Predicting the adaptive responses of biodiverse plant communities using functional trait evolution

Jaideep Joshi, Florian Hofhansl, Shipra Singh, Benjamin D. Stocker, Toyo Vignal, Åke Brännström, Oskar Franklin, Carolina C. Blanco, Izabela F. Aleixo, David Lapola, Iain Colin Prentice, and Ulf Dieckmann

25 Apr 2023, EGU 2023
How does a biodiverse ecosystem respond to climate change?

Organizational levels
- Individual
- Species
- Community

Timescales
- Hours-months
- Years-decades
- Centuries

- Plastic trait acclimation
- Demographic community shifts
- Species genetic evolution
How does a biodiverse ecosystem respond to climate change?

- **Organizational levels**
 - Individual
 - Species
 - Community

- **Timescales**
 - Hours-months
 - Years-decades
 - Centuries

- **Fluxes**
 - GPP \uparrow
 - $V_{\text{cmax}} \downarrow$
 - $g_s \downarrow$

- **Community composition**
 - ?

- **Evolutionarily stable strategies**
 - ?

3
Plant-FATE: Our eco-evolutionary vegetation model

Physiological acclimation
Optimality principles

Optimal photosynthesis, hydraulics, allocation

Vegetation demographics
Size-structured population modelling

Competition for light and water, optimal crown placement

Species evolution
Evolutionary dynamics

Gradual ascension of the fitness landscape

Days - Months

Years - Decades

Centuries

Image Credits: Muffet, Huw Williams
We address four key Questions

1. What are the changes in fluxes (GPP, transpiration) under elevated CO$_2$ (eCO$_2$) compared to ambient CO$_2$ (aCO$_2$)?

2. What are the timescales of responses at the three organizational levels?

3. Are there potential species shifts under eCO$_2$?

4. How do allocation shifts occurring in response to nutrient limitation affect ecosystem responses to eCO2?
We apply the model to a hyperdiverse Amazonian forest

1. Forced with periodic extension of observed meteorological data from 2000-2015

2. Species defined as unique combinations of 4 traits: LMA, max. height, wood density, xylem ψ_{50}

3. Start with 100 species with random trait values with equal abundance

4. Let community composition evolve via competitive exclusion
GPP increases, transpiration decreases under eCO$_2$

- **Graph A**: GPP, NPP (kgC m$^{-2}$ yr$^{-1}$) over years.
- **Graph B**: Stomatal conductance (mol m$^{-2}$ s$^{-1}$) over years.
- **Graph C**: Vcmax (umol m$^{-2}$ s$^{-1}$) over years.
- **Graph D**: Total LAI over years.
- **Graph E**: Basal area (m2) and Canopy layer heights (m) over years.

Observed range
Community shifts to larger trees and species with lower wood density under eCO$_2$
Community responds on three timescales

1. Physiological response in increased leaf-level photosynthesis ~1 year
2. Demographic change due to changing light environment ~500 years
3. Evolutionary change due to changing species composition ~2000 years
Population-environment feedbacks alter the direction of the community shift

Predicted optimal wood density
(for different combinations of LMA, Max Height, and P50)

- **Baseline**
- **eCO2 but no change in vertical light profile**
- **eCO2 with demographic feedbacks on light profile**

![Wood density (kg m-3)](image)
Nutrient limitation diminishes the said response
Take home messages

1. The Plant-FATE model correctly predicts ecosystem fluxes, forest structure, and species composition under ambient CO$_2$
2. Under elevated CO$_2$, productivity increases but community shifts to lower wood density
3. The direction of the shift is determined by feedbacks between forest structure and the environment: not accounting for environmental feedbacks can predict opposite outcomes
4. Increased root-zone allocation dampens the increase in productivity but also prevents community shift
Thank you

Questions?

jaideep.joshi@giub.unibe.ch