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Abstract
In this study, we investigate and forecast the impact of crop production shocks on the global prices
of three major international agricultural commodities: maize, soybean, and cocoa. We perform a
thorough assessment of the forecasting performances of five econometric and machine learning
models using 60 years of data. First, we train the models on production and price data to forecast
the monthly price variations for each crop separately considering different time horizons. Next, we
implement a cross-validation procedure to identify the models with the most accurate forecasting
ability for each crop. After choosing the best forecaster, we identify the most influential producing
areas using several local and global model-agnostic interpretation tools. Our findings indicate
significant differences among commodities in terms of prediction accuracy, with cocoa exhibiting a
higher level of prediction error compared to less volatile markets like maize and soybean. Our
results reveal a significant influence of Northern America’s maize and soybean production on the
global prices of these commodities. The effects of production on prices are asymmetrical: small
decreases in US production lead to substantial price increases, while small increases in production
do not systematically decrease prices. In contrast, cocoa price variations are influenced by
production coming from several regions, not from a single one.

1. Introduction

This paper introduces a novel machine learning (ML)
approach to forecast agricultural commodity (AC)
prices and identify the most influential producing
regions, addressing a critical gap in the existing lit-
erature and informing policies and strategies for
global food security. Decades of AC market instabil-
ity have posed persistent challenges, impacting farm-
ers, traders, and policymakers worldwide. Influenced
by diverse factors such as supply-demand dynamics,
weather conditions, geopolitical events, and financial
speculation, the fluctuation in prices, as documented
by the Food and Agriculture Organization (FAO)
dataset (FAO 2023), underscores a critical issue.
Historical instances like the 2007–2008 food crisis, the
2020 COVID-19 pandemic and the Ukraine–Russia
war demonstrate the profound implications of price
shocks on food security, societal stability, and global

supply chains (Kalkuhl 2016, Schmidhuber et al 2020,
Glauber and Laborde Debucquet 2023).

This study navigates the complex terrain of price
dynamics, particularly focusing on three globally
traded ACs, namely maize, soybean, and cocoa4,
emphasizing their historical impact on food secur-
ity, especially in developing nations (Headey 2011,
Kalkuhl 2016). The COVID-19 pandemic and sub-
sequent disruptions in 2020 revealed vulnerabilit-
ies in global food supply chains, leading to signi-
ficant price spikes in ACs, including rice, wheat,
and maize (Schmidhuber et al 2020). Even the
cocoamarket experienced dramatic price swings dur-
ing the pandemic, driven by logistical challenges
and supply chain disruptions (Organization 2021).
More recently, the Russian–Ukrainian war has added

4 for more information, see appendix A.
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another layer of uncertainty and volatility to the
global food market, as both countries are major pro-
ducers and exporters of wheat and other grains (FAO
2023). The war has disrupted the Black Sea trade
routes and caused prices to soar for staple foods
that are essential for food security in many regions
(Glauber and Laborde Debucquet 2023).

Price volatility in AC markets profoundly affects
farmers, particularly smallholders who lack resources
for effective price risk management (Wollni and
Zeller 2007). Furthermore, price instability can strain
food assistance programs, exacerbating food secur-
ity challenges for vulnerable populations (Headey
2011). Anticipating price shocks is crucial for mit-
igating their impact on food security, and the liter-
ature emphasizes the importance of proactive meas-
ures, including effective risk management strategies
for farmers and policies promoting market transpar-
ency (Wollni and Zeller 2007, Kalkuhl et al 2016).

ML, once considered complex, is nowmore easily
accessible thanks to user-friendly methods and open-
access databases (Henrique et al 2019, Zelingher and
Makowski 2022), offering new opportunities for pre-
dicting commodity price variations. By using these
methods and data to forecasting prices at a medium
time horizon, our study thus addresses a critical gap
in the existing literature.

This study evaluates five econometric and
ML techniques to provide interpretable medium-
term forecasts over different forecast horizons (1–
12 months), with a focus on the accessibility of the
methods and results to a wide audience. Notably,
random forest (RF) and gradient boosting machine
(GBM) emerge as top-performing models, show-
casing significant variations in prediction accuracy
across commodities. The study also unveils the dis-
tinctive influence of Northern American production
changes, emphasizing their asymmetrical impact on
maize and soybean prices.

In addition to model evaluation, the study
explores the broader dynamics of agricultural com-
modity markets. It identifies influential producing
regions, answering specific research questions about
the regions or countries with the most substantial
impact on selected commodity prices. The paper
concludes with a nuanced discussion of findings,
offering insights that extend beyond mere forecasting
to inform policies and strategies in the intricate realm
of global food markets.

The paper is structured as follows. Section 2
outlines the data used in the study. Section 3
presents the five models used in this study, includ-
ing the open-source packages for their implementa-
tion. Furthermore, this section describes the method
used to evaluate the forecasting performances of
the models and the different model-agnostic tech-
niques implemented to identify the most influential
producing regions (or countries). Section 4 presents

the results for the three commodities. Section 5 dis-
cusses the findings and draws conclusions.

2. Data andmethodology

2.1. Data
2.1.1. Model output—monthly global price variation
We extracted global monthly price data for maize,
soybean, and cocoa from the World Bank’s com-
modity market database (World-Bank 2023) between
January 1960 and December 2020 (732 values). To
remove the effect of inflation, all three price time
series were deflated into real 2010 USD values, using
the agricultural price index of the corresponding
period. Let us define pnm,y as a nominal price relative

to a month m in a year y, pdm,y as the deflated prices
and Inm,y as the price index, both relative to the same
period. Setting 2010 as the year of basis (Inm,2010 ≈
100) the deflation was as follows:

pdm,y =
pnm,y × Inm,2010

Inm,y
. (1)

Typically, globally traded crops are harvested in a
main harvest season, according to the climate condi-
tions of the area. Consequently, changes in produc-
tion levels can potentially affect yearly price changes
of that crop. On account of this, we define the
dependent variable in the analysis as the proportion
of price change relative to the same month m of the
previous year such as

pm,y =
pdm,y − pdm,y−1

pdm,y−1

(2)

for any year y.
Figure 1(left) presents the global monthly prices

of the three AC’s over the past six decades in real 2010
USD.

2.1.2. Model predictors
Our dataset comprises annual crop yields and pro-
duction. This information was sourced from the
FAOstat database (FAO 2023) (1960–2020) and
encompassed two geographical scales: national (indi-
vidual countries) and regional (clusters of coun-
tries defined by the FAO). To illustrate, a repres-
entative regional cluster is Western Africa, span-
ning 16 countries including Nigeria, Ghana, and
Côte d’Ivoire. The adopted methodology involved (i)
adhering to FAOstat’s region delineations, (ii) cal-
culating regional production as the summation of
national yields multiplied by respective national cul-
tivated areas, and (iii) determining regional yield by
dividing regional production by regional cultivated
area.

