
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uasa20

Journal of the American Statistical Association

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uasa20

Ultimate Pólya Gamma Samplers–Efficient MCMC
for Possibly Imbalanced Binary and Categorical
Data

Gregor Zens, Sylvia Frühwirth-Schnatter & Helga Wagner

To cite this article: Gregor Zens, Sylvia Frühwirth-Schnatter & Helga Wagner (20 Sep
2023): Ultimate Pólya Gamma Samplers–Efficient MCMC for Possibly Imbalanced
Binary and Categorical Data, Journal of the American Statistical Association, DOI:
10.1080/01621459.2023.2259030

To link to this article:  https://doi.org/10.1080/01621459.2023.2259030

© 2023 The Author(s). Published with
license by Taylor & Francis Group, LLC.

View supplementary material 

Published online: 20 Sep 2023.

Submit your article to this journal 

Article views: 697

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=uasa20
https://www.tandfonline.com/loi/uasa20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01621459.2023.2259030
https://doi.org/10.1080/01621459.2023.2259030
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2023.2259030
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2023.2259030
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2023.2259030
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2023.2259030
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2023.2259030&domain=pdf&date_stamp=20 Sep 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2023.2259030&domain=pdf&date_stamp=20 Sep 2023


JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
2023, VOL. 00, NO. 0, 1–12: Theory and Methods
https://doi.org/10.1080/01621459.2023.2259030

Ultimate Pólya Gamma Samplers – Efficient MCMC for Possibly Imbalanced
Binary and Categorical Data

Gregor Zensa,b , Sylvia Frühwirth-Schnatterb, and Helga Wagnerc

aInternational Institute for Applied Systems Analysis, Laxenburg, Austria; bWU Wien, Vienna, Austria; cJKU Linz, Linz, Austria

ABSTRACT
Modeling binary and categorical data is one of the most commonly encountered tasks of applied statisticians
and econometricians. While Bayesian methods in this context have been available for decades now, they
often require a high level of familiarity with Bayesian statistics or suffer from issues such as low sampling
efficiency. To contribute to the accessibility of Bayesian models for binary and categorical data, we introduce
novel latent variable representations based on Pólya-Gamma random variables for a range of commonly
encountered logistic regression models. From these latent variable representations, new Gibbs sampling
algorithms for binary, binomial, and multinomial logit models are derived. All models allow for a condi-
tionally Gaussian likelihood representation, rendering extensions to more complex modeling frameworks
such as state space models straightforward. However, sampling efficiency may still be an issue in these
data augmentation based estimation frameworks. To counteract this, novel marginal data augmentation
strategies are developed and discussed in detail. The merits of our approach are illustrated through extensive
simulations and real data applications. Supplementary materials for this article are available online.
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1. Introduction

Applied statisticians and econometricians commonly have to
deal with modeling binary or categorical outcome variables.
Widely used tools for analyzing such data include probit as well
as binary, multinomial, and binomial logit regression models.
Bayesian approaches toward inference are very useful in this
context, as they allow to easily extend the standard regression
framework to more complex settings such as random effects
or state space models. However, as opposed to regression
models with Gaussian outcomes, their implementation can
be demanding from a computational viewpoint (Chopin and
Ridgway 2017).

One strategy to implement sampling-based inference relies
on importance sampling (Zellner and Rossi 1984) or various
types of Metropolis-Hastings (MH) algorithms (Rossi, Allenby,
and McCulloch 2005), exploiting directly the non-Gaussian like-
lihood. However, these algorithms often require careful tuning
and substantial experience with Bayesian computation, espe-
cially in more complex frameworks like state space models.

Routine Bayesian computation for these type of data more
often relies on Markov chain Monte Carlo (MCMC) algorithms
based on data augmentation (DA, Tanner and Wong 1987).
As shown by the seminal paper of Albert and Chib (1993),
the binary probit model admits a latent variable representation
where the latent variable equation is linear in the unknown
parameters, with an error term following a standard normal
distribution. As simulating the latent variables is easy when
the parameters are known, the latent variable representation
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admits a straightforward Gibbs sampler using one level of DA,
where the unknown parameters are sampled from a condition-
ally Gaussian model. This strategy works also for more complex
models, such as probit state space or random effects models.1

However, MCMC estimation based on DA is less straight-
forward for a logit model which still admits a latent variable
representation that is linear in the unknown parameters, but
exhibits an error term that follows a logistic distribution. Related
latent variable representations with non-Gaussian errors exist
for multinomial logit (MNL) models (Frühwirth-Schnatter and
Frühwirth 2010) and logistic regression models for binomial
outcomes (Fussl, Frühwirth-Schnatter, and Frühwirth 2013).
While the latent variables usually can be easily sampled, sam-
pling the unknown parameters is more involved due to the non-
Gaussian error terms.

A common solution relies on a scale-mixture representa-
tion of the non-Gaussian error distribution and introduces the
corresponding scale parameters as a second level of DA. Con-
veniently, the unknown model parameters can then be sam-
pled from a conditionally Gaussian regression model. Examples
include a representation of the logistic distribution involving the
Kolmogoroff-Smirnov distribution (Holmes and Held 2006) and

1There is also an active literature on posterior simulation tools for probit and
logit regression models that does not rely on DA. For instance, Durante
(2019) introduces a framework for conjugate analysis of the probit model
that has been generalized subsequently, see Anceschi et al. (2023) for a
review. Sen et al. (2020) use a sampling framework for logistic regression
based on piecewise deterministic Monte Carlo processes. We provide a
discussion of these and other alternative methods in Appendix A.1.

© 2023 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/ ), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on
which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

https://doi.org/10.1080/01621459.2023.2259030
https://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2023.2259030&domain=pdf&date_stamp=2023-11-08
https://orcid.org/0000-0003-2253-8736
mailto:zens@iiasa.ac.at
http://www.tandfonline.com/r/JASA
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 G. ZENS, S. FRÜHWIRTH-SCHNATTER, AND H. WAGNER

highly accurate finite scale-mixture approximations (Frühwirth-
Schnatter and Frühwirth 2007, 2010; Frühwirth-Schnatter et al.
2009). A seminal paper in this context is Polson, Scott, and
Windle (2013) which avoids any explicit latent variable repre-
sentation. They derive the Pólya-Gamma sampler that exploits
a mixture representation of the non-Gaussian likelihood of the
marginal model based on the Pólya-Gamma distribution and
works with a single level of DA.

In this article, we propose a new sampling scheme involving
the Pólya-Gamma distribution. Instead of working with the
marginal model, we introduce a new mixture representation of
the logistic distribution based on the Pólya-Gamma distribution
in the latent variable representation of the logit model. Simi-
lar to Holmes and Held (2006) and Frühwirth-Schnatter and
Frühwirth (2010), we use DA and introduce the Pólya-Gamma
mixing variables as a second set of latent variables. Our new
Pólya-Gamma mixture representation has the advantage that the
joint posterior distribution of all augmented variables is easy
to sample from, as the Pólya-Gamma mixing variable follows a
tilted Pólya-Gamma distribution conditional on the latent utili-
ties. This allows to sample the unknown model parameters from
a conditionally Gaussian model, facilitating posterior simulation
in complex frameworks such as state space or random effects
models.

