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Abstract: The Amazon forests act as a global reserve for carbon, have very high biodiversity, and
provide a variety of additional ecosystem services. These forests are, however, under increasing
pressure, coming mainly from deforestation, despite the fact that accurate satellite monitoring is in
place that produces annual deforestation maps and timely alerts. Here, we present a proof of concept
for rapid deforestation monitoring that engages the global community directly in the monitoring
process via crowdsourcing while subsequently leveraging the power of deep learning. Offering no
tangible incentives, we were able to sustain participation from more than 5500 active contributors
from 96 different nations over a 6-month period, resulting in the crowd classification of 43,108 satellite
images (representing around 390,000 km2). Training a suite of AI models with results from the crowd,
we achieved an accuracy greater than 90% in detecting new and existing deforestation. These findings
demonstrate the potential of a crowd–AI approach to rapidly detect and validate deforestation events.
Our method directly engages a large, enthusiastic, and increasingly digital global community who
wish to participate in the stewardship of the global environment. Coupled with existing monitoring
systems, this approach could offer an additional means of verification, increasing confidence in global
deforestation monitoring.

Keywords: deforestation; crowdsourcing; machine learning

1. Introduction

The Amazon rainforest, spanning 5.5 million km2, is an area half the size of the United
States of America and slightly larger than the European Union. This vast expanse of forest
is home to the greatest variety of plant species per km2 in the world [1]—and plays a
vital role in absorbing billions of tons of CO2 annually from the atmosphere [2]. However,
deforestation and forest degradation continue to place pressure on the Amazon [3,4],
as forests are cleared for timber extraction, crop production, rangeland expansion, and
infrastructure development—ultimately impacting water bodies and biodiversity and
leading to soil erosion and climate change [5,6].

Deforestation rates reached their peak in the Brazilian Amazon in the period
2003–2004 [7] at 29,000 km2 per year, thereafter declining to below 6000 km2 per year
by 2014 [3]. However, since then, official deforestation rates have been rising again, wors-
ening in recent years (10,129 km2 of forest were clear-cut in 2019) [8]. Compounding this
problem, the number of active fires in August 2019 was nearly three times higher than in
August 2018 and the highest since 2010, with strong evidence suggesting this increase in
fire was linked to deforestation [9].
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Several operational systems are in place to detect and monitor deforestation over
the Amazon, including Brazil’s mapbiomas.org and continuous monitoring programs of
clear-cut deforestation (PRODES) and the related alert warning system for near-real-time
deforestation detection (DETER) [10], as well as the Global Land Analysis and Discov-
ery Landsat deforestation alerts (GLAD-L) [11], the GLAD-S2 [12] Sentinel deforestation
alerts, and the global annual tree cover loss datasets [13]. Radar-based deforestation alerts
(RADD) [14] are also now available for the pan-tropical belt. The GLAD system employs a
classification tree to detect deforestation [11], while the RADD system employs a proba-
bilistic algorithm. While these operational remote sensing systems are delivering highly
accurate annual assessments and frequent alerts [10–13], their uptake into actionable change
or policy developments appears somewhat limited [15].

In an effort to monitor forest disturbance in near real time, Global Forest Watch has
merged the GLAD-L, GLAD-S2, and RADD alerts into a single integrated deforestation
alert. This has resulted in a daily pan-tropical monitoring system operating from 1 January
2019 to the present with a pixel resolution of 10 m. Although these alerts are described as
deforestation alerts, they do not distinguish between human-caused deforestation and other
disturbance types (e.g., fire, windthrow), meaning that these alerts should be considered as
potential deforestation events and should be further investigated. Furthermore, accuracies
vary across the three alerts due to different sensor characteristics—i.e., wetness greatly
affects the RADD alerts, while cloud cover affects the GLAD alerts. Additionally, the
highest confidence is only awarded to alerts where more than one alert system was in
operation at a given location and time period, meaning this is not always achieved. Hence,
a complementary verification system that could be established to add additional confidence
to the integrated deforestation alerts would provide additional value.