To continue along the same line as the relative
price change function (equation (2)), we transformed

2
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Figure 1. Prices of cocoa, maize, and soybean from 1961 to 2020 in real USD (left) and relative price change compared to the same
month of the previous year (right). The red dashed horizontal lines at−0.5 and+0.5 indicate relative price changes of this
magnitude.

the national and regional yield and production data
into relative annual changes, as follows:

xk,y =
qk,y − qk,y−1

qk,y−1
(3)

where qk,y is the production (or yield) in a geograph-
ical unit (country or region) k (k= 1, . . . ,K) and year
y, and xk,y is the relative production (or yield) change
in the same year and area.

The values of xk,y obtained for different regions
were used as predictors to forecast global price
changes pm,y. Appendix B features tables 7–12,
presenting an inclusive inventory of the production
(or yield) locations for each crop along with accom-
panying descriptive statistics for production (and
yield). Annual yield and production changes were
computed at the national and regional scales, lead-
ing to four different sets of predictors. These sets
were considered separately because of their strong
correlations. Note that the price change obtained in a
given year and a given month was forecast using yield
or production data available prior to that month.
To do this, we used local crop calendars (ITC and
UNCTAD/WTO 2001, FAS-USDA 2023) to determ-
ine the harvest periods for each crop in all the coun-
tries and regions considered.

Figure 2 shows the production data for the leading
producers of each of the considered commodities, in

terms of total quantity produced between 1961 and
2020.

Of the three commodities, cocoa is the least stable
in terms of price fluctuations (figure 1) and soybean
has the highest change in terms of regional produc-
tion share in the global soybean production (figure 2).
Despite several important shocks over the years, the
maize market is stable relative to soybean and cocoa,
both in terms of price fluctuations and production
trends.

A more complete description of the data is sup-
plied in table 5 and data sources are provided in
table 6, both in appendix B.

In addition to yield and production changes, we
considered the price changes observed the previous
years (pm,y−1, pm,y−2, . . .) as additional predictors.

2.2. Models
2.2.1. Machine-learning models
This study examines the forecasting accuracy of three
ML models, namely CART, RF, and GBM, to predict
price changes pm,y for each month m as a function of
xk,y, k = 1,. . ., K, using each set of predictors in turn
(i.e. yield or production changes, at the national or
regional scales). CART (Breiman et al 1984) builds an
individual recursive tree. At each step, CART splits the
data sample into two homogeneous groups relative to
the highest ranked predictor, in a way that minimizes

3
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Figure 2. Cocoa, maize, and soybean production of five biggest producing regions. Data from 1961 to 2020: production as
percentage of the global amount produced (left); production quantity, in 1000 tonnes (middle); and yield in 1000 hectograms per
hectare (right).

the forecasting error. CART continues the splitting
process until reaching the point where the data parti-
tion does not reduce the forecasting error. The result-
ing set of splitting rules defines a tree that can be used
to predict the target variable, here price change.We fit
CART using the rpart package (Therneau et al 2019)
in a regression form, in which the algorithm aims to
reduce the residual sum of squares.

Although CART has the advantage of being
simple to interpret, it is considered as a ‘weak learner’.
Its high sensitivity tominor changes in the datamakes
it a rather unstable, thus not always reliable forecaster.
To overcome this problem, we test another two ML
techniques, namely RF and GBM.

RF (Hastie et al 2009) is a bagging algorithm pro-
cessing a collection of random sub-datasets, training a
single decision tree with each one, and combining all
trees derived from all sub-datasets. RF predictions are
usually smoother and more stable than CART. Here,
we applied RF to forecast price changes using the R
package randomForest (Liaw and Wiener 2002). To
maximize the forecast ability of the model, we tuned
RF by testing 14 different numbers of trees (hyper-
parameter ntree, whose values were set equal to 10,
20, 30, 40, 50, 100, 150, 200, 250, 300, 350, 400,
450, 500, successively). Additionally, we searched for
the optimal number of variables to sample randomly
at each split (hyperparameter mtry). Values of ntree

andmtry were optimized to minimize the out-of-bag
mean square error.

The third ML algorithm, GBM, relies on a boost-
ing technique. As RF, GBM generates sub-datasets
and fits trees to each of them but, unlike RF, the
trees defined by GBM are not independent; each
tree is designed to predict the errors of the previous
tree. GBM was applied here using the gbm package
(Greenwell et al 2020). We tuned two hyperparamet-
ers of GBM, namely the number of trees (same num-
bers as those considered for RF) and the maximal
depth of each tree (1, 2, . . ., or 9). Both hyperparamet-
ers were optimized to minimize the out-of-bag mean
square error.

2.2.2. Econometric models
Within the class of econometric models, we consider
two types of models: a standard multivariate LM and
the Trigonometric Seasonal Box Transformation with
ARMA residuals Trend and Seasonal Components
(TBATSs).

The model LM describes the impact of xk,y on the
pm,y through linear relationships, as follows:

pm,y = α0 +α1pm,y−1 +
K∑

k=1

βkxk,y + ϵm,y (4)

4
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where α0 is the intercept; α1 and βk are regression
parameters and ϵm,y are the residuals, all relative to
a month m. Note that this model includes two types
of predictors; the price change in year y− 1 and the
production (or yield) changes in theK regions. A sep-
arate model was fitted for each set of predictors (yield
vs. production, national vs. regional scale) and each
month (one set of regression parameters was estim-
ated for each type of predictors and each month).
For each model, the final set of predictors is selected
using a stepwise selection based on the Akaike (1974)
information criterion (AIC).

TBATS (De Livera et al 2011) is a more sophist-
icated time-series model used here to forecast price
changes from a combination of trend, seasonal, and
residual components, such as:

pm,y = Trm,y + Sm,y +ARMAm,y (5)

where Trm,y is the trend component (including a gen-
eralization of the Holt–Winters algorithm), Sm,y is
the seasonal component based on Fourier series, and
ARMAm,y is the residual component expressed as an
auto-regressive moving average (ARMA) model. The
model can also use a Box–Cox transformation of
the price data, if required. The TBATS model does
not rely on production data but on past price data
only. It is a powerful time series model for short-
term forecasting (Kyriazi et al 2019, Chrulski 2021,
Crespo Cuaresma et al 2021, Perone 2022). It includes
an internal model selection procedure to automat-
ically evaluate and select the best model among a
large number of time series models (with/without
seasonality, with/without trends, with/without Box–
Cox transformation, with/without AR/MA compon-
ents) based on the AIC. Here, we included the TBATS
model as a benchmark in our evaluation to determine
whether models using production data as predictors
were able to outperform a powerful forecasting tool
based solely on price data. TBATS was applied using
the R package forecast (Hyndman et al 2020), and
was used to predict price changes at a 1 to 12 month
forecasting horizons.