A commonly encountered challenge when working with
MCMC methods based on DA is poor mixing. For binary and
categorical regressions, this issue is especially pronounced for
imbalanced data, where the success probability is either close
to zero or one for the majority of the observations, see the
excellent work of Johndrow et al. (2019). Neither the original
Pólya-Gamma sampler of Polson, Scott, and Windle (2013) with
a single level of DA, nor our new Pólya-Gamma sampler with
two levels of DA, are an exception to this rule.

To resolve this issue, we introduce imbalanced marginal data
augmentation (iMDA) as a boosting strategy to make our new
sampler as well as the original probit sampler of Albert and
Chib (1993) robust to possibly imbalanced data. This strategy is
inspired by earlier work on marginal data augmentation (MDA)
for binary and categorical data (Liu and Wu 1999; McCulloch,
Polson, and Rossi 2000; van Dyk and Meng 2001; Imai and
van Dyk 2005). Starting from a latent variable representation of
the binary model, we expand the latent variable representation
with the help of two unidentified “working parameters.” One
parameter is a global scale parameter for the latent variable,
which has been shown to improve mixing considerably by Liu
and Wu (1999), among others. However, this strategy alone does
not resolve slow mixing when dealing with highly imbalanced
data. To address this, we introduce an additional, unknown
location parameter, which improves mixing considerably in the
case of imbalanced data. As iMDA only works in the context of a
latent variable representation, this strategy cannot be applied to
the original Pólya-Gamma sampler of Polson, Scott, and Windle
(2013) due to the lack of such a representation. In comparison,
our new Pólya-Gamma representation of the logit model is
very generic and is easily combined with iMDA, not only for
binary regression models, but also for more flexible models such
as binary state space models. We refer to a sampling strategy
combining a Pólya-Gamma mixture representation with iMDA
as an ultimate Pólya-Gamma (UPG) sampler due to its efficiency.

A further contribution of this article is to show that such an
UPG sampler can be derived for other non-Gaussian regression
problems, including models for categorical and binomial data.
For the MNL model, commonly a logit model based on a (par-
tial) differenced random utility model (dRUM) representation
is applied to sample the category specific parameters, see for
example Holmes and Held (2006), Frühwirth-Schnatter and
Frühwirth (2010), or Polson, Scott, and Windle (2013). Using
this partial dRUM representation, we derive a new sampler for
the MNL model in this article. Since the latent variable equation
is linear in the unknown parameters and involves a logistic error
distribution, we use once more the Pólya-Gamma mixture rep-
resentation of the logistic distribution and introduce the mixing
variables as additional latent variables. For binomial models, a
latent variable representation which did not involve a choice
equation was introduced by Fussl, Frühwirth-Schnatter, and
Frühwirth (2013). Since an explicit choice equation is needed to
apply iMDA, we derive a new latent variable representation for
binomial data which involves error terms that follow generalized
logistic distributions. We introduce Pólya-Gamma mixture rep-
resentations of these distributions and use the resulting auxiliary
variables as an additional latent layer. Both for MNL models and
for binomial models, this DA scheme leads to a conditionally
Gaussian posterior and allows to sample all unknowns through
efficient block moves. Again, we apply iMDA to derive UPG
samplers which mix well, also in the context of imbalanced data.

Overall, we find that the various algorithms show highly
competitive performance when compared to alternative DA
frameworks, which we demonstrate via extensive simulation
studies. In addition, we present real world data examples that
further illustrate the merits of our approach. The underlying
algorithms for probit regression and logistic regression models
for binary, categorical and binomial outcomes have been made
available in the R package UPG, which is available on CRAN
(Zens, Frühwirth-Schnatter, and Wagner 2021).

The remainder of the article is structured as follows. Section 2
introduces the UPG sampler. This sampling strategy is extended
to categorical data in Section 3 and to binomial data in Section 4.
In Section 5, the UPG sampler is compared to alternative DA
algorithms. Section 6 applies the framework to binary state space
models and discusses the utility of the approach in the context
of mixture-of-experts models. Section 7 concludes.

2. Ultimate Pólya-Gamma Samplers for Binary Data

2.1. Latent Variable Representations for Binary Data

Models for a vector of N binary observations y = (y1, . . . , yN)

are defined by

Pr(yi = 1|λi) = Fε(log λi), (1)

where λi depends on exogenous variables and unknown param-
eters β , for example, log λi = xiβ in a standard binary regres-
sion model. Choosing the cdf Fε(ε) = �(ε) of the standard
normal distribution leads to the probit model Pr(yi = 1|λi) =
�(log λi), whereas the cdf Fε(ε) = eε/(1 + eε) of the logistic
distribution leads to the logit model

Pr(yi = 1|λi) = λi/(1 + λi).
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A latent variable representation of model (1) involving a
latent utility zi is given by:

yi = I{zi > 0}, zi = log λi + εi, εi ∼ fε(εi), (2)

where fε(ε) = F′
ε(ε) = φ(ε) is equal to the standard normal pdf

for a probit model and equal to fε(ε) = eε/(1 + eε)2 for a logit
model.

In Bayesian inference, the set of observed data y =
(y1, . . . , yN) can be augmented with the latent variables z =
(z1, . . . , zN) in (2) to obtain the set of complete data (z, y),
facilitating the implementation of MCMC algorithms. As shown
by Albert and Chib (1993), this single level of DA involving z
leads to a straightforward Gibbs sampler for the probit model.
With log λi = xiβ , the following two-step sampling Scheme 1
can be set up under a Gaussian prior p(β):

(Z) Given β , sample the latent variables zi for each i = 1, . . . , N
independently from p(zi|β , y) (see Appendix A.4.1);

(P) sample the unknown parameters β conditional on z from
the Gaussian posterior p(β|z, y) derived from regression
model (2).

Two main challenges are associated with such MCMC schemes,
namely slow convergence and a lack of closed form posteriors
for the unknown parameters, such as p(β|z, y), outside of probit
models. We address both issues in this article.

First, to boost MCMC convergence, we rely on MDA in
the spirit of Liu and Wu (1999). In that paper, the scale-based
transformation z̃i = √

δzi, depending on a “working parameter”
δ, is used to define the expanded probit regression model

yi = I{z̃i > 0}, z̃i = √
δxiβ + ε̃i, ε̃i ∼ N (0, δ) . (3)

In model (3), the likelihood p(z̃|δ) of z̃ = (z̃1, . . . , z̃N),
marginalized w.r.t. β , is available in closed form and yields an
inverse Gamma posterior p(δ|z̃) under a conjugate prior p(δ).
Assuming prior independence of δ and β , this allows to rescale
the latent variables z without involving β . Specifically, a draw δ̃

from the working prior p(δ) is used to “propose” a scale-move
z̃i =

√
δ̃zi in system (3), based solely on prior information.

