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Article 
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Abstract: The creation of crop-type maps from satellite data has proven challenging, often impeded by a lack of 
accurate in-situ data. This paper aims to demonstrate a method for crop-type (ie. Maize, Wheat and Other) 
recognition based on Convolutional Neural Networks using a bottom-up approach. We trained the model with 
a highly accurate dataset of crowdsourced labelled street-level imagery. Classification results achieved an AUC 
of 0.87 for wheat, 0.85 for maize and 0.73 for other. Given that wheat and maize are the two most common food 
crops globally, combined with an ever-increasing amount of available street-level imagery, this approach could 
help address the need for improved crop-type monitoring globally. Challenges remain in addressing the noisy 
aspect of street-level imagery (ie. buildings, hedgerows, automobiles, etc.), where a variety of different objects 
tend to restrict the view and confound the algorithms. 

Keywords: crop type recognition; deep learning; crowdsourcing; street-level imagery 

 

1. Introduction 

The spatial extent of cropland areas has been mapped extensively since the mid-eighties, as 
increasing numbers of satellites have been launched and higher spatial and temporal resolution 
imagery has become available. For example, cropland is provided as a land cover class in many global 
land cover products such as GLC-2000 [1], MODIS land cover [2] and ESA-CCI [3], among many 
others. More recently, a time series of higher resolution cropland extent products has been produced 
using Landsat [4] at a 30m resolution while Sentinel-2 is now also being used for land cover mapping, 
including cropland extent at a 10 m resolution [5]. However, for monitoring food security at national 
to global scales, spatially explicit crop-type maps are urgently needed [6]. This advance from 
cropland to crop-type has proven challenging due to among other things, a lack of training data, 
suitable imagery and advanced algorithms. 

With recent advances in analytical methods, data infrastructure and. the availability of higher 
resolution imagery, several recent studies have applied machine-learning techniques for crop-type 
recognition. Some of the most successful include Support Vector Machines (SVMs) [7–9], Random 
Forests [9–12], Decision Trees [12–14], the maximum likelihood classifier (MLC) [11], [15], [16], 
Artificial Neural Networks (ANNs)[11], [17] and Minimum Distance (MD) [11]. Another example is 
the work undertaken by Mou et al. in [16], where the authors proposed a Deep Recurrent Neural 
Network (RNN) for hyperspectral image classification. The RNN model effectively analyzed the 
hyperspectral pixels as sequential data and determined the information categories via network 
reasoning. The specific application of CNNs in remote sensing for crop-type recognition has also 
shown excellent performance [13], [16], [18]–[24].  

Several recent research studies have achieved higher accuracy in the learning phase because of 
the CNN implementation. For instance, Cai et al. in [18] introduced a methodology for the cost-
effective and in-season classification of field-level crop types using Common Land Units (CLUs) from 
the United States Department of Agriculture (USDA) to aggregate spectral information based on a 
time series. The authors built a deep-learning classification model based on Deep Neural Networks 
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(DNN). The research aimed to understand how different spatial and temporal features affected the 
classification performance. The experiments also evaluated which input features are the most helpful 
in training the model and how various spatial and temporal factors affect crop-type classification. 
Castro et al. in [19] explored three approaches to improve the classification performance for land 
cover and crop type recognition in tropical areas; they used the image stacking approach as a baseline 
and AEs and a CNN for two Deep Learning approaches. Their findings outperformed the traditional 
system based on image stacking in overall and class accuracy.  

All of these applications require training data on the presence of different crop types, where the 
lack of training data is one challenge identified in many research papers. Many studies collect field-
based data as part of the development of a training data set (see e.g., [25]), which is costly and often 
not shared with the broader remote sensing community. Other sources of training data that have yet 
to be fully exploited include geo-tagged photographs such as those taken at street level. For example, 
in the study by Wang et al. [20], local farmers contributed by utilizing a mobile application to take 
pictures and assign a label according to the crop type as training data for crop type mapping. Another 
approach is where citizens take pictures using mobile phones and then provide a classification label 
[26], [27] using a tool such as Picture Pile. These approaches [20], [26] are unique since they use images 
taken from the field. There are also ever-increasing amounts of free and open crowdsourced imagery 
that are becoming available online, e.g., via Mapillary and Google Street View, so it is important to 
develop methodologies to exploit these available resources to develop training data sets for crop type 
mapping using remote sensing. 