2.3. Model training and selection
The process of model training and selection involved
several crucial steps to build an effective predictive
model. Firstly, the dataset was divided into a train-
ing set (consisting of the first T years of observa-
tions, with T⩾ 44) and a testing set (consisting of
the next observation following the year T). In our
study, we aim to forecast the global prices of ACs for
the year following the last year of price observation.
Our evaluationmethodwas chosen to reflect this type
of real-life application. To achieve this, we employ
a rolling cross-validation approach (Hyndman and
Athanasopoulos 2018) where we iteratively expand
the training set by adding one year of data in each iter-
ation. This approach allows us to forecast the price of

the following year using the data available up to the
previous year. By selecting T= 44 as the minimum
training period, we ensure that our training sets
encompass a substantial historical data range, provid-
ing a robust basis for model training. As we pro-
gress through each iteration, the training set expands
(i.e. it includes T = 45, 46, etc observations), cap-
turing the temporal dynamics and fluctuations in the
global foodmarket over time. Allmodels were trained
using different combinations of hyperparameters as
explained in the previous section, resulting in several
variants for each model type. All model variants were
then used to predict the observation (price change)
available at the year T+ 1. This process is repeated
using rolling cross-validation in order to predict all
price changes (for the years > 44), with each model
variant in turn.

The performances of the different models were
evaluated month by month by comparing the RMSE
of each model to the standard deviation of the
observed price changes over the same time period.
This comparison was done by computing a relative
advantage (RA) index for each model, defined as

RAm = 1− RMSEm
SD

(
pm,y

) (6)

5Finally, mean absolute error (MAE) is also used
as an additional evaluation criterion to check the
robustness of the model selection. Further details and
explanations regarding the model comparison and
the rationale behind it are available in appendix A.1.

In the last phase of our analysis, we used a one-
way ANOVA and t-test to determine if there are any
significant differences between the commodities in
terms of mean values of RMSE and RA. To com-
pare the performance of different forecasting meth-
ods, we select the top three forecasters that exhibit the
highest accuracy among 16 possibilities ((3 MLmod-
els+ 1 LMmodel)× 2 types of inputs (production/y-
ield)× 2 geographic scales (regional/national)).

2.4. Model interpretation
Understanding the origins of the variability of the
model predictions is essential to increase the confid-
ence of the model users (Spavound and Kourentzes
2022). We implemented several model-agnostic tech-
niques (Molnar 2022) that provide detailed and
straightforward explanations of the model outcomes.
These techniques were implemented with the most

5 By definition, the value of SD(pm,y) is equal to the RMSE of the
historical data average. Thus, a value of RA higher than one indic-
ates that the model considered performs better (i.e. has a lower
RMSE) than the historical average. On the opposite, a value equal
to or lower than one indicates that the model is not more accur-
ate or is even less accurate than a constant prediction equal to the
historical average.

5
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accurate models selected at each month6. The selec-
ted models were trained again using the whole set
of observations, and several global and local agnostic
methods were then implemented to shed light on the
nature of the forecasting results and the underlying
mechanism.

First, we analyzed and ranked the relative import-
ance of the predictors for predicting price changes
(Fisher et al 2018). We assessed the importance of
each xk,y,k= 1, . . . ,K by calculating its contribution
to the prediction errors of the model using a per-
mutation method. More precisely, we computed the
increase of mean square errors resulting from a ran-
dom permutation of each predictor in turn using
the FeatureImp R function. A large increase of mean
square errors indicates that the corresponding pre-
dictor is important. A low or absence of increase
indicates that the predictor is not important or even
useless. The results of this analysis are reported in rel-
ative importance plots for each crop in figures 4, 6,
and 8. On these plots, the ranking of the predictors is
indicated by the locations of the predictors along the
x-axis and by their colors, with 1 (dark purple) repres-
enting maximum importance and 0 (bright yellow)
representing no importance to the model. Error bars
are used to 95% confidence intervals of importance
values of the predictors.

Second, after measuring the impact of each pre-
dictor on the average prediction errors, we assessed
the contribution of each of the K predictors to each
individual price change prediction. To achieve this,
we implemented the game-theory approach, Shapley
(Shapley 1952), which measures the contribution of
a given model predictor to a given model predic-
tion. Here, Shapley values describe the contribution
of the regional/national yields/production to pre-
dicted price variations. These values can be used to
identifying the origins of the most extreme predicted
price variations corresponding to major price shocks.
Shapley values provide information on both the dir-
ections and the magnitudes of the effects of the pre-
dictors. When plotted as a function of the values of
xk,y, they provide a visualization tool to assess the risk
of price shocks as a function of the levels of variation
in regional production. The average absolute Shapley
values (computed by region and country) can also
serve for ranking the producing regions or countries
according to their influence on predicted price vari-
ations. Here, this approach was implemented with
the iml R package (Molnar et al 2018). The robust-
ness of the results obtained with the Shapley values is
assessed using an alternative approach based on local
models (LIME) implemented with the iml R package
(Molnar et al 2018).

6 TBATS is not concerned by the interpretation stage as it does not
take crop production into account and is considered to be a black
box.

3. Results

3.1. Accuracy of model forecasts
Table 1 presents the best forecasting options for differ-
ent months and different crops. The names of theML
models correspond to themodels showing the highest
RA for predicting price change at each month. The
name between brackets indicates the type of input,
which was found to have the most substantial impact
on price. The numerical values represent the values of
RA of the best ML models (RAML) and of TBATS for
the lags (months).

For maize, the one-month-ahead predictions
made with TBATS tend to be higher in accuracy
than those obtained using ML techniques. The best
ML tool (GBM with national production inputs for
predicting price change in May) achieved a RA of
60%, while the highest RA for TBATS was 80%
in March, when considering one-month-ahead fore-
casts. The good performances of TBATS are not sus-
tained for extended time-horizon forecasts. Indeed,
the RA of TBATS decreases rapidly with each incre-
ment of time horizon (table 1). Thus, when con-
sidering longer term projections, the model com-
parison no longer favors TBATS and, compared to
other alternatives, GBM shows higher RA levels when
using regional production as predictors. In general,
for maize, production-based forecasts tend to be
more accurate than yield-based forecasts. In com-
parison to GBM, the models CART and LM tend to
have lower RA values, especially when using regional
predictors.

Results obtained for soybean, as shown in table 1,
are rather different. First, the average performance
of TBATS was lower, with average RA values of 58%
for one-month-ahead forecasts and 47% for two-
months-ahead forecasts. Second, there was a relat-
ively high variability in the forecasting accuracy of
the ML methods. Here, the highest RA reached 90%
in March with GBM and regional yields as predict-
ors, but was only equal to 29% in August. Overall,
for soybean, higher RA levels were achieved during
the first six months of the year, especially for price
changes in February (RA2 = 87%), March and April
(RA4 = 78%). Lastly, while GBM performed system-
atically better for maize, the RF method performed
better in forecasting soybean price variations for four
months of the year only.