Then, an updated value δnew is sampled from the posterior
p(δ|z̃) and the proposed scale-move is immediately “corrected”
(using a posteriori information) via the inverse transformation
znew

i = z̃i/
√

δnew, before β is updated conditional on znew. This
extends Scheme 1 to Scheme 2:

(Z) Sample from p(z|β , y) as in Scheme 1;
(B-S) move from z to znew using a scale-based expansion move

under prior p(δ);
(P) sample from p(β|znew, y) as in Scheme 1.

The boosted Scheme 2 always provides better convergence
results than Scheme 1, see van Dyk and Meng (2001) and Hobert
and Marchev (2008) for further theoretical results. Indeed,
as an example in Liu and Wu (1999) illustrates, Step (B-S)
improves efficiency considerably in cases where the coefficient
of determination in the latent regression model is large, as long
as the data are balanced. However, DA schemes are in general
known to be slowly mixing for imbalanced datasets where only
a few cases with yi = 1 or yi = 0 among the N data points

are observed (Johndrow et al. 2019). Indeed, sampling under
Scheme 2 is still highly inefficient in such cases, as will be
illustrated in Section 2.2.

A first major contribution of this article is to protect DA
algorithms for binary and categorical data against imbalanced
data by using, in addition to a scale-based transformation, a
location-based expansion z̃i = zi +γ , depending on a “working
parameter” γ , to define the expanded version

yi = I{z̃i > γ }, z̃i = γ + log λi + εi, (4)

of the binary regression model (2).
As opposed to (3), the choice equation in (4) depends on

γ and defines a likelihood p(y|γ , z̃). In a probit regression
model, the likelihood p(z̃|γ ) of the latent data, marginalized
w.r.t. β , is available in closed form. In combination with the
likelihood p(y|γ , z̃) and a Gaussian working prior p(γ ), a Gaus-
sian posterior p(γ |z̃, y), truncated to the interval [L, U) defined
by, respectively, the maximum utility L of the outcomes where
yi = 0 and the minimum utility U of the outcomes where
yi = 1, is obtained. Assuming prior independence of γ and β

then allows to shift the latent variables z without involving β .
Similar to the scale-based expansion, a location-move z̃i = zi+γ̃

is proposed using a draw γ̃ from the working prior p(γ ), before
being immediately “corrected” via the inverse transformation
znew

i = z̃i − γ new = zi + γ̃ − γ new using a draw γ new from
the posterior distribution p(γ |z̃, y), see Section 2.3 for further
details. Subsequently, the regression coefficients β are sampled
conditional on znew. We find that performing such a location-
based expansion step before a scale-based transformation yields
dramatic improvement compared to Scheme 1 and Scheme 2, also
in cases where the data are imbalanced, see Sections 2.2 and 5 for
further illustration.

A second main contribution of this article is to take location-
based and scale-based parameter expansion beyond the probit
regression model by introducing new latent variable represen-
tations for binary, binomial and multinomial logit models. For
binary logit models, a second level of DA is introduced to deal
with the logistic error term. For this, we apply a new mixture
representation of the logistic distribution,

fε(εi) = eεi/(1 + eεi)2 = 1
4

∫
e−ωi ε2

i /2p(ωi)d ωi, (5)

where ωi ∼ PG (2, 0) follows a Pólya-Gamma distribution
(Polson, Scott, and Windle 2013), see Appendix A.2.1 and A.2.2
for details. This representation is very convenient, as the condi-
tional posterior ωi | εi ∼ PG (2, |εi|) of ωi given εi is a tilted
Pólya-Gamma distribution which is easy to sample from, see
Polson, Scott, and Windle (2013). For a binary logit model with
log λi = xiβ , this new representation allows constructing a
Pólya-Gamma sampler that extends Scheme 1 in the following
way:

(Z) sample the latent variable zi from p(zi|β , yi) independently
for each i in the latent variable model (2) (see Algorithm 1
and Appendix A.4.1) and sample the scale parameter ωi
conditional on zi and β from ωi|zi, β ∼ PG (2, |zi − xiβ|);

(P) sample the unknown parameters β conditional on the latent
variables z = (z1, . . . , zN) and ω = (ω1, . . . , ωN) from the
conditionally Gaussian posterior p(β|ω, z, y).



4 G. ZENS, S. FRÜHWIRTH-SCHNATTER, AND H. WAGNER

While this scheme is easy to implement, it can be slowly mixing,
like any such sampler. To deal with this issue, we additionally
include the two parameter expansion steps introduced above,
performing first a location-based and then a scale-based
transformation. We refer to the resulting sampling scheme
as Scheme 3 and provide full theoretical and computational
details in Section 2.3. In later sections, we extend this strategy
to logistic regression models for categorical and binomial
outcomes.

While our boosting strategy is inspired by Liu and Wu (1999)
and related to earlier work on MDA for binary and categorical
data (McCulloch, Polson, and Rossi 2000; van Dyk and Meng
2001; Imai and van Dyk 2005), it generalizes this literature in
several aspects. Importantly, it works for any binary data model
with a latent variable representation. In addition, freeing the
location of the threshold γ in model (4) leads to an MCMC
scheme that is well mixing, even in cases of extremely imbal-
anced data, see much of the remainder of this article for further
illustration. A related strategy to improve mixing behavior in the
context of data augmentation algorithms is outlined in Duan,
Johndrow, and Dunson (2018). In their contribution, the authors
use location and scale parameters to reparametrize augmented
likelihood functions in binary and count data regression models.
These calibration parameters have to be set manually, and the
authors propose an involved optimization procedure based on
large sample arguments and approximations to determine suit-
able values. The resulting algorithms show efficiency gains that
are comparable to the marginal data augmentation proposed in
this article when analyzing datasets with many observations and
rare outcomes. A potential downside of the approach of Duan,
Johndrow, and Dunson (2018) is that the optimization proce-
dure relies on the inverse of the observed Fisher information
and the sampler uses Metropolis-Hastings updates. Both may
result in scaling issues when many covariates are present. In such
settings, a pure data augmentation approach as proposed in this
article may prove more effective. Importantly, our approach is
also fully automatic and does not rely on any approximations
in the sense that tuning-free and exact Gibbs updates for the
location and scale parameters are derived. We give details on
the resulting posterior simulation scheme in Section 2.3. Before
presenting these details, we illustrate the specific roles of the
location and scale parameters γ and δ using heuristic arguments
in the next section.

2.2. Illustration and Intuition

As a first illustration of the potential merits of the proposed
iMDA scheme in imbalanced logistic regression settings, we
compare estimation efficiency of the popular Pólya-Gamma
sampler from Polson, Scott, and Windle (2013) with a plain
DA sampler as in Scheme 1, a scale-based parameter expansion
scheme (as in Scheme 2) and the proposed approach based
on location-based and scale-based expansion (as in Scheme 3)
in Figure 1. A more systematic comparison will be given in
Section 5. It is clearly visible that the UPG sampler outperforms
all other samplers in terms of efficiency. Notably, these efficiency
gains are realized despite introducing two layers of latent
auxiliary variables, which usually increases autocorrelation in
the posterior draws significantly. This is counteracted by our
novel iMDA strategy based on the working parameters γ and δ.