In this paper we use geotagged crowd-classified street-level photographs in a bottom-up 
approach to train a CNN utilising a novel deep residual learning architecture [28], referred to here as 
the Maize-Wheat-Other CNN (MWO CNN). In terms of crop species of global importance to food 
security, both maize and wheat (and related wheat crops) are crucial to meeting global food demand 
[29]. The MWO CNN uses the geotagged photographs from the Earth Challenge Food Insecurity 
crowdsourcing campaign [27]. We refer to these pictures as noisy images because in addition to Maize 
and Wheat, many objects such as cars, streets, buildings, and people make crop-type classification 
more complex. Finally, we present results from the CNN model regarding the performance in 
predicting crop type and discuss the potential of this approach for substantially increasing the 
amount of training data available for crop type mapping in the future. The model is open access on 
https://github.com/iiasa/CropTypeRecognition.git. 

2. Materials and Methods 

Crowdsourced Street-level Imagery 

A total of 10,776 street-level photographs were selected for this study, the majority of which were 
taken from Google Street View, including a small amount from Mapillary. The bulk of the images are 
from France (Figure 1). These images were then placed into the Picture Pile rapid image classification 
app [30], and then classified by volunteers. The set of images is unique because of the quality of the 
images, which ranges from poor to excellent for the purposes of crowdsourcing crop species. For 
example, while some images contain very clear, unobstructed pictures of roadside crops, others 
contain objects such as cars, houses, etc., in addition to a crop field (Figure 2). Error! Reference source 
not found. lists the total number of images used in this study along with the number of images used 
in the model training, test, and validation data sets. 
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Figure 1. Locations of the majority of the 10,776 street-level images classified via crowdsourcing in Picture Pile, 
as either Maize, Wheat or Other, over France. 

 

Figure 2. Typical noisy street-level images containing crop species and additional non-crop objects such as 
roads, buildings, vehichles and trees (a-f). These images were classified by the crowd as a) maize; b) maize; c) 

wheat; d) wheat; e) other and f)wheat. 

Table 1. The total number of classified street-level photographs used in the study, separated by crop type and 
usage by the CNN. 

Crop type Total images Test Training Validation 

Maize 3592 359 2873 360 

Wheat 3592 359 2873 360 

Other 3592 359 2873 360 

In order to ensure accuracy of the crowdsourced image classifications, we created a set of 867 
control point images. Each of these images was classified between 5 and 8 times by different 
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individuals. If a minimum of 5 classifications agreed then we marked that image as a crowdsourced 
control image. Specifically for France, at the end of the campaign, we compared the crowdsourced 
results with the Land Parcel Information System (LPIS) of France. 

CNN Methodology & Architecture 

Convolutional Neural Networks (CNN) are a popular data mining technique for image 
recognition, first introduced by Fukushima [31]. CNNs consist of a hierarchical multi-layer network 
of nodes with various connections between the nodes to adjoining layers. LeCun [32] introduced a 
backpropagation algorithm to compute the gradient to improve CNN performance. The use of CNNs 
for object classification has been implemented in many domains, achieving a high efficiency and 
accuracy [33]–[35]. In addition, there has been a considerable amount of research to support the 
improvement of CNNs, e.g., the study published by Chen et al. [36], where they introduced the 
concept of Deep Learning into hyperspectral data classification. They verified the eligibility of stacked 
Autoencoders (AEs) by following classical spectral information based on clustering, focused on 
spatially dominated information. They also proposed a Deep Learning framework to merge the two 
features, resulting in high classification accuracies. Chen et al. [37] introduced a 3-D CNN-based 
model for feature extraction to extract efficient spectral-spatial features for hyperspectral image 
classification. Another contribution can be found in Makantasis et al. [38], who proposed a deep 
learning-based classification method that hierarchically constructed high-level features by encoding 
the spatial and spectral information of the pixels, and a Multi-layer Perceptron (MLP), which was 
responsible for the classification task.  