For cocoa, TBATS has an average RA of 62% for
a one-month-ahead forecasting period and 52% for a
two-month-ahead forecasting horizon. On the other
hand, the use of machine learning techniques, par-
ticularly RF and GBM, shows more accurate price
forecasts, reaching a maximum value of 76% for the
August price change (regional yields as predictors).
The results also highlight the weakness of the linear
regressionmodel, especially when relying on national
predictors.

6
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Table 1. Relative advantage (RA) of the best machine learning models and TBATS for different months and different crops. The names
and values reported for each month correspond to the models showing the highest RA for predicting price change at this period. NA’s
are reported for TBATS models with RAs values lower than the RA value of the best machine learning model.

a. Maize ML model (input) TBATS (by lag)

Month RAML 1 2 3 4 5

1 GBM (regional production) 0.57 0.74 0.71 0.61 NA NA
2 GBM (regional production) 0.50 0.73 0.67 0.64 0.56 NA
3 GBM (regional production) 0.50 0.80 0.70 0.64 0.60 0.54
4 GBM (countries’ production) 0.54 0.59 NA NA NA NA
5 GBM (countries’ production) 0.60 0.70 0.68 0.62 0.55 0.51
6 GBM (countries’ production) 0.48 0.58 0.56 0.50 NA NA
7 GBM (regional production) 0.46 NA NA NA NA NA
8 GBM (regional production) 0.57 NA NA NA NA NA
9 GBM (regional yield) 0.47 0.54 NA NA NA NA
10 GBM (regional production) 0.58 0.60 NA NA NA NA
11 GBM (regional production) 0.45 0.56 NA NA NA NA
12 GBM (regional production) 0.52 0.70 0.62 0.53 NA NA

b. Soybean ML model (input) TBATS (by lag)

Month RAML 1 2 3 4 5

1 GBM (countries’ yield) 0.85 NA NA NA NA NA
2 GBM (regional yield) 0.87 NA NA NA NA NA
3 GBM (regional yield) 0.90 NA NA NA NA NA
4 RF (countries’ production) 0.78 NA NA NA NA NA
5 RF (countries’ yield) 0.74 NA NA NA NA NA
6 GBM (countries’ yield) 0.87 NA NA NA NA NA
7 RF (regional yield) 0.33 0.52 0.42 0.36 NA NA
8 RF (countries’ yield) 0.44 0.54 NA NA NA NA
9 RF (countries’ yield) 0.44 0.47 NA NA NA NA
10 GBM (regional yield) 0.61 NA NA NA NA NA
11 GBM (countries’ yield) 0.65 0.66 NA NA NA NA
12 GBM (countries’ yield) 0.68 0.76 NA NA NA NA

c. Cocoa ML model (input) TBATS (by lag)

Month RAML 1 2 3 4 5

1 RF (countries’ production) 0.66 NA NA NA NA NA
2 RF (countries’ yield) 0.68 NA NA NA NA NA
3 RF (countries’ production) 0.61 NA NA NA NA NA
4 RF (countries’ production) 0.55 0.75 0.57 NA NA NA
5 RF (countries’ production) 0.58 0.75 0.68 NA NA NA
6 GBM (countries’ yield) 0.65 NA NA NA NA NA
7 RF (regional yield) 0.60 0.63 0.62 NA NA NA
8 RF (regional yield) 0.76 NA NA NA NA NA
9 RF (countries’ yield) 0.58 NA NA NA NA NA
10 GBM (countries’ production) 0.73 NA NA NA NA NA
11 GBM (countries’ production) 0.62 NA NA NA NA NA
12 RF (countries’ production) 0.68 NA NA NA NA NA

3.2. Differences in performances between
commodities
The differences in RMSE and RA between commod-
ities are evaluated in figure 3. Regarding the RA,
all three commodities have a mean RA greater than
0.5, indicating an overall advantage of model-based
price forecasting compared to constant predictions.
Soybean has the highest average RA (0.68), suggest-
ing a stronger benefit of model-based forecasting for
this commodity. The mean RA of cocoa is very sim-
ilar (0.64). In terms of RMSE, soybean shows the

lowest mean RMSE (0.04) and cocoa has the highest
mean (0.10). The three RMSE values are signific-
antly different (p< 0.05) according on a two-sided
t-test.

3.3. Effect of crop production on prices
In this section, we present the results of the analysis
of the importance of the predictors on the prediction
accuracy of the models (figures 4, 6, and 8). Next, we
show the partial dependence of price changes on the
most important predictors (figures 5, 7, and 9).
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Figure 3.Model performances for maize, soybean, and cocoa according to the RMSE (left) and relative advantage
(RA= 1− RMSE/Standard deviation of the price data) of model-based predictions versus constant predictions (right). The
distributions of RMSE and RA across forecasting scenarios are presented in box plots, and the results of statistical tests comparing
the mean values of RMSE and RA are presented in black. Signif. codes: ns : p> 0.05, not− significant;∗ : p ⩽ 0.05;∗∗ : p ⩽ 0.01;
∗ ∗ ∗ : p ⩽ 0.001;∗ ∗ ∗∗ : p ⩽ 0.0001.

Figure 4. Assessment of the importance of regional production changes for maize price forecasting in January with the GBM
model, using regional production changes as predictors. The left-side box-plot displays the distribution of Shapley values,
indicating the impact of each predictor (regional production change) on the model output (price change). The gray points within
each box represent the individual Shapley values attributed to specific predictor variables. The right-side feature importance plot
illustrates the contribution of each predictor to the RMSE resulting from a random permutation, with dark purple indicating
highly influential predictors and orange representing low-impact features.

8



Environ. Res. Lett. 19 (2024) 014026 R Zelingher and D Makowski

Figure 5. Shapley-based partial dependence plot (PDP) for maize. The black points scattered along the x-axis represent individual
feature values, while their corresponding Shapley values are depicted on the y-axis. The smoothing curve derived from these
points (in red) forms the PDP, which offers insights into the connection between relative production changes in Northern
America (on the left) and Western Asia (on the right) and the projected relative maize price changes in January. The predictions
are based on the GBMmodel, chosen for its high forecasting accuracy. The gray bands indicate the 95% confidence intervals.

Figure 6. Assessment of the importance of national production changes for soybean price forecasting in April with the RF model
using national production changes as predictors. The left-side box-plot displays the distribution of Shapley values, indicating the
impact of each predictor (country’s production change) on the model output (price change). The gray points within each box
represent the individual Shapley values attributed to specific predictor variables. The right-side feature importance plot illustrates
the contribution of each predictor to the RMSE resulting from a random permutation, with dark purple indicating highly
influential features and orange representing low-impact predictors.
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Figure 7. Shapley-based partial dependence plot (PDP) for soybean. The black points scattered along the x-axis represent
individual feature values, while their corresponding Shapley values are depicted on the y-axis. The smoothing curve derived from
these points (in red) forms the PDP, which offers insights into the connection between relative production changes in Mexico (on
the left) and the USA (on the right) and the projected relative soybean price changes in April. The predictions are based on the RF
model, chosen for its high forecasting accuracy. The gray bands indicate the 95% confidence intervals.