One component of such a complementary verification system could include crowd-
sourcing, otherwise known as the outsourcing of tasks to the crowd [16], which has been
used successfully in the past for image recognition tasks and the visual interpretation
of satellite imagery [17,18] as humans are particularly well suited to image recognition,
especially when the images are abstract or have complex features [19]. However, for
challenging thematic classification tasks (which require specific knowledge or experience
to identify), experts will outperform non-experts [20]. Hence, it is important to ensure
training materials exist for the crowd for difficult tasks. Nonetheless, studies show that the
crowd can perform equally as well as experts (in particular, for binary tasks such as human
impact), with accuracies increasing when consensus or majority agreement is used [20,21].
Furthermore, ancillary benefits of crowdsourcing include awareness raising and education
among participants, along with a feeling of community [22,23].

With large advances in recent years in the field of image recognition [24], large image
libraries such as those generated via crowdsourcing can be exploited by Artificial Intelli-
gence (AI). By combining both crowdsourcing and AI, we can harness the efforts of the
crowd to construct a dataset of classified satellite images from which a deep-learning model
can be trained to monitor rainforest deforestation.

Here, we investigate the application of supervised deep learning to automate the
identification of satellite images that contain areas of significant deforestation. However,
deep-learning models trained with supervised learning typically require large volumes of
high-quality training data. Many deep-learning models are pre-trained on large datasets
that have been curated over many years by researchers, such as ImageNet [25], CIFAR-10,
and CIFAR-100 [26]. These datasets can contain millions of images, but those images are
typically of common scenes and features available from the internet. While some image
libraries do exist for identifying rainforest deforestation [27], we opted to crowdsource this
task, in part, to demonstrate the potential of involving the global community.

Hence, our objectives in this proof of concept were twofold, namely, to explore the
potential of the crowd to detect Amazon deforestation on a large scale and then, using this
crowdsourced image library, to train deep learning models to demonstrate the accuracy,
scalability, and applicability of such an approach across a large region.
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2. Materials and Methods
2.1. Satellite Data

For this study, we exclusively utilized satellite imagery from the free and open Sentinel-
2 mission of Copernicus, a program of the European Union. Sentinel-2 is a European
wide-swath, high-resolution, multi-spectral imaging mission with a revisit frequency of
5 days at the Equator [28]. Sentinel-2 contains 13 optical bands of which we used 3 to create
RGB images (Blue (~493 nm), Green (560 nm), and Red (~665 nm)) with a 10 m resolution.
The orbital swath width is 290 km. The Sentinel-2 image tiles were downloaded using the
Sen2r package [29]. We filtered the images using a 5% cloud filter. The retrieved images
spanned the years 2018–2020, implying that, in some images, we would have missed the
most recent activity.

The downloaded images were then further screened for quality, including excessive
cloud coverage that was not filtered by the cloud filter or where missing data consumed
the majority of the scene. These images were removed. In the next steps, the original tiles
were subdivided into nine 3 × 3 km images, which, when presented to the crowd in a
3 × 3 matrix (Supplementary Information Figure S1), provided imagery at a suitable zoom
level for crowdsourcing, bearing in mind a pixel resolution of 10 m.

2.2. Crowdsourcing Application

In order to explore the potential of the crowd and to collect the necessary training
data to drive the AI models, a crowdsourcing application was designed and implemented
(https://app.gatheriq.analytics/rainforest (accessed on 22 April 2020)). The crowd was
only involved in the initial stage of labeling the satellite imagery. Several steps were under-
taken to ensure the highest quality possible of the crowdsourced images. Users were pre-
sented with a 3× 3 matrix of Sentinel-2 satellite images from which they selected the images
that appeared to contain evidence of deforestation (Supplementary Information Figure S1).
Classified examples of images that users may encounter are also provided (Supplemen-
tary Information Figure S2). These cover the broad categories of human impact, natural
deforestation, and comparisons between natural and human impact. Under human impact,
volunteers might encounter roads, settlements, fields, clear-cuts, and clearings. Under nat-
ural deforestation, volunteers might encounter water-related canopy disruptions and other
canopy disruptions including fire, wind damage, and terrain- and soil-related changes.