We start with the role of δ, the working parameter used
for scale-based expansion of the latent utility equation. Broadly
speaking, this scale-based expansion will be highly effective in
scenarios where the coefficient of determination in the latent
utility model is high. In such settings, the current parameter
draw almost perfectly determines the location of the latent util-
ities and vice versa. As a result, the MCMC chain is only able to
move very slowly. To resolve this issue, δ artificially decreases the
coefficient of determination via increasing the error variance in
the latent utility equation. In turn, this decreases the dependency
of the latent utilities and the regression coefficients, directly
enabling larger steps of the Markov chain. In other words, δ is
used to make the posterior of the latent utilities in the expanded
model more diffuse than the posterior of the utilities in the
original model. Similar as well as more formal arguments and
further illustration of such scale-based expansion steps have
been discussed for instance in Liu and Wu (1999) or Imai and
van Dyk (2005).

However, a scale-based expansion alone is usually not enough
to fully resolve the issue that step sizes become small relative
to the range of the high posterior density region in imbalanced
data settings (Johndrow et al. 2019). This can be seen from the
unsatisfactory performance of the PX-DA sampler in Figure 1
and has also been discussed in Duan, Johndrow, and Dunson
(2018). In our approach, this issue is effectively offset through
the location-based expansion of the latent utility model. In this
section, we aim to illustrate the mechanism behind this strategy

Figure 1. MCMC draws and corresponding autocorrelation functions of an intercept-only logistic regression model fitted using plain data augmentation (DA, Scheme 1),
the original Pólya-Gamma sampler (PSW), a MDA sampler with scale-based expansion (PX-DA, Scheme 2) and a DA sampler with scale- and location-based expansion (UPG,
Scheme 3). Two out of N = 10,000 binary observations are nonzero.
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through a small numerical exercise and defer full details to
Section 2.3.

To investigate how the location-based expansion influences
step sizes of the Markov chain, we consider three datasets with
N = 100 observations each. One dataset is balanced, while the
others are imbalanced, with success probabilities 99% and 1%,
respectively. We simulate 25,000 replications of a single MCMC
iteration for a grid of starting positions of the intercept β0,
using N (0, 100) prior distributions for both β0 and γ . For each
starting position and for each replication, we save the absolute
step size of a plain DA sampler (Scheme 1) and the step size of
a sampler with an additional location-based expansion step, as
well as the realized shift γ̃ − γ new in the sampler including the
location-based expansion step.

The results are summarized in Figure 2. The left panel shows
the log average step size of the plain DA scheme. It is evident
that step sizes decrease significantly when exploring posterior
regions that reach far into the positive (negative) part of the
real line in imbalanced scenarios with high (low) success prob-
abilities. The purpose of the location-based expansion is to
counteract this issue via shifting the utilities by γ̃ −γ new, directly
leading to larger step sizes of the Markov chain. The average shift
for each dataset and value of β0 is depicted in the middle panel of
Figure 2. The magnitude of the shift, |γ̃ −γ new|, is equivalent to
the increase in step size in the location-expanded sampler. While
step sizes increase everywhere, the improvement is particularly
large in the tails of the posterior density in imbalanced datasets,
where standard DA algorithms are usually highly inefficient.
In addition, the shift-move evidently acts as a “push into the
right direction” that systematically leads the Markov chain back
toward the highest posterior density region, effectively avoiding
staying in the tails of the posterior distribution for too long.
The log average step sizes of the location-expanded sampler are
shown in the right panel of Figure 2. As expected from the pre-
ceding discussion, the most significant step size improvements
are observed in the tail regions of the posterior distribution in
the imbalanced cases.

2.3. MCMC Details for Binary Logit Regression Models

The latent utility representation of the binary logit model is

yi = I{zi > 0}, zi = xiβ + εi, εi ∼ LO, (6)

where LO is the logistic distribution. We assume β ∼
Nd (0, A0) follows a multivariate Gaussian distribution a priori,
where A0 is either fixed or equipped with a hierarchical
structure, for example, to define a shrinkage prior (see e.g.,
Piironen and Vehtari 2017). The first block of the MCMC
scheme consists of two steps that simulate the two sets of latent
variables, z and ω. Given β and the outcome yi, we sample
zi for each i from p(zi|λi, yi) in the logistic model (6) where
log λi = xiβ . Then, the Pólya-Gamma scale parameters are
simulated from ωi|zi, β ∼ PG (2, |zi − xiβ|).

For given latent variables, a location-based parameter expan-
sion step, based on a working prior p(γ ) = N (0, G0), is
then applied. For this, a prior draw γ̃ ∼ N (0, G0) is used to
“propose”, for each i = 1, . . . , N, a location move z̃i = zi + γ̃ in
the expanded model

yi = I{z̃i > γ }, z̃i = γ + xiβ + εi, (7)

while ωi is unaffected. Conditional on the latent variables z̃ =
(z̃1, . . . , z̃N) and ω = (ω1, . . . , ωN), but marginally w.r.t. β ,
the conditional distribution γ |ω, z̃ ∼ N

(
gN , GN

)
is Gaussian

where:

GN = (G−1
0 +

N∑
i=1

ωi − m�
b BNmb)

−1,

gN = GN(mγ − m�
b BNmN(z̃)), (8)

BN = (A−1
0 +

N∑
i=1

ωix�
i xi)

−1,

mN(z̃) =
N∑

i=1
ωix�

i z̃i, mb =
N∑

i=1
ωix�

i , mγ =
N∑

i=1
ωiz̃i,

as is easily shown, see Appendix A.4.2. Since the choice equation
in (7) depends on γ , p(γ |ω, z̃) has to be combined with the like-
lihood p(y|γ , z̃) of the observed outcomes y = (y1, . . . , yN) to
define the posterior p(γ |ω, z̃, y). The derivation of the likelihood
p(y|γ , z̃) is a generic step in our sampler which does not involve
the specification of λi:

p(y|γ , z̃) ∝
∏

i:yi=0
I{γ ≥ z̃i}

∏
i:yi=1

I{γ < z̃i}

∝ I{L(γ̃ ) ≤ γ < U(γ̃ )}, (9)

Figure 2. Illustration of the mechanism behind the location-based expansion. (left) Log average step size of a plain DA sampler. (middle) Realized shift of utilities. (right)
Log average step size of a sampler with location-based expansion. Dotted lines are the means of the posterior distribution of β0 under a N(0, 100) prior.
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where I{·} is the indicator function and L(γ̃ ) = maxi:yi=0 z̃i =
maxi:yi=0 zi+γ̃ and U(γ̃ ) = mini:yi=1 z̃i = mini:yi=1 zi+γ̃ . If no
outcome yi = 0 is observed, then L(γ̃ ) = −∞; if no outcome
yi = 1 is observed, then U(γ̃ ) = +∞. Hence, p(γ |ω, z̃, y) ∝
p(y|γ , z̃)p(γ |ω, z̃) is equal to a truncated version of the Gaussian
posterior (8):

γ |ω, z̃, y ∼ N
(
gN , GN

)
I{L(γ̃ ) ≤ γ < U(γ̃ )}. (10)

An updated working parameter γ new is sampled from (10) and
the proposed location-based move is ‘corrected’ based on a
posteriori information by defining the shifted utilities zL

i =
z̃i − γ new = zi + γ̃ − γ new.