Figure 8. Assessment of the importance of national yield changes for cocoa price forecasting in September with the RF model
using national yield changes as predictors. The left-side box-plot displays the distribution of Shapley values, indicating the impact
of each predictor (national yield change) on the model output (price change). The gray points within each box represent the
individual Shapley values attributed to specific predictor variables. The right-side feature importance plot illustrates the
contribution of each feature to the RMSE resulting from a random permutation, with dark purple indicating highly influential
features and orange representing low-impact predictors.
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Figure 9. Shapley-based partial dependence plot (PDP) for cocoa. The black points scattered along the x-axis represent individual
feature values, while their corresponding Shapley values are depicted on the y-axis. The smoothing curve derived from these
points (in red) forms the PDP, which offers insights into the connection between relative yield changes in Cote d’Ivoire (top left),
Equatorial Guinea (top right), Nigeria (bottom left), and Papua New Guinea (bottom right) and the projected relative cocoa price
changes in September. The predictions are based on the RF model, chosen for its high forecasting accuracy. The gray bands
indicate the 95% confidence intervals.

3.3.1. Maize
The model with the highest level of accuracy for pre-
dicting changes in January’s maize price is GBM,
using regional production data as predictors. Figure 4
indicates the most and least influential variables,
and reveals that the production changes in Northern
America have the strongest influence on price change
predictions (mean absolute Shapley value = 0.062,
relative importance = 0.53). The next most influen-
tial region, with a significant influence gap, isWestern
Asia (mean absolute Shapley value = 0.03, relat-
ive importance = 0.25). The influence of the other
variables is considerably lower, and often close to
zero. Similar results were obtained for most of the
year. The variables are colored according to their
level of relative importance7 Overall, these find-
ings underscore the significant impact of Northern
America on world maize prices and highlight the

7 The results obtained when using LIME tend to be more extreme.
It seems that LIME, due to its simplicity and being based on a linear
model, yields unstable results in the presence of extreme values.
However, we find LIME very useful for understanding the model,
and thereforewe choose to use it, but place the results of the analysis
in the appendices (See figure 11).

importance of considering regional factors when ana-
lyzing commodity price dynamics.

Figure 5 focuses on the two predictors with the
highest relative importance: Northern America (left)
and Western Asia (right). The partial dependence
plots (PDPs) displayed on this figure reveal that pro-
duction changes in Northern America have a stronger
impact on world maize prices compared to Western
Asia. The PDPs further indicated that an increase
(decrease) of production in North America and
Western Asia tends to decrease (increase) the maize
price. The Shapley values computed for Western Asia
are relatively evenly distributed along the regression
line, with respect to the Y-axis, indicating a more
consistent marginal effect. In contrast, the values
obtained for Northern America are more extreme,
with a higher density toward the top and bottom of
the chart. The effects of an increase and decrease in
production are asymmetrical. Small decreases in US
production lead to substantial price increases, while
small increases in production tend do not always
decrease maize prices. An increase of US produc-
tion needs to reach a certain level before inducing
a decline of price. Inherent uncertainty arises when
examining the Shapley value trends for the most
extreme production changes in Northern America.
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The limited number of observations below −45% of
production change induces wider confidence inter-
vals, while greater confidence is attributed to the pre-
dicted outcomes for production changes within the
−30% to+30% range due to a larger number of data.

These findings highlight the importance of con-
sidering both the magnitude and distribution of mar-
ginal effects when interpreting the results of themod-
els. Furthermore, the results suggest that regional
factors, such as production changes in Northern
America andWestern Asia, play a critical role in shap-
ing global commodity prices.

3.3.2. Soybean
For soybean price variation in April, the most reliable
predictions were made through RF, with countries’
production as input. Figure 6 shows that the USA is
the most influential producing country for soybean
price changes, similar to maize price changes, with
a negative correlation between production and soy-
bean price changes. The relative influence of the other
explanatory variables was lower and often closer to
zero, as also reflected in figure 12. Nevertheless, some
of the results obtained for soybean are different from
those obtained for maize, such as the lower Shapley
values obtained for soybean production in the USA
compared to those for maize. The role of the USA in
driving positive changes in the global soybean prices
was found to be weaker compared to its effect in the
maize market, as revealed by the lower Shapley values
obtained for Soybean.

Figure 7 shows the partial dependence between
price change and the two most influential predictors,
namely soybean production in Mexico, on the left,
and the USA, on the right. Both PDPs reveal a negat-
ive correlation with soybean price variations in April,
with the primary effect occurring during the nar-
row transition phase from slightly negative to posit-
ive production changes. Production variations in the
USA have a stronger effect on price change in April
than production variation in Mexico. Interestingly,
small increases in soybean production in the USA
do not systematically lead to lower prices. Thus, a
price decrease is achieved only for annual production
increases close to+5% in the USA.

3.3.3. Cocoa
Compared with the results obtained for maize and
soybean, the results of the cocoa model appear to
be less conclusive. The most precise predictions were
usually obtained with the RF model using national
yield changes as predictors. For cocoa, prices seem
to be influenced by several countries. Surprisingly,
Cote d’Ivoire, the main cocoa producer (accounting
for approximately 31% of the total cocoa production
since 1960), is not ranked first according to its relative

importance8. Figure 8 indicates that several coun-
tries have similar importance, such as Nigeria (0.18,
[0.14, 0.22]), Papua New Guinea (0.14, [0.11,0.17])
and Cote d’Ivoire (0.14, [0.10,0.16]). To further elu-
cidate the relationship between yield and cocoa price
changes, we examine PDPs for the four countries
with the highest relative importance. As depicted in
figure 9, these countries display a weak-negative rela-
tionship between yield variation and price variation.
Overall, our results demonstrate the inherent price
variability within the cocoa market and the signific-
ant impact of domestic yield changes on international
prices.

4. Discussion

This study introduces an innovative methodology
for medium-term AC price analysis and forecast-
ing, employing ML tools and data in open-access.
We show the practical interest of this methodological
framework through three case studies on maize, soy-
bean and cocoa. Our findings highlight the import-
ance of a rigorous model selection procedure, consid-
ering specific commodities, trading periods, andmar-
ket characteristics. In particular, our results highlight
the advantage of considering multiple forecasting
methods in order to find the most accurate one for a
given crop and forecast period (Kourentzes et al 2019,
Wang et al 2022). The study underscores the superi-
ority of ML over linear regression models, emphas-
izing the need for modeling complex nonlinear rela-
tionships. Nevertheless, distinct results emerge across
the three commodities considered: TBATS and GBM
excel for maize, RF performs better for cocoa, espe-
cially with national production data, while differ-
ent ML methods provide good results for soybean
depending on the month of forecast. Clearly, our res-
ults show that the best model should be selected on a
case-by-case basis and that it is unlikely that a single
model will be the best in all situations.