We instructed the crowd to leave regions unselected if they were unsure. The entire
platform containing an overview of the task and progress tracking is available at https:
//www.sas.com/en_us/data-for-good/rainforest.html (accessed on 22 April 2020). The
current platform has now expanded upon the original study and continues to collect
training data.

2.3. Crowdsourcing Campaign

To engage the crowdsourcing audience to participate in the image classification effort,
several promotional efforts were executed over the course of the study period, including
techniques such as the publication of online videos, press releases, conference events, social
media promotion, and paid advertising. The project was launched to the public on Earth
Day, 22 April 2020, an annual global event to demonstrate support of the efforts to protect
the Earth’s environment. Aligning the launch of this campaign with Earth Day proved to
be a successful starting point and a useful means of engagement with volunteers interested
in the environment. A test period followed, with accurate data being collected as of 1 June
2020. Data collected until 30 November 2020 were used in this study. The resulting statistics
from this campaign are presented in Table 1.

https://app.gatheriq.analytics/rainforest
https://www.sas.com/en_us/data-for-good/rainforest.html
https://www.sas.com/en_us/data-for-good/rainforest.html
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Table 1. Statistics from the crowdsourcing campaign.

Metric Statistic

Number of countries participating 96 countries
Total area classified
Number of satellite images classified

389,988 km2

43,108
Average No. of classifications per user 49
Number of users who classified images 5521

The campaign was open to anyone with access to the URL. There were no restrictions
on participation; however, it is likely that the crowd was biased toward those with an
interest in Earth Day and those who saw the online advertising. Although the campaign
was open to anyone, we provided help to guide volunteers and applied a variety of
techniques to ensure quality as described below.

2.4. Image Labeling

A naive approach to labeling would display each image to one person only and have
them provide a label. While this would allow for labeling the most images in the shortest
amount of time, we cannot assume that a randomly selected member of the public is skilled
enough to accurately identify deforestation in a satellite image. Instead, we opted to display
each satellite image to multiple users (a minimum of six unique submissions with a process
making it unlikely that multiple votes come from the same person), taking a decision on
the final classification based on their level of agreement.

We chose not to require users to login or provide any identifying information in an
effort to eliminate as many hurdles to participation as possible. However, this decision also
made it challenging to identify unique labelers, which prevented us from using techniques
such as Inter-Rater Reliability [30]. Instead, users were shown images randomly sampled
from a pool of 2000 unlabeled images, and we assumed that, if users can reach a consensus
on the label after a reasonable number of views for a given image, then that label is an
acceptable substitute for a label from an expert. This turns the problem of user consensus
into estimating the probability that a user would, on average, assign a particular label. For
each image to be labeled, we applied the following formula:

De f orestation ∼ B(1, p) (1)

This represents the probability that a user selected at random will identify the image as
showing evidence of deforestation. This gives a Bernoulli process where p is unknown.
By polling multiple users, we estimate p̂, the likelihood that the crowd would collectively
label the image as Deforestation = 1, as follows:

p̂ = nde f orestation/ntotal (2)

However, this estimate of p also has some amount of error. Therefore, we place a 95%
confidence interval around p̂ and only consider an image as labeled once the upper bounds
(UBs) or lower bounds (LBs) for p̂ cross the 0.5 threshold, as follows:

p̂LB = p̂− 1.96

√
p̂(1− p̂)

ntotal
(3)

p̂UB = p̂ + 1.96

√
p̂(1− p̂)

ntotal
(4)

label(X) =

{
De f orestation i f p̂LB > 0.5
No De f orestation i f p̂UB p < 0.5

(5)
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2.5. Crowd Agreement with Experts

