

Preprints are preliminary reports that have not undergone peer review. They should not be considered conclusive, used to inform clinical practice, or referenced by the media as validated information.

Climate damage projections beyond annual temperature

Paul Waidelich (paul.waidelich@gess.ethz.ch)

ETH Zurich

Fulden Batibeniz ETH https://orcid.org/0000-0002-1751-3385

James A. Rising

University of Delaware

Jarmo Kikstra

International Institute for Applied Systems Analysis https://orcid.org/0000-0001-9405-1228

Sonia Seneviratne

Swiss Federal Institute of Technology in Zurich https://orcid.org/0000-0001-9528-2917

Article

Keywords:

Posted Date: August 7th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3198712/v1

License: © ① This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Additional Declarations: There is NO Competing Interest.

Climate damage projections beyond annual temperature

Paul Waidelich^{1,*}, Fulden Batibeniz², James Rising³, Jarmo S. Kikstra^{4,5,6}, and Sonia I.
 Seneviratne²

- ⁵ ¹Climate Finance & Policy Group, ETH Zurich, Switzerland
- ⁶ ²Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland
- 7 ³School of Marine Science & Policy, University of Delaware, United States
- ⁸ ⁴Centre for Environmental Policy, Imperial College London, United Kingdom
- ⁵Grantham Institute for Climate Change and the Environment, Imperial College London, United Kingdom
- ¹⁰ ⁶Energy, Climate and Environment (ECE) Program, International Institute for Applied Systems Analysis, Austria
- *corresponding author: paul.waidelich@gess.ethz.ch

12 ABSTRACT

13

14

15

16

17

18

19

20

21

22

Recent studies have linked variability and extremes in temperature and precipitation to lower economic growth, but global GDP projections under climate change remain focused on annual temperatures. Here we combine empirical dose-response functions for temperature variability, rainfall deviations, and extreme precipitation with 33 CMIP6 models to examine GDP impacts under different warming levels. We find that at +3 °C, global average losses amount to 8% of GDP, with the worst effects (up to 13%) in poorer, low-latitude countries. Relative to annual temperature damages, the additional GDP impacts of projecting variability and extremes are smaller and dominated by inter-annual variability, especially in lower latitudes. However, accounting for variability and extremes when estimating temperature dose-response functions raises global GDP losses by over 1%-pt. Since tail risks for economic growth are substantial, our results emphasize the need for region-specific risk assessments and reducing uncertainties around future variability and extremes, particularly for developing countries.

Spatial projections of economic damages from climate change are key for evaluating the benefits of climate mitigation, identifying effects on vulnerable communities, and informing discussions around adaptation needs and loss and damage financing. On a global or country level, such assessments have focused on how projected changes in annual mean temperatures affect gross domestic product (GDP)^{1–3}. However, the widespread losses in recent years driven by flooding and drought suggest that precipitation variability and extremes are similarly important⁴. Anthropogenic forcing is overall increasing both the frequency and intensity of precipitation extremes and variability on multiple scales, altering daily temperature patterns, and driving an overall increase in precipitation over land^{5,6}. Continued global warming is expected to exacerbate these trends, potentially with uneven impacts across regions^{4,7,8}. Therefore, the inclusion of precipitation, variability, and extremes can improve the precision, comprehensiveness, and interpretability of climate change damage estimations⁹.

Economic damages from climate change can be assessed either bottom-up by quantifying, valuating and aggregating 23 specific impacts (e.g., crop failures or labor supply changes) — or top-down by identifying the statistical relationship between 24 observed climatic shifts and aggregate economic growth. While both approaches come with different advantages and limitations, 25 top-down approaches usually neglect climatic shifts beyond annual temperature changes 10^{10} . To address this shortcoming, recent 26 studies have estimated the relationship between macro-level income and a wider range of climatic indicators, such as total 27 precipitation^{11–13}, temperature variability^{14,15}, or temperature and precipitation extremes and anomalies^{12,16,17}. However, 28 these studies do not provide a forward-looking assessment of how much the inclusion of these climate indicators alters previous 29 economic assessments of climate change—which is highly relevant for policy-making and future adaptation. A notable 30 exception is the study by¹³ which projects annual precipitation along with temperature for a range of socioeconomic and climate 31 outcomes and investigates the effects on inequality. A comprehensive assessment of the projected economic impacts of intense 32 periods of precipitation and temperature anomalies, however, is still missing. 33