This location-based move is followed by a scale-based expan-
sion, using an inverse Gamma G−1 (d0, D0) working prior p(δ).
Similar to before, δ̃ is sampled from p(δ) and used to propose,
for each i = 1, . . . , N, a scale-based move z̃i =

√
δ̃zL

i in the
expanded model

yi = I{z̃i > 0}, z̃i = √
δxiβ + √

δεi. (11)

Conditional on the Pólya-Gamma scale parameters ωi, it follows
that

p(z̃i|ωi, δ, β) ∝ 1√
δ

exp

{
−ωi

2

(
z̃i√
δ

− xiβ

)2
}

= 1√
δ

exp

⎧⎪⎨
⎪⎩−ωi

2

⎛
⎝
√

δ̃

δ
zL

i − xiβ

⎞
⎠

2
⎫⎪⎬
⎪⎭ .

Hence, conditional on δ, δ̃ and the shifted utilities zL =
(zL

1 , . . . , zL
N), the posterior β|δ, δ̃, zL, ω ∼ N

(√
δ̃/δbN , BN

)
is Gaussian with bN = BNmN(zL) and mN(zL) and BN as in
(8). Furthermore, conditional on zL, but marginally w.r.t. β , the
posterior δ|δ̃, zL, ω ∼ G−1

(
dN , DN(δ̃)

)
is inverse Gamma with

following moments:

dN = d0 + N
2

,

DN(δ̃) = D0 + δ̃

2

( N∑
i=1

ωi(zL
i − xibN)2 + b�

N A−1
0 bN

)
. (12)

An updated working parameter δnew is sampled from G−1(
dN , DN(δ̃)

)
and the proposed scale-based move is corrected

by defining the rescaled utilities zLS
i =

√
δ̃/δnewzL

i . This
concludes the scale-based expansion and β|zLS, ω is sampled
conditional on zLS or, equivalently, from the Gaussian posterior

β|δnew, δ̃, zL, ω ∼ N
(√

δ̃/δnewbN , BN

)
. As Algorithm 1

illustrates, many steps in this ultimate Pólya-Gamma (UPG)
sampler are generic and easily extended to more complex models
for binary data, as will be illustrated in Section 6.

Algorithm 1 The ultimate Pólya-Gamma sampler for binary
data.
Choose starting values for λ = (λ1, . . . , λN ) and repeat the following steps:

(Z) For each i = 1, . . . , N, sample zi = log λi + F−1
ε (yi + Ui(1 − yi − πi)) in

model (2), where Ui ∼ U [0, 1], πi = Fε(log λi), and F−1
ε (p) = �−1(p)

for the probit and F−1
ε (p) = log p − log(1 − p) for the logit model. For a

logit model, sample ωi|zi, log λi ∼ PG
(
2, |zi − log λi|

)
.

(B-L) Location-based parameter expansion: sample γ̃ ∼ N (0, G0) and pro-
pose utilities z̃i = zi + γ̃ for i = 1, . . . , N. Sample γ new from γ |ω, z̃, y
and define shifted utilities zL

i = z̃i −γ new. For a binary regression model,
p(γ |ω, z̃, y) is given by the truncated Gaussian-posterior in (10).

(B-S) Scale-based parameter expansion: sample δ̃ ∼ G−1 (d0, D0) and sample

δnew from δ|δ̃, zL, ω. Define rescaled utilities zLS
i =

√
δ̃/δnewzL

i . For a

binary regression model, δ|δ̃, zL, ω ∼ G−1
(

dN , DN (δ̃)
)

is an inverse

Gamma distribution, with dN and DN (δ̃) given by (12).
(P) Sample the unknown parameter in log λi conditional on zLS. For a binary

regression model, β|δnew, δ̃, zL, ω ∼ N
(√

δ̃/δnewBN mN (zL), BN

)
where mN (zL) and BN are given by (8).

3. Ultimate Pólya-Gamma Samplers for Categorical
Data

Let
{

yi
}

, i = 1, . . . , N, be a sequence of categorical data, where
yi is equal to one of at least three unordered categories. The
categories are labeled by L = {0, . . . , m}, and for any k the
set of all categories but k is denoted by L−k = L \ {k}. We
assume that the observations are mutually independent and that
for each k ∈ L the probability of yi taking the value k depends
on covariates xi in the following way:

Pr(yi = k|β0, . . . , βm) = πki(β0, . . . , βm) = exp(xiβk)
m∑

l=0
exp(xiβ l)

, (13)

where β0, . . . , βm are category specific unknown parameters of
dimension d. To make the model identifiable, the parameter βk0
of a baseline category k0 is set equal to 0: βk0 = 0. Thus, the
parameter βk is relative to the baseline category k0 in terms of
the change in log-odds. In the following, we assume without
loss of generality that k0 = 0. A more general version of the
multinomial logit (MNL) model (again with baseline k0 = 0)
reads:

Pr(yi = k|β) = λki/

(
1 +

m∑
l=1

λli

)
, (14)

where λ1i, . . . , λmi depend on unknown parameters β , while
λ0i = 1. For the standard MNL regression model (13), for
instance, log λki = xiβk for k = 1, . . . , m.

Our starting point is writing the MNL model as a random
utility model (RUM), see McFadden (1974):

uki = log λki + εki, k = 0, . . . , m, (15)
yi = k ⇔ uki = max

l∈L
uli. (16)

Thus, the observed category is equal to the category with maxi-
mal utility. If the errors ε0i, . . . , εmi in (15) are iid random vari-
ables from an extreme value (EV) distribution, then the MNL
model (14) results as marginal distribution of the categorical
variable yi.

Conditional on yi, the posterior distribution p(ui|λki, yi) of
the latent utilities ui = (u0i, . . . , umi) is of closed form and
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easy to sample from, see Proposition 1 which is proven in
Appendix A.3.

Proposition 1. Given yi, realizations from the distribution
p(u0i, . . . , umi|λ1i . . . , λmi, yi) can be represented as

e−uki = − log Ui
1 +∑m

l=1 λli
− log Vki

λki
I{yi �= k}, k = 0, . . . , m, (17)

where Ui and V0i, . . . , Vmi are m + 1 iid uniform random
numbers.

Utilizing Proposition 1 together with a mixture approx-
imation of the extreme value distribution to sample all
unknown parameters jointly via two levels of data augmentation
(Frühwirth-Schnatter and Frühwirth 2007) turned out to be
inefficient. Noting that the choice equation (16) can be rewritten
as a choice between any category k and all its alternatives in L−k,
Frühwirth-Schnatter and Frühwirth (2010) derive the partial
dRUM representation of a RUM model and show that it has an
explicit form if the errors ε0i, . . . , εmi in (15) are iid random
variables from an extreme value distribution.