The users reached a consensus on most images within a few dozen votes (Supplemen-
tary Figure S6). However, a small percentage of images were challenging and required many
votes to reach consensus. We periodically sampled these images with larger disagreement,
as calculated in Equation (6), and had them manually reviewed and labeled by experts to
remove them from circulation and avoid user frustration. Approximately 300 images were
removed in this manner. These labeled images were retained for model training.

disagreement = nde f orestation/nno de f orestation (6)

In addition, we randomly sampled 200 images for expert review to measure how often
the crowd labels aligned with expert labels. The crowd agreed with experts 88% of the time
(Supplementary Table S3).

2.6. Deforestation Data for Validation

For the purposes of validation, we obtained forest deforestation annual products
from Brazil’s PRODES system located at http://terrabrasilis.dpi.inpe.br/en/download-2/
(accessed on 1 May 2021). For PRODES, the deforested area is composed of aggregate
deforestation up to the year 2007 and is discretized into an annual historical time series
for the years 2008 to 2020. PRODES uses Landsat or similar satellite images to register
and quantify deforested areas greater than or equal to 6.25 hectares. PRODES considers
deforestation to be the suppression of native vegetation, regardless of the future use of
these areas.

The annual global tree cover loss products were obtained from https://glad.earthengine.
app/view/global-forest-change#dl=1;old=off;bl=off;lon=20;lat=10;zoom=3 (accessed on 1
May 2021). We used the forest cover loss event (lossyear) product to represent annual
forest loss. Forest loss during the period 2000–2020 is defined as a stand-replacement
disturbance or a change from a forest to a non-forest state. It is encoded as either 0 (no
loss) or else a value in the range 1–20, representing loss detected primarily in the year
2001–2020, respectively. All files contain unsigned 8-bit values and have a spatial resolution
of 1 arc-second per pixel or approximately 30 m per pixel at the equator.

2.7. Deep Learning

We constructed four separate deep learning models using established convolutional
neural network architectures: VGG16, ResNet18, ResNet34, and MobileNetV2. Each model
was trained using SAS® Visual Data Mining and Machine Learning software (SAS 9.4
and SAS Viya 4; SAS Institute, Cary, NC, USA) in conjunction with the SWAT and DLPy
packages for Python.

The VGG16 has a total of 16 layers with weights with approximately 138 million pa-
rameters, making it computationally expensive, although it generalizes well to a wide range
of tasks [31]. ResNet18 has 18 layers and approximately 11 million trainable parameters,
while ResNet34 is structured as a 34-layer CNN with 63.5 million parameters. Both ResNet
models are useful where resources are limited, gaining accuracy from increased depth [32].
MobileNetV2 is 53 layers deep with approximately 13 million parameters and is designed
for computational efficiency [33].

The preprocessing time of the models was negligible. We performed some basic
oversampling of deforested images to balance the dataset and augmented the training
set with flip/mirror transformations. For example, ResNet18 training for 30 epochs took
approximately 45 min using 2 GPUs; however, this time varies by model architecture and,
additionally, which resources were available on the shared environment.

During each training session, the model was trained for 50 epochs on the available
training data. After each epoch, we measure the cross-entropy loss J as follows:

J(Θ) = − 1
N ∑N

n=1[ynlog ŷn + (1− yn)log(1− ŷn)] (7)

http://terrabrasilis.dpi.inpe.br/en/download-2/
https://glad.earthengine.app/view/global-forest-change#dl=1;old=off;bl=off;lon=20;lat=10;zoom=3
https://glad.earthengine.app/view/global-forest-change#dl=1;old=off;bl=off;lon=20;lat=10;zoom=3
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where N is the total number of examples in the training set, yn ∈ {0, 1} is the label assigned
by the crowd to image n, and ŷn is the probability predicted by the network for the same
training image.