In this study, we draw upon recent advances in estimating coherent dose-response functions, which relate shifts in various climate indicators (total precipitation, temperature variability, precipitation anomalies and extremes) to GDP changes¹². Combining these functions with projections from 33 models of the 6th phase of the Coupled Model Intercomparison Project (CMIP6), we investigate how the inclusion of these indicators affects our understanding of future economic impacts at different

38 global warming levels. Variability and extremes introduce substantial climatic and associated economic uncertainties, and

³⁹ we conduct a variance decomposition to determine the main drivers of uncertainty across different levels of global warming.

⁴⁰ Furthermore, we explore how the inclusion of variability and extremes in empirical regressions alters the dose-response function

for annual mean temperature, which the extant literature has estimated controlling only for annual precipitation 1, 2, 18-20.

42 Results

43 Projecting GDP impacts for precipitation and temperature indicators

Compared to annual temperature, future changes in precipitation patterns and temperature variability under climate change are 44 subject to high uncertainties^{6,21,22}. To capture these uncertainties, we build upon previous analysis employing projections from 45 a wide range of CMIP6 models to analyze several climate indicators besides annual mean temperature and annual precipitation⁸. 46 These additional indicators include i) day-to-day temperature variability (how much daily temperatures on average deviate 47 from monthly means); ii) extreme precipitation (the annual sum of precipitation on days with exceptionally high precipitation 48 exceeding the historical 99.9th percentile); iii) monthly precipitation deviation (how much monthly precipitation deviates from 49 historical means throughout the year); and iv) the number of "wet days" with precipitation above 1mm/d. These indicators 50 have been linked to forcing from greenhouse gases^{12,14} as well as to income growth using a global sample¹². Considering 51 all of these in one coherent estimation framework is crucial because variability and extremes correlate strongly with annual 52 temperature and precipitation as well as among each other (see Figure S1 in the Supplementary Information). Therefore, 53 combining dose-response functions from different estimations risks double-counting impacts. Notably, the coherent estimation 54 framework we use does not explicitly model damages from droughts and heatwaves as separate impact channels, although these 55 may be captured partially through other indicators, such as precipitation deviations or annual temperature spikes. 56 Figure 1 illustrates our approach for the example of extreme precipitation impacts on economic output for New York State 57 under +3°C of global warming relative to pre-industrial levels. Based on how a given CMIP6 model and scenario project the 58 respective climate indicator (Figure 1a), we compare the GDP impacts in a given year against the average impacts if the climate 59 were to remain constant at levels of a recent baseline period (Figure 1b)^{2,16}. For each model and scenario, the baseline period is 60 selected as the 41-year period during which global warming equals the historical warming between 1979–2019 (+0.84°C), 61 which is the climatic baseline used for estimating the dose-response functions deployed here (for more details, see **Methods**)¹². 62

⁶³ We then repeat this procedure for different CMIP6 models and potential damage parameter estimates based on statistical

⁶⁴ uncertainty and aggregate results to the national level. This yields a distribution of GDP impacts for each country that features

the years in each model and scenario that are associated with the same level of global warming, such as $+3^{\circ}$ C (Figure 1c). Therefore, the main sources of uncertainty in our GDP impact distribution, for a given global warming level and territory, are i)

inter-annual variation for the same CMIP6 model and scenario since the magnitude of extremes can vary strongly from year to

⁶⁸ year (Figure 1a), ii) statistical uncertainty in the dose-response functions (Figure 1b), and iii) projection differences between

⁶⁹ CMIP6 models (Figure 1c).