For a multinomial regression model this yields following
well-known representation (see e.g., Holmes and Held 2006):

zki = xiβk − ξki(β−k) + εki, εki ∼ LO, (18)

yi =
{

k, zki > 0,
�= k, zki ≤ 0. (19)

where the error term εki follows a logistic distribution, zki =
uki − max
∈L−k u
i is the utility gap between category k and all
its alternatives and the offset ξki(β−k) is defined as

ξki(β−k) = log

⎛
⎝1 +

∑

 �={k,0}

exp(xiβ
)

⎞
⎠ .

While Frühwirth-Schnatter and Frühwirth (2010) use a very
accurate finite mixture approximation for the logistic distribu-
tion for MCMC estimation, in this article we derive an ultimate
Pólya-Gamma sampler based on the partial dRUM representa-
tion and proceed similarly as in Section 2. We use Proposition 1
to sample the utilities u0i, . . . , umi in the RUM model (15) and
to define the utility gap zki between category k and all its alter-
natives. Given the utility gap zki, we exploit the Pólya-Gamma
mixture representation of the logistic distribution in (18) with
category specific latent variables ωki which are sampled from
ωki|β , zki ∼ PG (2, |εki|), where εki = zki − xiβk + ξki(β−k).

To handle imbalanced data, we apply location- and scale-
based boosting as in Section 2 with category-specific working
parameters γk and δk. For instance, location-based boosting
using z̃ki = zki + γ̃k where γ̃k ∼ N (0, G0), yields the following
expanded model:

z̃ki = γk + xiβk − ξki(β−k) + εki, εki ∼ LO, (20)

yi =
{

k, z̃ki > γk,
�= k, z̃ki ≤ γk. (21)

Conditional on the latent variables ωk = (ωk1, . . . , ωkN) and
z̃k = (z̃k1, . . . , z̃kN), (20) defines a Gaussian posterior distri-
bution p(γk|β−k, ωk, z̃k), marginally w.r.t. βk. Similarly as in
Section 2, the choice equation (21) defines a likelihood func-
tion p(y|γk, z̃k) which restricts γk to the interval [L(γ̃k), U(γ̃k)),

where L(γ̃k) = maxyi �=k zki + γ̃k and U(γ̃k) = minyi=k zki +
γ̃k. Full details on the UPG sampler for multinomial logistic
regression models are provided in Appendix A.4.3.

4. Ultimate Pólya-Gamma Samplers for Binomial Data

In this section, we consider models with binomial outcomes, that
is, models of the form

yi ∼ BiNom (Ni, πi) , logit πi = log λi, i = 1, . . . , N, (22)

with log λi = xiβ for a standard binomial regression model.
As shown in Johndrow et al. (2019), Bayesian inference for
binomial regression models based on the Pólya-Gamma sampler
(Polson, Scott, and Windle 2013) is sensitive to imbalanced data.
Similarly, the latent variable representation of binomial models
of Fussl, Frühwirth-Schnatter, and Frühwirth (2013) is sensitive
to imbalanced data, as we will show in Section 5. As for a logit
model (which results for Ni ≡ 1), applying iMDA would be an
option to improve mixing. However, Fussl, Frühwirth-Schnatter,
and Frühwirth (2013) provide no explicit choice equation, which
is needed for iMDA. The goal of this section is to define an UPG
sampler which combines a new latent variable representation of
binomial models, based on Pólya-Gamma mixture representa-
tions of generalized logistic distributions, with iMDA to protect
the algorithm against imbalanced data.

4.1. A New Latent Variable Representation for Binomial
Data

In Theorem 2, we introduce a new latent variable representation
for binomial outcomes where two latent variable equations, both
linear in log λi, with error terms following generalized logistic
distributions are utilized. An explicit choice equation is provided
which relates latent variables wi and vi to the observed binomial
outcome yi. We show in Theorem 3 that, conditional on yi, the
posterior distribution of the latent variables is of closed form
and easy to sample from, see Appendix A.3. for a proof of both
theorems.

Theorem 2 (Latent variable representation of a binomial model).
For 0 < yi < Ni, a binomial logistic model has the following
random utility representation:

wi = log λi + εw,i, εw,i ∼ GLII (k), (23)
vi = log λi + εv,i, εv,i ∼ GLI (Ni − k),
yi = k ⇔ wi > 0, vi ≤ 0,

where GLI (ν) and GLII (ν) are, respectively, the generalized
logistic distributions of type I and type II. For yi = 0, the model
reduces to

vi = log λi + εv,i, εv,i ∼ GLI (Ni), yi = 0 ⇔ vi ≤ 0.

For yi = Ni, the model reduces to

wi = log λi + εw,i, εw,i ∼ GLII (Ni), yi = Ni ⇔ wi > 0.

For Ni = 1, the logistic model results, as both GLI (ν) and
GLII (ν) reduce to a logistic distribution for ν = 1. For yi = 0,
zi = vi, whereas for yi = 1, zi = wi, and the choice equation
reduces to yi = I{zi > 0}.
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Theorem 3 (Sampling the utilities in the binomial RUM). Given yi
and holding all model parameters in λi fixed, the latent variables
wi|λi, (yi > 0) and vi|λi, (yi < Ni) are conditionally indepen-
dent. The distributions of wi|λi, (yi > 0) and vi|λi, (yi < Ni) are
equal in distribution to

wi = log

(
(1 + λi)

1
W1/yi

i
− λi

)
, yi > 0, (24)

vi = − log

(
1 + λi

λi

1

V1/(Ni−yi)
i

− 1
λi

)
, yi < Ni, (25)

where Wi and Vi are iid uniform random numbers.

4.2. Ultimate Pólya-Gamma Samplers for Binomial Data

The two main building blocks for the UPG sampler for bino-
mial data are a Gaussian mixture representation of the involved
generalized logistic distributions based on the Pólya-Gamma
distribution and the application of iMDA to handle imbalanced
data.

A random variable ε following the generalized logistic distri-
bution of type I or II can be represented as a normal mixture,

fε(ε) = c(a, b)
(eε)a

(1 + eε)b

= c(a, b)

2b exp(κε)

∫ ∞

0
exp(−ωε2

2
)p(ω)dω, (26)

with κ = a − b/2 and the Pólya-Gamma distribution ω ∼
PG (b, 0), introduced by Polson, Scott, and Windle (2013) serv-
ing as mixing measure, see Appendix A.2.1 to A.2.3. For yi > 0,
the type II generalized logistic distribution εw,i ∼ GLII

(
yi
)

in
(23) has such a representation with:

κw,i = 1 − yi
2

, ωw,i ∼ PG
(
yi + 1, 0

)
,

see (A.11). Similarly, for yi < Ni, the type I generalized logistic
distribution εv,i ∼ GLI

(
Ni − yi

)
in (23) has such a representa-

tion with

κv,i = Ni − yi − 1
2

, ωv,i ∼ PG
(
Ni − yi + 1, 0

)
,

see (A.7). Note that κw,i = 0 for yi = 1 and κv,i = 0 for yi = Ni−
1. Hence, for Ni = 1, the Pólya-Gamma mixture approximation
(5) of a logistic model involving PG (2, 0) results. For Ni > 1,
κv,i > 0 for 0 ≤ yi ≤ Ni − 2 and κw,i < 0 for 2 ≤ yi ≤ Ni. This
leads to a slightly more challenging sampler than for binary and
multinomial models.