We applied a stochastic gradient descent with momentum [34] to reduce the cross-
entropy loss after each epoch. This optimization was performed with a learning rate of
1 × 10−3, a batch size of 32, and an L2 regularization parameter of 5 × 10−4.

3. Results

With the establishment of a dedicated crowdsourcing application (https://app.gatheriq.
analytics/rainforest (accessed on 22 April 2020)), we launched a campaign to crowdsource
Amazon deforestation activity. In a span of only 6 months, 5500 active participants from
96 countries helped crowdsource the classification of 389,988 square kilometers of the
Amazon in terms of deforestation activity (Figure 1). Volunteers were presented with
cloud-free samples of Sentinel-2 satellite images and asked to identify those in which
deforestation activity was visible (Supplementary Figure S1). This resulted in a map and
image library of deforestation activities across the Amazon basin. Example images were
provided for guidance (Supplementary Figure S2). The level of consensus or agreement
among the crowd on the classification result was generally high, with most images (37,325
images out of 43,108) receiving over 80% percent consensus.
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Figure 1. Results of the crowdsourcing campaign over the Brazilian Amazon between June and
November 2020. Map of the 390,000 km2 (43,108 images) classified by the crowd as having either
evidence of deforestation or no deforestation. Individual pixels represent a 3 × 3 km image.

3.1. Validation of the Crowd

To increase our confidence in the crowd and determine the quality of our image library,
we performed a series of quality steps (Methods). During the campaign, each image was
shown to multiple users until a consensus was reached on the image label. Images that
proved difficult for the crowd (i.e., consensus could not be reached) were removed from
the campaign and labeled by experts (approximately 300 images in total, labeled by global

https://app.gatheriq.analytics/rainforest
https://app.gatheriq.analytics/rainforest
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land cover experts at IIASA). In addition, we randomly sampled 200 images for expert
review to determine how often the crowd labels aligned with these expert labels, resulting
in 88% agreement. Finally, we compared our crowdsourced image library of deforestation
activity with the annual Brazilian deforestation map (PRODES) and the global annual tree
cover loss product [13] (Figure 2).
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Figure 2. A comparison of results from our crowdsourcing campaign with (a) global annual tree
cover loss and (b) Brazil’s PRODES satellite deforestation datasets for a subset of the study area.
We considered only tree cover loss and PRODES satellite observations from the period 2010–2020,
as earlier disturbance is likely no longer visible to the crowd. The pixel outlines in red and gray
(3 × 3 km) represent the unique crowdsourcing image locations identified as containing either signs
of deforestation or no deforestation, respectively.

The resulting comparison of the three products demonstrates that our crowdsourcing
data consistently detects historical deforestation activity recorded by both the PRODES
and tree cover loss products. Differences exist in the level of spatial detail between the
PRODES (6.25 ha) and tree cover loss products (30 m) and in the timespan of the two
products (Methods). Thus, in order to compare these results with our crowdsourcing
classifications, we searched the PRODES and tree cover loss products for deforestation
activity greater than 1 km2 (100 ha) within the coarser pixels identified by the crowd as
containing signs of deforestation activity. This resulted in a spatial accuracy between
the crowd and the PRODES and tree cover loss products of 92% and 89%, respectively
(Supplementary Tables S1 and S2).

