Maxwell, T., Rovai, A., Adame, M., Adams, J., Álvarez-Rogel, J., Austin, W., Beasy, K., Boscutti, F., Böttcher, M., Bouma, T., Bulmer, R., Burden, A., Burke, S., Camacho, S., Chaudhary, D., Chmura, G., Copertino, M., Cott, G., Craft, C., Day, J., et al. (2023). Global dataset of soil organic carbon in tidal marshes. Scientific Data 10 (1) 10.1038/s41597-023-02633-x.
Preview |
Text
s41597-023-02633-x.pdf - Published Version Available under License Creative Commons Attribution. Download (1MB) | Preview |
Abstract
Tidal marshes store large amounts of organic carbon in their soils. Field data quantifying soil organic carbon (SOC) stocks provide an important resource for researchers, natural resource managers, and policy-makers working towards the protection, restoration, and valuation of these ecosystems. We collated a global dataset of tidal marsh soil organic carbon (MarSOC) from 99 studies that includes location, soil depth, site name, dry bulk density, SOC, and/or soil organic matter (SOM). The MarSOC dataset includes 17,454 data points from 2,329 unique locations, and 29 countries. We generated a general transfer function for the conversion of SOM to SOC. Using this data we estimated a median (± median absolute deviation) value of 79.2 ± 38.1 Mg SOC ha−1 in the top 30 cm and 231 ± 134 Mg SOC ha−1 in the top 1 m of tidal marsh soils globally. This data can serve as a basis for future work, and may contribute to incorporation of tidal marsh ecosystems into climate change mitigation and adaptation strategies and policies.
Item Type: | Article |
---|---|
Research Programs: | Biodiversity and Natural Resources (BNR) Biodiversity and Natural Resources (BNR) > Biodiversity, Ecology, and Conservation (BEC) |
Depositing User: | Luke Kirwan |
Date Deposited: | 14 Nov 2023 09:05 |
Last Modified: | 09 Sep 2024 12:49 |
URI: | https://pure.iiasa.ac.at/19185 |
Actions (login required)
View Item |