and World Resources Institute’s Global Forest 
Watch project19. Additionally, some organizations are developing biodiversity 
workflows based on species’ area of habitat (AOH), including IUCN, BirdLife 
International and UNEP-WCMC. As for carbon workflows, Impact Observatory20  
are working on annual dynamic carbon change maps based on frequently 
updated land-cover maps. Similarly, WRI are working on producing carbon maps 
based on forest cover change21. 

However, despite the ongoing technological advances, growing data availability, 
increasing numbers of available workflows, and continuing scientific efforts in this 
field, biodiversity and carbon-related outputs are still insufficient, infrequently 
updated and often fail to reach the end user.  One of the overarching scientific 
gaps is the lack of generally agreed and relevant Remote Sensing-derived 
metrics to monitor carbon fluxes and biodiversity trends. Only if there are clear 
objectives and clarity on what needs to be measured can decisions be made on 
whether the available Remote Sensing data is useful or if there are new methods 
or workflows that need to be developed to make it useful. 

In addition, there are still outstanding technical limitations, including those 
around the value of the land cover classification scheme of currently produced 
land-cover maps for biodiversity and carbon analysis. There are several land-
cover classes omitted in remotely sensed derived products, such as primary 
forest or pasture, that are key for biodiversity and carbon analysis. There is 
also a general mismatch between classification schemes used for biodiversity 
analysis (such as the IUCN Habitat Classification systems or those collated 
in the PREDICTS database) and those mapped in remotely sensed derived 
land-cover products. In addition, when it comes to analysing changes, short-
term changes depicted in land-cover maps are often non-genuine, hampering 
the frequency with which there can be confidence in these products. These 
limitations reduce the suitability of these maps for direct input in biodiversity 
and carbon workflows.

Moreover, the growing need for near real time availability of biodiversity and 
carbon outputs requires the automation of these workflows. Currently, many of 
them require manual input or rely on additional data products with mismatching 
updating frequencies. 

17 https://mol.org/
18 https://explorer.
natureserve.org/
19 https://www.
globalforestwatch.
org/map/ and 
https://gfw.
global/3h5wYR1
20 https://www.
impactobservatory.
com/
21 https://www.
nature.com/
articles/s41558-
020-00976-6
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This means that even if the Remote Sensing derived products are available 
in near real-time, there will be a time gap until the value-added data product 
becomes available. This near real-time requirement also relies on datasets that 
are often generated by different organizations to be made readily available 
and accessible. This requirement comes with its own technological challenges, 
including limitations of licensing that are applied to the data, as well as data 
interoperability issues with workflows and datasets. Different data sources need 
to work together in a common framework, especially one that can provide both 
the processing and the subsequent dissemination of the products. A solution 
linking key land-use, biodiversity and carbon data sources could provide great 
scope and flexibility for answering new scientific questions as well as integrating 
novel datasets. Although originally targeted at the Remote Sensing community, 
platforms like Google Earth Engine (Gorelick et al. 2017) and its close relation 
SEPA22 provide examples of some of the more mature and readily accessible 
systems that fit many of the needs for automated workflows.

Incorporating these high-resolution near real-time products in a robust spatial 
planning framework requires stakeholder uptake. The user needs to believe in 
the data. One of the issues hindering this uptake is the overwhelming amount of 
biodiversity and carbon products available. This results in information overload 
and a lack of understanding of which product is best for specific applications. 
In addition, these datasets are spread throughout different platforms with 
a lack of alignment between them in terms of the statistics that they report 
against seemingly the same dataset. This leads to a lack of trust. Also, an issue 
contributing to this lack of trust is the uncertainty of how long specific products 
are going to be available for, especially for time series of data that may not be 
available in the near future. Thus, from the user’s perspective, there are real 
limitations in terms of availability, accessibility and reliability, as well as a lack of 
clarity on the intended scope of use.

The above-described bottlenecks and limitations are currently preventing this 
carbon and biodiversity information from reaching the diverse group of individuals 
and organizations making decisions in a way that is comprehensive, easily 
interpreted and relevant for their intended use. To overcome these limitations, 
more understanding of user needs is required. Communication with intended 
users of the data about their specific needs and for which specific decision 
contexts the information is required would ensure that the temporal, spatial and 
thematic resolution of the data matches their needs with an acceptable level of 
uncertainty. 

Promoting institutional collaboration will help overcome data access and 
interoperability issues and prevent duplication of efforts in terms of developing 
workflows and producing datasets. In addition, this may also help ensure that the 
sustained set of funding needed to push all the above technical barriers forward 
is in place for the continuous development of high quality, freely available and 
frequently updated carbon and biodiversity monitoring products.

22 https://sepal.io/
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Remote Sensing technology continues to evolve and develop rapidly. The 
increasing availability of freely accessible data, along with advances in 
analytical developments, processing techniques and computational capabilities, 
has facilitated the production of a range of land-cover products available at 
increasingly high resolution in space and time. This trend is expected to 
continue in the future. However, further transparency and consistency in terms 
of methodologies, data limitations and accuracy assessment procedures are 
vital in order to meet the information requirements of all users of these data. 

In addition, mapping land cover and land cover change will not continue to 
be unconnected activities but rather seen as complementary ones in which 
knowledge of land-cover change will be used to develop the next generation of 
land-cover maps. Similarly, complementing land cover with other remote-sensing 
derived data products provides a versatile source of information for different 
aspects of management-related decision-making. Traditionally, high levels of 
expertise were required to create products of Remote Sensing data that could 
be analyzed in more conventional software and workflows. However, with the 
expansion of analysis-ready data, these types of products become increasingly 
useful for a broad range of scientists and analysts, and less time and effort are 
required to use the data in planning contexts. There are already many examples 
of the successful use of these products and derived datasets in different stages 
of the decision-making process, with real impacts on conservation projects and 
management actions around the world.

Remote Sensing is set to continue to feed into many metrics describing the 
various facets of biodiversity. Currently, land-cover and land-use products are 
often linked to species range data or modelling community responses to land-
use change at global and national scales. Increasingly, there also appears to be 
scope for integrating more direct Remote Sensing measurements of biodiversity 
proxies, such as some of the proposed essential biodiversity variables (EBVs).

Remote Sensing will also continue to play a pivotal role in monitoring progress 
towards global climate commitments, particularly those concerning land-
use change, ecosystem restoration, biodiversity conservation, quantification 
of carbon stocks, carbon offsetting, deforestation and forest degradation. 
Furthermore, these technologies are likely to reduce upfront costs associated 
with measuring and verifying emissions reductions from carbon projects.

However, improving the availability of data and the technical capacity of data 
users will be key for the widespread use of remote-sensing derived data products. 
Data must be available to users and stakeholders across a variety of sectors, 
computational and internet capacities, and geographical scales. To make sure 
that these data are best-used, end users, especially local stakeholders, will need 
to be empowered through targeted technical capacity-building. They must also 
be provided with relevant information about the nature of their data, so they are 
aware of existing limitations and nuances. Broader dissemination of the sources 
and applications of Remote Sensing data for conservation decision-making can 
lead to better outcomes for the management of biodiversity and carbon stocks.
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Remote Sensing technology and derived data sets on biodiversity and carbon 
stocks, along with food production and commodity supply chain data, will be 
crucial for understanding the interactions between different sectors and goals 
and how they overlap in space and time. Understanding these interactions 
will help decision-making activities such as mapping hotspots of trade-
offs and synergies (co-benefits) between the goals (like biodiversity, food 
security and climate change mitigation) and assist in developing sustainable  
management strategies.
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