70 Global results

Figure 2a displays the mean impact on global GDP and the uncertainty range for all variables combined, as well as the 71 separate impacts from annual temperature, annual precipitation, and the four variability and extremes indicators. Global GDP is 72 estimated to be 2.4% lower (lower/upper decile: 0.9 - 4.1%) at +1.5°C of global warming relative to pre-industrial levels over 73 1850–1900, compared to a world with no further climate change beyond recent levels. At $+3^{\circ}$ C, global GDP decreases by 7.9% 74 (4.1 - 11.8%). When disaggregated by climate indicator, global impacts are strongly determined by the change in annual mean 75 temperature, which accounts for a GDP reduction of 8.1% at +3°C. This estimate is consistent with recent top-down studies 76 focusing exclusively on damages from annual temperature changes and projecting impacts of around 7-14% of GDP per capita 77 loss by the end of the century under RCP8.5, which implies a global warming level of over +4°C^{6,18,19}. For context, such an 78 impact exceeds the GDP loss of the COVID pandemic when global output growth plummeted from +2.6% in 2019 to -3.1% in 79 2020 or the effect of the global financial crisis in 2009 when global output shrunk by $-1.3\%^{23}$. While other studies have come 80 to even higher damage estimations², this is primarily driven by their assumption that temperature changes impact long-run 81 growth trajectories persistently^{10,24,25}. 82

Unlike annual temperature changes, increases in annual precipitation in many areas lead to a small positive impact on 83 global GDP (0.2% under $+3^{\circ}$ C warming). In contrast, the distribution for the combined impact of the variability and extremes 84 indicators remains centered around zero. While this seemingly suggests a lack of signal, this is not the case when projections 85 are disaggregated by individual indicators (Figure 2b). On average, extreme precipitation reduces global GDP by 0.2% (0.1 86 - 0.5%) at +3°C, with 97% of our impact distribution indicating economic losses. This is caused by an overall increase in 87 extreme precipitation around the globe, particularly in Sub-Saharan Africa, Northern parts of South America, and South-East 88 Asia¹². Notably, these impacts are over one order of magnitude lower than annual temperature damages. This is somewhat 89 expected because extremes have a lower temporal and spatial correlation than annual mean temperature. Therefore, aggregation 90 from daily, location-specific events to annual indicators and country-level projections reduces signals more strongly compared 91

Illustration for one example climate indicator (out of six), CMIP6 model and region (NY state)

Figure 1. Illustrative example of GDP impact projections for one example indicator (extreme precipitation) and region (New York state) under +3°C global warming. (a) Projected extreme precipitation in New York state under SSP3-7.0 for all CMIP6 models used (grey) and an example model highlighted for illustrative purposes (ACCESS-CM2, black). Vertical dashed lines denote the baseline period in which the example model reaches the historical global warming level over 1979–2019, i.e., +0.84°C (green), and the 20-year window in which it reaches +3°C (blue). (b) Dose-response function for extreme precipitation (black line) and 95% confidence interval (grey area). Blue and green dots represent the extreme precipitation levels for New York state from Panel a for the baseline period and the +3°C global warming level window, as well as the corresponding values of the dose-response function, with the green diamond denoting the average across baseline years. The red error bar illustrates the difference between the dose-response function for an example year in the +3°C global warming level window (2067) and the baseline average, which corresponds to the damages from extreme precipitation projected for this year. Note that the dose-response function is linear in log-scale and hence is slightly non-linear in % of GDP, which is displayed here. (c) Damage projection distributions (density and boxplots) for the United States under +3°C global warming by CMIP6 model. Boxplot hinges and whiskers denote upper/lower quartiles and deciles, respectively. The x-axis is capped at -2.5% for visual purposes only because KACE-1-0-G and ACCESS-CM2 yield outlier damages of up to 4%. For more details on the methodology, see **Methods**.