Our results also reveal that the model accuracy
depends on the commodity, as model performance
was found to be lower for cocoa due to its higher price
instability compared tomaize and soybean.More pre-
cise results were obtained for maize and soybeans,
whose price variations were found to be closely linked
to the annual variation in agricultural production
among one or two major producers.

While acknowledging the impact of AC storage on
price dynamics (Wright 2009, von Braun and Torero
2009, Bobenrieth et al 2013), we focused on pro-
duction and yield data due to practical challenges

8 Nigeria is ranked significantly high to predict September prices,
which corresponds to the beginning of the cocoa trade year. Brazil
is the only country who’s cocoa trade year starts in May.
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in obtaining comprehensive stocks data for a large
number of countries. In this paper, we compared a
wide range of methods, both parametric and non-
parametric, based on statistical models and MLs. In
the future, it will be interesting to use additional
methods, for example more flexible regression mod-
els such as generalized additive models that are able
to cope with changing trends over time, or such
as multi-layer neural networks that offer great flex-
ibility. However, these methods are data-intensive,
and it is not certain that they will give good results
with relatively short time series. It is worth noting
that our methodological framework could be easily
adapted to implement and compare other forecasting
techniques.

Acknowledging data constraints and local mar-
ket dynamics, our methodology could benefit from
alternative data sources like satellite-derived vegeta-
tion indices (Anderson et al 2023). Further research
should address data limitations and regional mar-
ket dynamics to enhance reliability. Overall, our
study provides an accessible toolbox for analyzing
and forecasting agricultural commodity prices in
the medium term, aimed at non-specialist users.
Despite its limitations, this methodology could con-
tribute to informed decision-making in global food
markets.

5. Conclusion

Food security is a complex issue that refers to the state
of having reliable access to a sufficient quantity of
nutritious and affordable food to meet one’s dietary
needs. It encompasses the four dimensions of food
availability, access, utilization, and stability. Access to
food is a crucial aspect of food security, often determ-
ined by the relationship between the consumers’
incomes and the price they pay for food.While food is
considered a fundamental right, disparities in access
to food still exist, particularly in low-income coun-
tries (FAO2018). However, governments canmitigate
the instability of food prices in their country by mon-
itoring global markets, and farmers can plan their
harvest and maximize profits by using existing mod-
els. According to Gilbert and Morgan (2010), many
governments try to stabilize food prices in their coun-
tries. Yet, understanding and analyzing global food
markets require financial knowledge and economic
means that may not be available to all stakeholders
(Olofsson 2020).

To contribute in the development of accurate
and accessible price forecasting tools, we designed
a methodological framework combining simple ML
models and open-access databases. We showed that,
when rigorously trained, these models could lead
to accurate commodity price forecasting and allow

decision-makers to understand the origins of price
fluctuations.

By implementing the proposed framework, stake-
holders can gain insights into global food markets,
enabling them to make informed decisions and take
actions to promote food security, based on public
data and software.
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Appendix A. Further information on
models

A.1. Commodities in focus
We focus our study on three globally traded ACs,
namely maize, soybean, and cocoa. Maize is a cru-
cial AC, used as bio-energy, feed, and food, both in
developed and developing countries (FAO 2023). The
USA is the largest maize producer, responsible for
over 30% of the global supply.

Soybean is the most traded tropical grain world-
wide and is produced in over 100 countries (DeMaria
et al 2020).While the USAwas responsible for 70% of

9 For example, see The European Code of Conduct for Research
Integrity.
10 According to ETHICS ISSUES table—CHECKLIST of H2020
programme and EU’s Ethics for Researchers.
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the global soybean market share in 1961, its share has
since decreased to less than 30%.

Cocoa is mainly traded by major importers in
New York and London, far from its countries of ori-
gin (ITC and UNCTAD/WTO 2001). Western Africa
and South America are the primary regions for cocoa
production, with smallholder farmers in family farms
typically producing it (ITC and UNCTAD/WTO
2001). The prices received by these cocoa produ-
cers are closely tied to the international market price,
a factor that significantly influences their decisions
regarding land allocation and crop choices. The fluc-
tuations in international cocoa prices can directly
impact the livelihoods and economic prospects of
these farmers, influencing their choices between cul-
tivating cocoa and other crops such as coffee trees
(Gilbert 2016). By including cocoa in this study,
along maize and soybean, we aim to shed light on
the multifaceted impact of production shocks on
diverse ACs, ranging from those with direct nutri-
tional implications to those with intricate socioeco-
nomic ramifications.

A.2. Model comparison and the rational behind it
The model comparison process is grounded in the
RA metric and RMSE. RA, calculated as 1 minus
RMSE divided by the data’s standard deviation, serves
as a normalized RMSE and equivalent to a standard
model skill score. RMSE, a widely adopted measure
of forecasting accuracy for quantitative predictions,
combines bias and variance errors into a unified met-
ric. While RMSE remains the prevalent evaluation
criterion, alternative approaches could be valuable in
specific scenarios.

This criterionmeasures the RA of themodel com-
pared to hypothetical RMSE of a constant forecast
equal to the mean price change. The mean value can
be seen as a naïve forecast as it assumes that the
future value are equal to themean of the past observa-
tions. In addition to this naïve forecast, we considered
standard linear models owing to their prominence in
statistical analysis, along with TBATS, as univariate
time series models commonly applied in commodity
and agricultural price prediction.

Through application to three major ACs-maize,
soybean, and cocoa-this methodology’s practical sig-
nificance is demonstrated.

A.3. Predictive performance according toMAE
criteria
We present three tables showing the MAE of the
selected models for predicting the price changes of

Table 2.Maize.

Month ML model (input) MAEml

1 GBM (regional production) 0.05
2 GBM (regional production) 0.06
3 GBM (regional production) 0.06
4 GBM (countries’ production) 0.05
5 GBM (countries’ production) 0.04
6 GBM (countries’ production) 0.08
7 RF (regional production) 0.08
8 GBM (regional production) 0.06
9 GBM (regional yield) 0.07
10 GBM (regional production) 0.06
11 RF (regional production) 0.07
12 GBM (regional production) 0.06

Table 3. Soybean.

Month ML model (input) MAEml

1 GBM (countries’ yield) 0.02
2 GBM (regional yield) 0.01
3 GBM (regional yield) 0.00
4 RF (countries’ production) 0.01
5 RF (countries’ yield) 0.01
6 GBM (countries’ yield) 0.02
7 RF (regional yield) 0.05
8 RF (countries’ yield) 0.05
9 RF (countries’ production) 0.06
10 GBM (regional yield) 0.03
11 GBM (countries’ yield) 0.04
12 GBM (countries’ yield) 0.04

Table 4. Cocoa.