3.2. Deep Learning

We randomly partitioned our newly established crowdsourced image library of ap-
proximately 43,000 images with labels assigned through crowd consensus (or expert
review) into datasets for training, validation, and testing, i.e., 60%, 20%, and 20%, re-
spectively. We then proceeded with the testing of a series of deep-learning models,
trained on the available training images each month, including VGG16 [31], ResNet18,
ResNet34 [32], and MobileNet [33]. At the end of the analysis, the ResNet18 model slightly
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outperformed all others, although all models performed well after almost 50 iterations
(Figure 3). As Supplementary Figure S3 demonstrates, all architectures tested appear to be
reasonable choices.
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Applying the ResNet18 model to the testing dataset results in the classification of
images based on deforestation activity or no deforestation. However, as the classified
images are large (3 × 3 km each), and the actual deforestation activity may only occur
in a small section of the image, we can use the various activation layers from the deep
learning model to pinpoint the actual location in the image that triggered the classification
(Methods). Applying this technique results in image heatmaps that identify the areas
within each image that most strongly influence the final class (Figure 4).

Analyzing Figure 4, we are able to visualize the inner workings of the model [35]. This
increases the confidence in the model results and demonstrates that even a small canopy
disturbance can trigger a reaction in the model. In the top row, we see signs of deforestation
in the image that trigger the activation layers, giving the model high confidence that human
impact has occurred even though the crowd was less confident when compared to the
model’s confidence. In the middle row, signs of human impact at the top of the image
trigger the activation layer accordingly, and the model confidently detected human impact,
recognizing the rest of the image as having no human impact. The crowd was also more
confident that this image showed deforestation. Finally, in the bottom row, both the crowd
and the model identified the canopy disturbance as no deforestation with high confidence.
Additional examples are provided in Supplementary Figure S4.
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3.3. AI Validation

In addition to this qualitative analysis, we measured the model’s performance against
multiple sets of images that were distinct from the images used during training. The
model’s accuracy was measured against a test set of 8774 images that had been labeled by
the crowd but not previously seen by the model, achieving agreement with the crowd on
94.8% of the images. This indicates that the model successfully learned how to mimic the
crowd’s classification of these images.

To independently validate our crowd-driven AI model, we analyzed 100 Sentinel-2
satellite images from 2019 unseen by the crowd over the Peruvian Amazon. We then
compared these results to the global annual tree cover loss dataset (Figure 5). The overall
accuracy of this comparison was 84% (Supplementary Table S5). The results show a strong
overlap between the identification of deforestation from the tree cover loss product with
the AI model outputs although there were a few examples of omission errors as shown in
the center of the figure.



Remote Sens. 2023, 15, 5204 10 of 14Remote Sens. 2023, 15, x FOR PEER REVIEW  10  of  14 
 

 

 

Figure 5. Validation results of the crowd-driven AI model prediction compared with global annual 

tree cover loss over the Peruvian Amazon. 

4. Discussion 

Ensuring the effectiveness of the crowd in this approach is paramount to its success. 

We implemented several standard approaches to ensure we received the best possible in-

put, and we employed several methods to clean the data ex post. As the participants are 

public volunteers with no tangible incentive, we relied on their goodwill and enthusiasm. 

Nonetheless, we offered guidance on the website in terms of what and how to classify the 

data and relied on random expert comparisons and the agreement of the crowed in order 

to increase quality, along with various forms of feedback to users and gamification tech-

niques. Applying these techniques led to a crowd accuracy of 88% when compared to ex-

pert classifications. 

A qualitative analysis of the crowd and AI models indicated that the crowd appeared 

to perform better in terms of classifying rivers and roads, while the AI models tended to 

struggle with  them. Water,  in particular, appears  in many colors,  in part, owing  to  the 

amount of silt  in  the water. The models also had difficulty with reflections  from water 

bodies  in comparison  to  the crowd. Both  issues could be mitigated with more  training 

data, and perhaps, in the case of water, filtering to remove glare or the use of a mask. In 

terms of detecting human  impact, however,  the  crowd-driven AI models  appeared  to 

identify human impact with higher confidence than the crowd. 