⁹² to annual mean temperature^{11, 12}. However, a 0.2% GDP loss due to extreme precipitation at the global level and for an average

year still represents a tenth of the damages caused by the catastrophic 2022 floods in Pakistan, which were estimated at -2.2%

of GDP²⁶. Moreover, magnitudes are comparable to recent bottom-up assessments of drought damages, projecting a 0.14%

⁹⁵ GDP loss for Europe under $+3^{\circ}C^{27}$. Losses from extreme precipitation, however, are compensated, on average, by a positive

⁹⁶ impact of day-to-day temperature variability, which for $+3^{\circ}$ C warming amounts to +0.2% of global GDP (-0.1%, +0.5%), with

97 78% of the impact distribution implying global economic gains. The reason is a significant decrease of temperature variability

⁹⁸ in higher latitudes (due to lower temperature advection), while there is a moderate increase in the Global South, potentially ⁹⁹ driven by soil drying processes and vegetation coverage^{14,28}. For the monthly precipitation deviation and the number of wet

⁹⁹ driven by soil drying processes and vegetation coverage 14,20 . For the monthly precipitation deviation and the number 100 days, global GDP impacts remain limited and uncertainty ranges centered around zero even for $+3^{\circ}$ C of warming.

To explore what drives the uncertainty in our results, we decompose the variance in GDP impacts from each climate indicator into statistical dose-response function uncertainty, climate model uncertainty, and inter-annual variation, as shown in Figure 2c (for details, see **Methods**). For annual temperature damages, uncertainty is primarily driven by the dose-response function, particularly at higher levels of global warming. This stands in stark contrast with annual precipitation and variability and extremes, for which inter-annual variation drives impact uncertainty. Moreover, disagreement between CMIP6 models plays either a comparable or a larger role than dose-response function uncertainty for these additional indicators and is particularly pronounced for day-to-day temperature variability (see Figure 2d). More importantly, the share of climate model uncertainty in total GDP impact variance decreases for annual temperature impacts—whereas it increases for all variability and extremes

total GDP impact variance decreases for annual temperature impacts—whereas it increases for all variability and extrem indicators, indicating that for a stronger global warming signal, GDP impact projections do not converge between models.

110 Country-level results

Since global aggregates risk masking heterogeneities across regions, Figure 3a displays the combined country-level GDP 111 impacts from all six climate indicators under +3°C of warming. Notably, all countries are expected to suffer from GDP losses, 112 in line with recent evidence that climate change might not benefit cooler countries economically, as previously suggested¹⁹ 113 Impacts are more severe in the Global South and highest in Africa and the Middle East, where higher initial temperatures make 114 countries particularly vulnerable to additional warming. Figure 3b shows the combined GDP impact of all four variability and 115 extremes indicators, i.e., excluding annual temperature and precipitation, and reveals a clear North-South divide. While for 116 higher latitudes, the decrease in temperature variability mitigates overall GDP damages to some extent, variability and extremes 117 exacerbate GDP losses in most parts of the Global South. However, these effects vary substantially across the full distribution 118 of projected impacts for each country (Figure 3c). 119

Annual temperature is the only indicator where negative impacts arise for at least 90% of our impact distribution for all 120 countries (upper dotted line in Figure 3c). Annual precipitation increases benefit most countries on average, but for many 121 countries, less than two-thirds of the distribution support the sign of expected impacts (lower dotted line). For day-to-day 122 temperature variability, we find a clear divide between relatively certain gains for a small group of high-income countries 123 and less certain, smaller losses for many lower-income countries. While extreme precipitation is projected to increase in 124 most regions, projected damages are highest and least uncertain for middle- and high-income countries in higher latitudes. 125 in line with recent studies on forced changes in precipitation extremes²⁹. In contrast, low-income countries are more likely 126 to be adversely impacted by changes in precipitation deviation and the number of wet days, but high uncertainties limit the 127 conclusions that can be drawn. Notably, the uncertainties about GDP impacts are lowest for high-income countries irrespective 128 of the impact channel, potentially due to their position in higher latitudes, where warming is strongest, and hence the signal of 129 climate change emerges earlier from the inherent variability of the climate system³⁰. 130