Month ML model (input) MAEml

1 RF (countries’ production) 0.06
2 RF (countries’ yield) 0.05
3 RF (countries’ production) 0.07
4 RF (countries’ production) 0.11
5 RF (countries’ production) 0.09
6 GBM (countries’ yield) 0.07
7 RF (regional yield) 0.07
8 RF (regional yield) 0.04
9 RF (countries’ yield) 0.08
10 GBM (countries’ production) 0.04
11 GBM (countries’ production) 0.07
12 RF (countries’ production) 0.08

maize, soybean, and cocoa relative for each month.
MAE is a robust metric for assessing the accuracy of
predictions. The MAE is calculated as follows:

MAEm =
1

T

T∑
y=45

|p̂m,y − pm,y|. (7)
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Appendix B. Data and variables

Table 5. List of variables and indices used in the paper.

Symbol Values Description

Raw data

pdm,j Time series of observed monthly prices, deflated
qk,j Time series of observed annual agricultural output

Variables, in relative annual change

p P= (p1,p2, . . . ,pT) Model input, observations in training set.
x Xk = (xt,1,xt,2, . . . ,xt,K) Model input, observations in training set (no TBATS)

Xt = (x1,k,x2,k, . . . ,xT,k)
p̂yf — Model output, forecasted by the model
p̂dtb — Model output, price forecasted by TBATS
py — Price to forecast

Indices

pd — Price to forecast, using TBATS
j j= 1960 1961,…,J Years observed (j1 = 1960)

y y= 1,2, . . . ,Y Years observed, transformed to relative change (y⩾ j1−j0
j0

)

k k= 1,2, . . . ,K Number of features in model
m m= 1,2, . . . ,12 Month, fixed, except for TBATS
d d= [y1,1], [y1,2], . . . ,D TBATS Date, composed of [y,m], D= [Y,m]
h h= 1,2, . . . ,H Lag/Forecasting horizon (1⩾ H⩾12), in monthly units
t t= 1,2, . . . ,T Observations in training set
ttb ttb = 1,2, . . . ,Ttb TBATS training set
yf y45 ⩾ yf ⩾ Y+ 1 An instance (year) in testing set, one-step ahead forecast (f )
dtb d30 ⩾ dtb ⩾ D+H An instance (date) of price to forecast with TBATS (tb)

Table 6. Variable description and data sources.

Data Unites Time-range Source

Final data

Production % change/year 1962 – 2019
Yield % change/year 1962 – 2019
Price % change/year 01/1961 – 11/2020

Initial information

Price Nominal USD/mta 01/1960 – 11/2020 World Bank,
Price index, Agriculture USD (2010= 100) 01/1960 – 11/2020 Pink Sheet (2023)
Production tonnes/year 1961 – 2019 FAO STAT
Yield hg/ha 1961 – 2019 (2023)
a Cocoa prices are given by kg. They were manually converted to units of metric tonnes
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Rolling standard deviation

Figure 10. Rolling Standard Deviation for cocoa, maize, and soybean’s price variations.The rolling standard deviation measures
the variability of price fluctuations over time. A higher value on the y-axis indicates greater instability in commodity prices during
that period. The price of cocoa exhibits higher and more variable standard deviations than those of maize and soybean. This
implies that the price of cocoa is more challenging to predict than the other two commodities.

Maize

Table 7. Annual production and yield of maize, relative to region.

Production (1000 tonne) Yield (hg/ha)

Area Average Min. Max Average Min. Max.

Caribbean 460 280 816 11 153 8536 16 556
Central America 18 051 7469 32 300 20 404 9738 36 458
Central Asia 1287 454 2275 48 623 25 634 69 552
Eastern Africa 14 897 5690 34 121 13 682 9523 20 753
Eastern Asia 106 304 17 712 267 523 39 413 12 276 62 944
Eastern Europe 34 855 18 752 88 839 37 404 18 402 69 972
Middle Africa 2674 1144 7645 8542 6741 10 903
Northern Africa 4982 1762 8688 41 231 15 914 69 852
Northern America 222 359 89 846 426 151 73 601 39 229 116 691
Northern Europe 41 1 203 35 396 10 000 75 841
Oceania 426 146 742 50 793 17 335 87 976
South-eastern Asia 19 551 4712 52 321 22 239 9017 46 328
South America 55 077 16 314 171 819 28 285 12 947 61 406
Southern Africa 9260 3445 17 891 24 027 7878 54 049
Southern Asia 16 435 6421 43 697 17 540 10 024 35 815
Southern Europe 20 903 10 388 29 670 54 903 21 126 90 657
Western Africa 8297 1803 26 043 12 141 6964 19 225
Western Asia 3140 847 7760 35 621 11 398 81 268
Western Europe 15 334 2121 26 826 69 800 22 556 103 049
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Table 8. Annual production of maize, relative to countries.

Production (1000 tonne) Yield (hg/ha)

Area Average Min. Max Average Min. Max.

Argentina 16 277 4360 60 526 44 173 16 481 78 615
Brazil 35 824 9036 103 964 26 840 11 606 57 734
Canada 7147 742 14 191 68 974 41 108 102 055
China 109 216 16 250 272 552 40 158 11 842 63 177
Egypt 4787 1617 8543 56 287 24 014 83 705
Ethiopia 3110 695 10 722 18 082 9000 42 404
European Union (27) 48 096 16 876 77 575 53 224 20 522 83 617
India 12 060 4312 31 650 16 654 8999 32 099
Indonesia 9316 2254 30 254 25 774 9214 57 237
Kenya 2417 940 4014 15 485 10 713 20 712
Mexico 15 804 6246 28 250 22 087 9867 40 697
Nigeria 4676 488 12 745 13 432 5731 22 545
Pakistan 2255 483 10 635 21 978 9956 64 356
Philippines 4376 1266 8300 16 099 6280 32 368
South Africa 9272 3277 17 551 26 274 7853 58 596
Thailand 3470 598 5300 30 389 14 140 45 981
Türkiye 2633 800 6750 44 074 11 994 96 358
Tanzania 2750 488 7039 13 023 4808 31 359
USA 220 543 88 504 412 262 74 988 39 184 117 433

Soybean

Table 9. Annual production and yield of soybean, relative to region.

Production (1000 tonne) Yield (hg/ha)

Area Average Min. Max Average Min. Max.