For each i = 1, . . . , N, we introduce the latent variables
zi = (wi, ωw,i, vi, ωv,i), if 0 < yi < Ni, zi = (wi, ωw,i), if yi = Ni,
and zi = (vi, ωv,i), if yi = 0. Conditional on λi, the latent
variables wi|λi, (yi > 0) and vi|λi, (yi < Ni) are sampled from
Theorem 3 without conditioning on ωw,i and ωv,i. Given wi and
vi, the parameters ωw,i|wi, (yi > 0), λi and ωv,i|vi, (yi < Ni), λi
are independent and follow (tilted) Pólya-Gamma distributions:

ωw,i|wi, yi, λi ∼ PG
(
yi + 1, |wi − log λi|

)
, yi > 0, (27)

ωv,i|vi, yi, λi ∼ PG
(
Ni − yi + 1, |vi − log λi|

)
, yi < Ni.

To handle imbalanced data, we apply location- and scale-based
boosting as in the previous sections, based on the working
parameters γ and δ. Location-based boosting, for instance, uses

γ̃ ∼ N (0, G0) to define w̃i = wi + γ̃ and ṽi = vi + γ̃ in the
following expanded version of model (23) with an explicit choice
equation involving γ :

w̃i = γ + log λi + εw,i, yi > 0, (28)
ṽi = γ + log λi + εv,i, yi < Ni,

yi = k ⇔
⎧⎨
⎩

ṽi ≤ γ < w̃i, 0 < k < Ni,
γ ≥ ṽi, k = 0,
γ < w̃i, k = Ni.

(29)

Full details on the UPG sampler for binomial data are provided
in Appendix A.4.4.

5. Comparison with Other Sampling Strategies

This section compares the proposed sampling framework with
other DA approaches for posterior simulation in binary and
categorical regression models. Specifically, we conduct a large
scale simulation study to establish the efficiency of our approach
in imbalanced scenarios relative to other DA approaches. How-
ever, from a practical point of view, a number of alternative
estimation algorithms that do not rely on DA are available for
binary and categorical regression modeling. These algorithms
can be highly efficient, and relying on them is often a reasonable
choice. Hence, a thorough discussion of the unique advantages
and disadvantages of the DA strategy outlined in this article—
and DA schemes in general—is warranted, and we provide such
a discussion in Appendix A.1.

A set of systematic simulations is carried out to compare the
efficiency of our approach to other popular Bayesian sampling
schemes that involve DA. The main results are based on sim-
ulations with varying levels of imbalancedness, where imbal-
ancedness is either induced by fixing the number of successes at
two and increasing the sample size, or fixing the sample size at
N = 1000 and varying the intercept term in the data generating
process. Each Markov chain was run for 10,000 iterations after an
initial burn-in period of 2000 iterations. To gain robustness with
respect to the computed inefficiency factors, each simulation is
repeated 100 times and median results across these replications
are reported. The computation of the inefficiency factors is based
on an estimate of the spectral density of the posterior chain
evaluated at zero.2 In this section, we present results on various
logistic regression models, while additional results for probit
regression models and tabulated simulation results can be found
in Appendix A.6.

For binary logistic regression, we compare the sampling
scheme outlined in Section 2.3 (UPG), the Pólya-Gamma
sampler of Polson, Scott, and Windle (2013) (PSW) and the
auxiliary mixture DA scheme outlined in Frühwirth-Schnatter
and Frühwirth (2010) (FSF). To assess sampling efficiency for
the MNL model, we compare the MNL sampler proposed in
Section 3 (UPG) with the sampling scheme of Polson, Scott,
and Windle (2013) (PSW) and the partial dRUM sampler of
Frühwirth-Schnatter and Frühwirth (2010) (FSF) in a setting
with three categories. For the simulations with varying sample
sizes, the first two categories are observed twice each and the

2Estimating the spectral density at zero is accomplished via R package coda
(Plummer et al. 2006) and is based on fitting an autoregressive process to
the posterior draws.



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 9

Figure 3. Sampling efficiency of intercept β0 fitted to datasets with increasing sample size N and two successes (top) and varying intercepts β0 with N = 1000 (bottom)
for binary logistic regression (left), multinomial logistic regression (middle) and binomial logistic regression (right). Y-axis is on the log-scale and results are medians across
100 replications.

remaining N − 4 observations fall into the baseline category.
For the varying intercept simulations, the intercept of the
first category is varied while the other intercepts are fixed at
zero. Finally, to illustrate the efficiency gains in the case of
logistic regression analysis of binomial data, we compare the
approach outlined in Section 4 (UPG) to the sampling scheme
of Polson, Scott, and Windle (2013) (PSW) and to the auxiliary
mixture sampler introduced in Fussl, Frühwirth-Schnatter, and
Frühwirth (2013) (AuxMix). For all observations, we assume
Ni = 5 trials. In all simulations, an adaptive Metropolis-
Hastings sampler (AMH) is included as a benchmark as well.
Throughout all simulation settings, independent N (0, 10)

priors are specified on the regression parameters, and we choose
γ ∼ N (0, 100) and δ ∼ IG(2.5, 1.5) as working prior for the
iMDA algorithms.

The results of the main simulation exercise are summarized
in Figure 3. The empirical inefficiency factors confirm that
standard DA techniques exhibit extremely inefficient sampling
behavior when confronted with imbalanced data, as shown the-
oretically and empirically in Johndrow et al. (2019). The MDA
strategy we propose alleviates this issue and allows for rather
efficient estimation also in highly imbalanced data settings.

6. Applications to More Complex Models

6.1. Application to a Binary State Space Model

Let
{

yt
}

be a time series of binary observations, observed for
t = 1, . . . , T, taking one of two possible values labeled {0, 1}.
The probability that yt takes the value 1 depends on covariates
xt , including a constant, through time-varying parameters β t as
follows:

Pr(yt = 1|β1, . . . , βT) = exp(xtβ t)

1 + exp(xtβt)
. (30)

We assume that conditional on knowing β1, . . . , βT , the obser-
vations are mutually independent. A commonly used model for
describing the time-variation of β t reads:

β t = β t−1 + wt , wt ∼ Nd (0, Q) , (31)

with β0 ∼ Nd
(
0, P0|0

)
and Q = Diag (θ1, . . . , θd), where

θ1, . . . , θd are unknown variances. MCMC estimation of binary
state space models (SSM) is challenging. Single-move sampling
of β t is potentially very inefficient (Shephard and Pitt 1997),
while blocked MH updates require suitable proposal densities
in a high-dimensional space (Gamerman 1998). Within the DA
framework, a latent utility zt of choosing category 1 is introduced
for each yt :

yt = 1 ⇔ zt > 0, zt = xtβt + εt . (32)

Given z = {zt}, this SSM is conditionally Gaussian for a
probit link, but conditionally non-Gaussian for a logit link.
Frühwirth-Schnatter and Frühwirth (2007) implemented an
auxiliary mixture sampler for a binary logit SSM. Alternatively,
using the Pólya-Gamma mixture representation of the logistic
distribution of εt yields a conditionally Gaussian SSM which
allows multi-move sampling of the entire state process β =
{β0, β1, . . . , βT} using FFBS (Frühwirth-Schnatter 1994; Carter
and Kohn 1994) in a similar fashion as for a probit SSM. To
achieve robustness against imbalance, we extend the iMDA
scheme introduced in Section 2 to SSMs, see Appendix A.5 for
details.