Overall impact of including variability and extremes

The results in the previous sections seemingly suggest that including variability and extremes in GDP impact projections 132 exacerbates disparities between higher- and lower-income countries (Figure 3), but does not substantially alter the implications 133 of climate change for global GDP (Figure 2). However, providing an apples-to-apples comparison with the recent climate 134 economics literature requires calculating damages based on the current status quo approach, which i) projects only damages 135 from annual temperature changes, and ii) estimates the relationship between income growth and annual temperature controlling 136 only for annual precipitation^{1, 2, 18-20}. Figure 4a illustrates the resulting global GDP impacts following this "status quo" 137 methodology (in blue) compared to our approach (in red), which i) projects damages for all six indicators, and ii) controls 138 for all of our climate indicators when estimating the temperature dose-response function. Our results show that including 139 variability and extremes leads to higher global damages, with a mean difference of 1.5%-pts (7.9% instead of 6.4%) at +3°C of 140 global warming. 141

The main reason for this increase is that controlling for variability and extremes, instead of only for annual precipitation, increases the estimated effect of mean temperature changes (see Figure 4b). The marginal GDP impact of a $+1^{\circ}$ C rise in annual temperature increases by over 0.5%-pts irrespective of the initial level of temperature when all climate indicators are included as control variables (red line). Most of this effect is driven by including temperature variability, which leads to higher estimated

Figure 2. Distribution and variance decomposition of global GDP impacts under different global warming levels. (a) Distribution of global GDP impacts conditional on different global warming levels. Points and error bars denote the mean and upper-to-lower-decile range, respectively. "Variability & extremes" are composed of the four climate indicators displayed in Panel b. Dashed horizontal lines denote example year-to-year growth rates in real GDP from the World Bank's World Development Indicators database²³. (b) Same as Panel a, with "variability & extremes" impacts disaggregated by climate indicator. (c) Variance decomposition for the GDP impacts of all climate indicators under consideration and disaggregated by impact channel, conditional on the respective level of global warming. Variance decompositions can be carried out by impact channel because impacts in the underlying regression model are additive and hence can be projected out separately. Residual variance arising from interactions between the uncertainty drivers that cannot be attributed solely to one of the three uncertainty drivers is displayed in grey. For the sake of simplicity, if the interaction term is negative, we take the absolute value and rescale to 100% to capture this "shared variance" regardless, but we show charts without this simplification in the **Supplementary Information** (for details, see **Methods**). (d) Same as Panel c, with "variability & extremes" disaggregated by climate indicator.

Figure 3. Country-level GDP impacts and uncertainty under $+3^{\circ}$ C of global warming. (a) Mean of the GDP impact distribution at $+3^{\circ}$ C of global warming, displayed for sovereign countries only (other territories marked in dark grey) and considering all impact channels displayed in Panel c. (b) Same as Panel a but only considering impacts of "variability & extremes" indicators (the bottom four indicators displayed in Panel c). (c) Mean GDP impact (x-axis) and share of the impact distribution agreeing with the mean's sign (y-axis) for all sovereign countries at $+3^{\circ}$ C of global warming. Grey diamond denotes the result for the global economy. Income-based country groups follow the World Bank's classification, with "Middle income" comprising both lower and upper-middle-income countries for conciseness. Horizontal dotted lines denote thresholds for 66% and 90% likelihood following IPCC uncertainty guidance terminology⁶.

temperature impacts particularly for colder regions (dotted line). Therefore, the positive impacts of temperature variability

shown above in Figure 3 obscure that in fact, including this parameter leads to *higher* global damages since it disentangles

¹⁴⁸ potential benefits of reduced variability from the negative effects of temperature increases. As a result, we find that including ¹⁴⁹ other climate indicators exacerbates GDP impacts across the globe (see Figure 4c). Importantly, the inclusion of climate

indicators beyond annual precipitation has not been discussed in recent studies about sources of potential non-robustness when

estimating damages from annual temperature changes empirically²⁰, whereas our results suggest that the implications could be substantial.

Figure 4. Comparison with impact projections based on considering annual temperature only (= status quo). (a) Bars/value labels and error bars denote the mean and upper-to-lower-decile range across the GDP impact distribution, respectively. "Status quo" projects impacts from annual temperature only and additionally considers annual precipitation as a control variable when estimating the dose-response function. "All climate indicators" uses all indicators displayed in Figure 3 Panel c, both for projections and for estimating dose-response functions. (b) Marginal GDP impact of a +1°C increase in a territory's annual temperature for different initial temperature levels (x-axis) with 95% confidence intervals (shaded area). Estimated using Equation S1 and the regression models in Table S4 (columns 1, 2 and 5) in the **Supplementary Information**. "+ Temperature variability" uses a dose-response function estimated by controlling for annual precipitation and day-to-day temperature variability (no confidence interval shown for visual conciseness). Remaining labels correspond to the ones in Panel a. (c) Difference in mean GDP impacts between our main approach and the "status quo" approach at +3°C displayed for sovereign countries only (other territories marked in dark grey).