Central America 372 20 1041 18 198 12 851 21 343
Central Asia 96 3 296 15 181 6471 21 680
Eastern Africa 236 10 909 13 232 5535 22 381
Eastern Asia 12 127 6810 18 692 13 833 6421 19 349
Eastern Europe 1852 289 9367 10 194 3220 19 528
Middle Africa 21 1 89 7069 4611 8868
Northern Africa 60 1 178 25 726 9494 32 987
Northern America 62 764 18 393 127 931 23 266 15 346 34 600
Northern Europe 1 0 3 15 330 12 692 17 969
Oceania 51 0 130 15 412 3858 23 289
South America 54 264 297 186 189 20 080 9388 32 614
South-eastern Asia 1270 423 2508 10 668 6369 14 847
Southern Africa 235 2 1540 12 457 2500 22 929
Southern Asia 4504 8 14 928 8836 4656 13 589
Southern Europe 783 3 2114 24 190 6757 36 850
Western Africa 348 48 1359 5632 2293 12 655
Western Asia 69 4 252 22 692 7833 43 578
Western Europe 220 1 736 23 577 12 512 29 969
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Table 10. Annual production of soybean, relative to countries.

Production (1000 tonne) Yield (hg/ha)

Area Average Min. Max Average Min. Max.

Argentina 18 911 1 61 447 20 943 9765 33 340
Bolivia 999 0 3318 17 877 9302 23 981
Brazil 35 233 271 134 935 20 536 8478 34 450
Canada 2244 136 7717 24 034 14 754 31 151
China 11 609 6140 19 600 14 095 6243 19 833
Korea, North 321 135 455 11 174 5625 17 041
European Union (27) 1102 4 2912 20 273 4682 32 297
India 4621 5 14 666 8556 4348 13 530
Indonesia 823 273 1870 10 702 6203 15 690
Japan 207 99 392 15 363 11 059 20 195
Mexico 338 20 992 17 468 10 925 21 218
Nigeria 303 42 994 5589 2100 12 951
Paraguay 3012 2 11 046 21 422 11 304 33 938
Philippines 3 0 11 10 938 7225 14 286
Korea, South 180 75 319 13 336 5421 20 348
South Africa 279 2 1897 12 714 2500 22 936
Thailand 188 19 672 12 940 7365 17 712
USA 62 529 18 213 120 707 23 660 15 309 34 936
Uruguay 540 1 3212 16 129 7000 29 495

Cocoa
Table 11. Annual production and yield of cocoa, relative to region.

Production (1000 tonne) Yield (hg/Ha)

Area Average Min. Max. Average Min. Max.

Caribbean 59 36 102 3591 2214 5203
Central America 49 31 75 4893 2834 6649
Eastern Africa 14 1 62 3956 1716 5839
Middle Africa 172 107 323 2974 1915 3912
Oceania 39 14 66 4122 3235 5112
South-eastern Asia 354 5 866 6128 2649 10 323
South America 437 223 822 3995 2655 5680
Southern Asia 9 1 25 3154 1013 5741
Western Africa 1616 693 3377 4001 2553 5065

Table 12. Annual production and yield of cocoa, relative to countries.

Production (1000 tonne) Yield (hg/Ha)

Area Average Min. Max. Average Min. Max.

Brazil 254 140 459 4411 2788 7415
Cameroon 146 75 310 3184 1976 4104
Colombia 40 14 102 4788 2757 9266
Côte d’Ivoire 840 85 2235 5194 3269 7006
Dominican Republic 46 25 87 3777 2047 5737
Ecuador 94 35 284 2934 1166 5612
Equatorial Guinea 10 1 38 1500 643 4244
Ghana 460 167 969 3369 2054 5495
Guinea 6 2 40 3688 1000 9429
India 9 0 24 3612 1970 8000
Indonesia 291 1 845 5363 1216 11 323
Malaysia 57 0 247 7214 528 13 056
Mexico 37 20 60 5133 2934 7617
Nigeria 269 140 485 3159 2000 4980
Papua New Guinea 34 9 59 4156 3137 5266
Peru 26 2 142 5656 3849 8594
Sierra Leone 13 3 50 4039 2750 5996
Togo 23 4 142 5605 1464 10 274
Uganda 6 0 35 1873 222 4834
Venezuela 18 11 32 2894 1746 5115
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Appendix C. Detailed model agnostic

Three graphs illustrate the distribution of Shapley
values obtained for the most accurate model for each
commodity. The interpretation of the results appear
in the left-hand plot of figures 4, 6, and 8 for
maize, soybean, and cocoa, respectively. In each plot,
the individual Shapley values are combined into one
graph displayed as a box plot, which shows the over-
all distribution of the values. The features’ names are
written right to the Y-axis with the corresponding
mean Shapley (absolute) value in brackets. The X-
axis represents the impact of each feature on the price
change, with features having a negative impact on
the left and with a positive impact on the right. The
bars are colored in accordance with the right-hand
plot (global agnostic analysis), where dark purple rep-
resents highly influential features, and orange indic-
ates features with a low impact on the model’s accur-
acy. Each bar displays the distribution of individual
Shapley values for each feature, as calculated from the
second and third quarterlies. The bars are positioned
on the X-axis based on the magnitude of each fea-
ture’s Shapley value. The median of the Shapley val-
ues is represented by the black vertical linewithin each
box, and the black horizontal lines represent the low-
est and highest inter-quartile ranges (IQR)multiplied
by 1.5. Data points located outside the box are con-
sidered outliers.

The figures below utilize the model-agnostic
method LIME to interpret the results obtained from
the most accurate models developed for maize, soy-
bean, and cocoa. Specifically, figures 11, 12, and 16
display the distribution of all the local effects obtained
for each crop. These figures utilize a box plot format
to combine individual effects into a single graph,
presenting the overall distribution of the values. The
names of the features are written next to the Y-axis,
with the corresponding mean effect (absolute values)
displayed in brackets. The X-axis shows the impact of
each feature on price change, with features that neg-
atively impact the price positioned on the left and
those that positively impact the price on the right.
The bars are colored in accordance with the global
agnostic analysis, (i.e. the relative importance of the
feature). Dark purple bars represent highly influen-
tial features, while orange bars indicate features with
a low impact on the model’s accuracy. Each bar in the
plot displays the distribution of individual effect val-
ues for each feature, calculated from the second and
third quarterlies. The bars’ position on theX-axis cor-
responds to the magnitude of each feature’s effect on
the price, with themedian effect values represented by
a black vertical line within each box. The black hori-
zontal lines represent the lowest andhighest IQRmul-
tiplied by 1.5. Any data points located outside the box
are considered outliers.

Maize

Figure 11. LIME, local explanation maize.
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Soybean

Figure 12. LIME, local explanation soybean

Cocoa

Figure 13. LIME, local explanation cocoa
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Appendix D. Price change forecasts of the models

Maize

Figure 14. Forecasted maize monthly price changes obtained with all models (colored lines). Observed price dynamics are shown
as a black line.

Soybean

Figure 15. Forecasted soybean monthly price changes obtained with all models (colored lines). Observed price dynamics are
shown as a black line.
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Cocoa

Figure 16. Forecasted cocoa monthly price changes obtained with all models (colored lines). Observed price dynamics are shown
as a black line.
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