As we wanted to use the best available free and open satellite data at the time of this 

study, we opted  for  the Sentinel-2 dataset  (Methods). Owing  to  the 10 m resolution of 

these data and the corresponding zoom level necessary to allow for accurate crowdsourc-

ing, the chosen image size for classification was 3 × 3 km. This has the advantage that the 

images are acceptable for viewing by the crowd (i.e., of reasonable visual quality) and that 

the crowd  is able  to classify  large areas  in a short period of  time. However,  the disad-

vantage is that we are less precise about the exact location of any disturbances detected, 

as  the  resulting  classification  applies  to  the  entire  3  ×  3  km  image. Areas  without 

Figure 5. Validation results of the crowd-driven AI model prediction compared with global annual
tree cover loss over the Peruvian Amazon.

4. Discussion

Ensuring the effectiveness of the crowd in this approach is paramount to its success.
We implemented several standard approaches to ensure we received the best possible
input, and we employed several methods to clean the data ex post. As the participants are
public volunteers with no tangible incentive, we relied on their goodwill and enthusiasm.
Nonetheless, we offered guidance on the website in terms of what and how to classify
the data and relied on random expert comparisons and the agreement of the crowed in
order to increase quality, along with various forms of feedback to users and gamification
techniques. Applying these techniques led to a crowd accuracy of 88% when compared to
expert classifications.

A qualitative analysis of the crowd and AI models indicated that the crowd appeared
to perform better in terms of classifying rivers and roads, while the AI models tended to
struggle with them. Water, in particular, appears in many colors, in part, owing to the
amount of silt in the water. The models also had difficulty with reflections from water
bodies in comparison to the crowd. Both issues could be mitigated with more training data,
and perhaps, in the case of water, filtering to remove glare or the use of a mask. In terms
of detecting human impact, however, the crowd-driven AI models appeared to identify
human impact with higher confidence than the crowd.

As we wanted to use the best available free and open satellite data at the time of this
study, we opted for the Sentinel-2 dataset (Methods). Owing to the 10 m resolution of these
data and the corresponding zoom level necessary to allow for accurate crowdsourcing,
the chosen image size for classification was 3 × 3 km. This has the advantage that the
images are acceptable for viewing by the crowd (i.e., of reasonable visual quality) and
that the crowd is able to classify large areas in a short period of time. However, the
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disadvantage is that we are less precise about the exact location of any disturbances
detected, as the resulting classification applies to the entire 3 × 3 km image. Areas without
disturbance are, however, mapped with equal precision as in other methods, although
forest degradation might go unnoticed as it is more difficult to spot. Further measures are
possible, however, to accommodate this shortcoming in our current approach, including the
use of recently available higher resolution Planet data (https://www.planet.com/ (accessed
on 1 September 2023)) and the use of overlapping tiles to better isolate disturbances.

Note that our method currently detects any deforestation that is visible (i.e., irre-
spective of when the disturbance may have occurred), regardless of whether it is already
captured in existing databases. We can, however, remove known areas of deforestation
from our results using the existing products and, if applied daily to the most recent satellite
imagery, could create a complementary crowd-driven AI monitoring system.

While this proof of concept was developed and tested over the Amazon, it could be
implemented anywhere that deforestation is occurring. We chose the Amazon initially as
this region contains very accurate monitoring programs in order to test and validate our
application. The real advantage would be then moving into regions that have much less
monitoring effort than in the Brazilian Amazon.

While our crowdsourcing volunteers view images of the rainforest in the visible
spectrum, the computer vision models tested here are not restricted to visible wavelengths.
In fact, using the near-infrared portion of the spectrum to calculate vegetation indices has
been shown to be an effective method for monitoring vegetation presence [36]. Computer
vision models that have been trained on images that contain either the near-infrared
spectrum or the actual computed indices, such as the Normalized Difference Vegetation
Index (NDVI), may be able to more accurately distinguish between natural deforestation,
water features, and otherwise disturbed or developed land.