To illustrate the gains in sampling efficiency for binary SSMs,
we apply the UPG framework to an example dataset on severe
global pandemics. The data covers T = 222 years from 1800
to 2022 and documents disease episodes characterized by a
worldwide spread and a death toll of more than 75,000. In
addition, we focus on diseases that are characterized by relatively
short periods of activity, hence, excluding pandemics such as
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Figure 4. Panel (a) shows the posterior of a local level model fitted to the global pandemic data (solid line: posterior mean, dashed lines: 0.05 and 0.95 posterior quantiles).
Panel (b) shows the percentage gains in effective sample size when iMDA is applied, averaged across 10 independent chains.

HIV/AIDS. This results in a total of eight pandemic events
falling into the sample period, starting with a bubonic plague
outbreak between 1855 and 1860 and ending with the global
outbreak of COVID-19, starting in 2019.3

For years featuring a global pandemic, yt = 1, and yt =
0 otherwise. A pandemic is observed in roughly 1 out of 8
years with high state persistence, rendering the dataset relatively
imbalanced. We fit a logistic local level model to the data,
once with and once without iMDA, using θ ∼ IG(5, 2) and
P0|0 = 100 as prior settings. The Gibbs sampler is iterated
100,000 times after an initial burn-in period of 10,000 itera-
tions. This numerical study is repeated 10 times. One of the
resulting posterior distributions (based on the UPG sampler)
is shown in Panel (a) of Figure 4. The time-varying intercept
evolves smoothly, as is typical for binary state space models.
The estimated path is characterized by long periods without
severe pandemics, interrupted by short pandemic episodes. In
Panel (b), the percentage gains in effective sample size of the
sampler with iMDA relative to the plain sampler are plotted
for each year. The iMDA scheme described in Appendix A.5
is able to significantly improve sampling efficiency in all years.
The most pronounced gains—up to 200% improvement in effec-
tive sample size—are observed during prolonged “imbalanced”
periods where the outcome does not change. Averaging across
all periods, the inefficiency factors are roughly halved, from
about 96 in the plain sampler to around 45 in the UPG sampling
scheme.

6.2. Application to Logistic Mixture-of-Experts Regression
Models

Let yi (i = 1, . . . , N) be a grouped binary outcome with Ci =
j denoting that observation i belongs to group j = 1, . . . , J.
A logistic mixture-of-experts regression model with H (h =
1, . . . , H) components takes the form

p(yi | Ci = j, xi, wj) =
H∑

h=1
ηjh(wj)Ber(ζih(xi))

ζih(xi) = exp(xiβh)

1 + exp(xiβh)

ηjh(wj) = exp(wjψh)∑H
l=1exp(wjψ l)

(33)

3The data is sourced from https://en.wikipedia.org/wiki/List_of_epidemics and
the sources therein.

where H logistic regression “experts” are used to model cluster-
specific success probabilities ζih(xi) using individual-level
covariates xi and a multinomial logistic regression plays the
role of a “gating function”, modeling the mixture weights
ηjh(wj) based on group-level covariates wj. This model has
good approximation properties (Jiang and Tanner 1999) and is
popular in model-based clustering and ensemble learning. Fur-
thermore, developing efficient inferential tools is an important
research avenue (Sharma, Saxena, and Rai 2019). A thorough
treatment of mixture-of-experts models is given in Gormley
and Frühwirth-Schnatter (2019).

The model in (33) naturally involves multiple layers of hier-
archy, multi-modal posteriors and discrete parameter spaces,
potentially rendering inference with general purpose posterior
simulation tools difficult.4 As a result, DA algorithms are popu-
lar tools for the estimation of mixture-of-experts models (Gorm-
ley and Frühwirth-Schnatter 2019). However, imbalanced data
and large samples may lead to convergence issues. In model (33),
both the success probabilities ζih and the mixture weights ηjh
may be imbalanced.

The methodology proposed in the present article is a poten-
tial remedy in such scenarios, as both the logistic regression
experts and the gating function can be estimated using DA with
additional location-based and scale-based parameter expansion
steps. We demonstrate in a numerical exercise in Appendix A.6.3
that our iMDA scheme indeed leads to sizeable efficiency gains
with respect to all involved regression parameters in simulated
data. In Appendix A.7, we further illustrate logistic mixture-of-
experts regression models in a large-sample real world applica-
tion on maternal education and child mortality. Again, effective
sample sizes increase as soon as iMDA is introduced.

7. Concluding Remarks

Due to a wide range of applications in many areas of applied
science, much attention has been dedicated to the development
of estimation algorithms for generalized linear models. In the
past decades, various DA algorithms have been brought for-
ward that have steadily increased accessibility and popularity
of Bayesian estimation techniques in the context of regression
models for binary and categorical outcomes. In this article, we
introduce new sampling algorithms based on Pólya-Gamma
mixture representations for estimation of these models. The

4See Appendix A.1 for further discussion.

https://en.wikipedia.org/wiki/List_of_epidemics
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algorithms are easily implemented, intuitively appealing and
allow for a conditionally Gaussian posterior distribution of the
regression effects in binary, multinomial and binomial logis-
tic regression frameworks. To counteract potentially inefficient
sampling behavior, we develop a novel parameter expansion
strategy and apply it to the introduced sampling algorithms as
well as to probit frameworks. This results in a competitive level
of sampling efficiency, even in scenarios where outcomes are
heavily imbalanced, as is demonstrated via extensive simulation
studies and real data applications.

A number of future research avenues worth exploring come
readily to mind. First, the proposed family of DA and MCMC
boosting schemes could be extended to accommodate other
types of limited outcomes such as ordered or count data. Second,
we approached the problem of efficiency comparisons mostly
empirically and left theoretical aspects largely unexplored.
Extending the theoretical results of Choi and Hobert (2013)
and Johndrow et al. (2019), among others, might be fruitful and
assessing convergence rates of the proposed sampling schemes
more formally may reveal additional insights. Finally, it is well-
known that scale-based parameter expansion leads to faster
convergence of expectation-maximization algorithms (Liu,
Rubin, and Wu 1998). It may be worth to investigate whether
the proposed location-based expansion leads to additional
efficiency gains in this context.

Supplementary Materials

The online supplement contains the technical appendix as well as replica-
tion materials.
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