Network depth 

For the proposed CNN architecture used in this study, we applied a specific configuration for 
the convolution unit block (CUB); the architecture includes a convolution layer, an activation layer, 
and a subsampling layer. We tested different filters (or kernels) for each CUB to evaluate the output 
size. We performed a set of iterations to find the network depth that yielded the best results. 
Considering the computational cost, we used a CUB that was from 2 to 4 layers deep. After several 
iterations, we set the architecture to have a depth of 2 CUBs. 

Layer kernel and stride size 

The set of pictures used contains details such as the size of the objects, the colors, different 
shapes, and other variables. The experiments undertaken considered several variables such as the 
width, the size of the kernel, and the stride size. A kernel refers to a small matrix of learnable weights 
that is applied to the input image to extract its main features during the convolution operation. The 
stride hyperparameter refers to the number of pixels the filter or kernel is shifted or moved at each 
step when performing convolution. The experiments gave better results with a small kernel and a 
smaller stride size. The kernel size is reduced to a new two-by-two shape, and the stride is set up to 
advance two steps per axis during the convolution operation.  

Dense layer hidden units 

The units in a dense layer are individual artificial neurons connected to all the neurons in the 
preceding layer that produce a single output value. This output value is calculated using a weighted 
sum of the inputs, where the weights are the parameters learned in the kernels by the neural network 
during the training process. For our architecture, we set the total number of hidden units in the dense 
layer to double the output size of the last convolution layer. Figure 3 shows the first convolutional 
output layer with 16 units. Hence, the output layer is followed by a second convolutional layer with 
32 units. 
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Figure 3. The CNN architecture used in the Maize-Wheat-Other (MWO) model. 

Activation and loss functions 

We did a grid search using different loss and activation functions to find the combination that 
yields the best performance. The search method was performed by training the model based on the 
architecture depicted in Error! Reference source not found. 3. Error! Reference source not found. 
shows the pairs of activation and loss functions used in the model experiments. 

Table 2. Different activation and loss functions for the experiments. 

Activation function Loss function 

RELU Mean Squared Error (MSE) 
IDENTITY POISSON 

TANH MEAN SQUARED LOGARITHMIC ERROR 

Training epochs 

Adjusting the hyper-parameters for the training epoch is mandatory for improving the 
performance results. If the training phase rates are low, more training iterations are required to 
stabilize the learning-time curve. After fifteen epochs, the learning curve stabilized; therefore, the 
maximum training epoch was initialized to that value. 

Evaluation methods 

The proposed approach was tested using the MWO CNN. The experiment’s outcome for each 
trained model consists of assessing the accuracy and the Receiver Operating Characteristic (ROC) 
Curve [39] evaluating the multi-class model. The Precision [40] assesses the proportion of samples 
correctly classified. The F1-Score evaluates the accuracy and sensitivity using the harmonic mean 
[40]. The sensitivity and specificity evaluate the proportional classification for positive and negative 
samples [39]. We split the data into 80% for training, 10% for the test, and 10% for validation.  

3. Results 

Crowdsourcing 

Using the crowdsourcing classifications and the parcel information from the official 
French 2016-2019 Land Parcel Information Systems (LPIS), we computed a confusion 
matrix to examine the performance of the crowd [41]. Since each image is labelled by more 
than one person, we selected those classifications from the database in which a minimum of 
8 classifications per location were collected and there was a majority agreement, i.e., at least 
5 classifications were of the same crop type. Based on this, we found an accuracy of 63.1%. 
We then discarded the non-cropland class, which resulted in an overall accuracy of 98.7%. 
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The final confusion matrix is shown in Table 3. We can justify discarding the non-cropland 
class because in this class, we included crops that have already been harvested and hence no 
crop could be identified from these photographs. 

Table 3. Confusion matrix with land parcel information in columns and volunteer classifications as rows. 