Our tests indicate that the model’s classifications are accurate, but as all models
are imperfect approximations, we would like to have an indication of when the model
is incorrect. A manual review of random samples is an option, but this is undesirable
since the initial motivation for building the model was to reduce the time and manual
effort required to identify deforestation. One area to explore is whether image embedding
and clustering [37] could be used to flag similar images with disparate classifications.
Manual review would still be required, but images would no longer need to be selected at
random. Numerous unsupervised and self-supervised approaches to computer vision are
also currently under development [38].

An additional area for improvement involves how images are selected for labeling by
the crowd and how many times each image should be labeled to optimize the efforts of the
crowd. For this study, the images were sampled at random. However, there are multiple
strategies for active learning [39] that make it possible to select which images may be most
beneficial to model training. These images could then be selected for labeling, potentially
reducing the amount of data that must be manually labeled to train or refine an accurate
model. We also required each image to be labeled at least six times by the crowd, but we
could apply a Bayesian approach that would remove images once a minimum level of
confidence in the answers was reached, using, e.g., a method like that developed for binary
classification [40].

As our approach is data agnostic, by taking advantage of available high-resolution
satellite imagery, we could provide much more detailed spatial information on deforestation
and potentially degradation. Our approach presented here could also be used to focus on
hotspots, turning to higher-resolution imagery for detailed inspection. Our approach is
broadly applicable to other issues that lend themselves to image recognition with satellite
imagery, including topics such as migration, food security, natural hazards, and pollution.
Finally, the approach presented here could be operationalized, upscaled, and added to
existing platforms (e.g., Global Forest Watch) to complement the existing monitoring
methods currently in place. Documenting the drivers of deforestation would also be
possible by expanding on this approach [41].

https://www.planet.com/
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5. Conclusions

This study has resulted in a proof-of-concept, crowd-driven, AI approach to defor-
estation monitoring over the Amazon. The results are highly complementary to existing
operational systems that operate autonomously using satellite data and developed and
tested algorithms. Going forward, our approach could be established as a validation sys-
tem complementary to the existing monitoring systems in place, where citizens and deep
learning algorithms validate the existing alerts. In particular, our system could address the
timeliness of deforestation alerts [42] by focusing the power of the crowd on new alerts
as they arise, providing increased confidence and faster turnaround times. The existing
systems require on the order of several weeks at a minimum between the initial alert and
confirmation [14]. Furthermore, our approach could help to distinguish between deforesta-
tion and non-deforestation disturbances and potentially contribute to the identification of
the drivers of deforestation [43].

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/rs15215204/s1: Figure S1. The crowdsourcing user interface, which
prompts users to check any images they deem to contain deforestation in a 3 × 3 window. Unchecked
boxes are then assumed to contain no deforestation. Figure S2. Example images with descriptions
provided for guidance on the deforestation crowdsourcing platform. Figure S3. The mean training-set
accuracy achieved by each model architecture computed over five separate trials. Figure S4. The
Receiver Operating Characteristic curve illustrating the change in true-positive and false-positive
classifications as the threshold for a positive class label is varied. The optimal threshold of 0.39
as determined using Youden’s Index is marked in black. Figure S5. Examples of deep learning
model results for (a) eight test dataset images from across the Brazilian Amazon representing signs
of deforestation activity and no activity (including natural breaks in the canopy), (b) the resulting
activation layers from the model showing which part of the image triggered the classifier (warmer
colors imply model activation), and (c) the resulting confidence of the crowd and model for defor-
estation or no deforestation. Figure S6. Frequency with which images require more than six votes
before being successfully labeled. Frequency is a log scale. Table S1. Spatial accuracy between the
crowd and the PRODES deforestation product. Table S2. Spatial accuracy between the crowd and
the global annual tree cover loss product. Table S3. Accuracy of the crowd on a random sample of
200 images. Table S4. Accuracy of the ResNet18 model on test images. Table S5. Spatial accuracy
of the crowd-driven AI model prediction compared with global annual tree cover loss over the
Peruvian Amazon.
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