MWO CNN 

Table 4 shows the overall results for the architecture shown in Figure 1 for MWO CNN, using 
noisy street-level images and recognizing three kinds of pictures with an overall accuracy of 75.93%. 
Figure 4 depicts the ROC values for each class. The ROC curve shows the trade-off between the 
precision and the specificity. As a reference, the ideal classifier should have a high precision and low 
specificity. The area under the ROC curve (AUC) is a measure of the classifier's overall performance, 
where a value of 1 indicates a perfect classifier (e.g., no wrong classification in all the test samples) 
and a value of 0.5 indicates that the classifier performs no better than random chance. Figure 4 depicts 
the model outcome; this is more accurate when classifying pictures of wheat crops; which is the class 
with the highest AUC of 0.8722. The second-best performance corresponds to the class “Maize”, with 
an AUC value of 0.8485. As can be seen, the model struggled to classify images of the “Other” class 
successfully. 

Table 4. Results for the MWO CNN by the Maize, Wheat and Other classes. 

CROP PRE RECALL F1 AUC 

Maize 79.18 80.28 79.72 0.85 

Wheat 77.67 86.94 82.04 0.87 

Other 69.87 60.56 64.88 0.73 

 Wheat 

type 

crop 

 

maize 

 

Sun-

flower 

 

Vine-

yard 

 

Sor-

ghum 

 

Olive 

trees 

 

Other 

crop 

 

Total 

 

Wheat 

type 

crop 

468 2 0 1 1 0 3 475 

maize 2 589 0 0 0 0 0 591 

Sun-

flower 

0 1 46 0 0 0 2 49 

Vine-

yard 

0 1 0 939 0 0 0 940 

Sor-

ghum 

0 4 0 0 1 0 0 5 

Olive 

trees 

0 0 0 0 0 0 0 0 

Other 

crop 

9 1 0 0 0 0 6 16 

Total 484 598 46 941 2 0 11 0.986 
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Figure 4. The Receiver Operating Characteristic (ROC) curve for the MWO CNN model for maize, wheat and 
other classes. 

4. Discussion 

As crop-type detection from satellite data has proven challenging, we are exploring alternative 
methods. Here we introduced a deep-learning architecture to classify noisy street-level images 
according to the following three classes: maize, wheat, and other objects. In addition to the crops of 
interest, street-level imagery may include objects such as cars, roads, buildings, trees, people, other 
crops, and more. Because of the nature of the viewing angle for street-level imagery, automatic 
classification can prove challenging as the above-mentioned objects often obscure the view. 

However, there is a vast and growing archive of street-level imagery available across the globe, 
which offers great potential for gaining insight into crop-type mapping. Interesting to note is the high 
level of accuracy documented during the crowdsourcing approach (> 95%). While it was not possible 
to replicate this level of accuracy with the MWO CNN model, initial results are still promising (AUC 
of 0.87 for wheat and AUC of 0.85 for maize). 

After analyzing the nature of the images corresponding to the other class, we noticed that many 
contain non-crop objects and crop-types different than maize or wheat. The similarity between the 
additional crops and those of interest (i.e., maize and wheat) make it difficult for the model to 
distinguish between them. As a result, we achieved a low performance of AUC of 0.73 for the other 
class. 

Nonetheless these initial results are promising owing to the vast potential of this data as an in-
situ dataset. With additional improvements, classified street-level imagery could provide a powerful 
training dataset for global satellite mapping. Crop-type information, combined with the image 
acquisition dates could be ingested into various global land products. 

5. Conclusion 

We have introduced the first fully open crop type recognignition system based on a 
Convolutional Neural Network (CNN) architecture for a crop-type recognition application using 
deep learning to classify two specific crop-types in street-level images. The architecture demonstrates 
the application of CNN methods to recognize maize, wheat, and other classes in the images.  

The MWO CNN model was trained using more than 8,000 crowdsourced street-level images 
from a Picture Pile campaign over France, where citizens contributed to labeling the images. The 
crowsourced images were classified with an accuracy of > 95%. The MWO CNN model achieved an 
AUC of 0.87 for wheat and 0.85 for maize, the two most predominant global crops. The other class 
achieved an AUC of 0.73. Given the specific viewing angle of street-level imagery, various non-crop 
structures impeded the view confounding the algorithms. Nonetheless, this method holds great 
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potential to massively increase our ability to globally track important crop-types as the amount of 
street-level imagery continues to increase globally. 

Funding: This study has been supported by the Open-Earth-Monitor Cyberinfrastructure project with funding 
from the European Union’s Horizon Europe research and innovation program under grant agreement № 
101059548. 
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