153 Exposure to tail risks

Aside from average impacts and the uncertainty around them, prudent risk management by policymakers also requires information about tail risks. Figure 5a displays the percentage of the current global population living in countries that have a non-negligible chance (at least 5%) of suffering from damages exceeding different thresholds (x-axis) under different levels of

¹⁵⁷ global warming (color), both for our main approach (solid line) and the "status quo" approach (dotted line). Even at only +1.5°C

global warming, tail risks are substantial, with about 69% of the global population living in countries with a non-negligible

risk of suffering GDP damages of 5% or higher if all climate indicators are included—a number that increases to 100% of
the global population at +3°C. Comparing results based on all climate indicators and the "status quo" approach (Figure 5b)
reveals that including variability and extremes increases tail risks considerably. While under the "status quo", 5% of the global
population is projected to face damages of at least 15% with a likelihood of at least 5% at +3°C of warming, this increases
to 43% of the population when variability and extremes are included. The share of the global population facing catastrophic
impacts of 20% or higher with a 5%-chance rises from 0% to 2%.

Disaggregating these results by individual climate indicators (see Figure S6 in the **Supplementary Information**) highlights that the high climatic uncertainties for some of the climate indicators lead to sizable tails that might represent either real risks or noise. For extreme precipitation, where the signal is clearest, 15% of the global population lives in countries that have a 5%-chance of suffering GDP losses beyond 1% at +3°C of warming—whereas at +1.5°C, this would hold for only 1% of the global population. However, the conclusions from Figure 4d, i.e., the increase in global exposure to catastrophic climate change damages, is primarily driven by higher temperature damages if underlying regression models control for more climate

¹⁷¹ indicators than just annual precipitation.

165

166

167

168

169

170

Figure 5. Exposure of global population to tail risks (5th percentile) of GDP losses. (a) Share of the current global population that lives in countries whose projected GDP impacts for a given warming level (color) exceeds the respective threshold (x-axis) for at least 5% of the GDP impact distribution. Dotted and solid lines denote the values based on the "status quo" approach and our main approach using all climate indicators, respectively. The black error bar provides a reading example of the chart to illustrate by how much the global population exposed to a 5% risk of 15% GDP losses at +3°C increases when all climate indicators are included. (b) Table with selected values of the exposed share of the current global population from Panel a. Cell color based on position in value range between 0% (white) and 100% (red).

172 Discussion

Taken together, our results illustrate that, unlike annual temperature impacts, damage projections of variability and extremes 173 remain severely constrained by the large climatic uncertainties involved since the signal of climate change emerges only at high 174 warming levels. This highlights the need for a scientific effort to improve projections of temperature variability and precipitation 175 in climate models, e.g., by leveraging empirical temperature-scaling relationships to narrow uncertainties³¹. Such efforts should 176 focus particularly on low-income countries, which are expected to suffer the most but also exhibit the largest uncertainties in 177 impact projections. For policymakers, dedicating more resources to modeling precipitation and climatic extremes, particularly 178 for the Global South, could yield useful progress in reducing uncertainty about expected local, regional, and global impacts. 179 While the overall impacts of variability and extremes remain substantially below those of annual temperature changes, they are 180 likely to exacerbate global disparities further, in line with recent research on precipitation impacts¹³. 181 For scholars studying the economic effects of climate change, our results suggest a potential downward bias in temperature 182

For scholars studying the economic effects of chimate change, our results suggest a potential downward bias in temperature damage estimates by not disentangling the impacts of changes in temperature means and temperature variability. As temperature impacts dominate overall GDP loss projections, future studies estimating such dose-response functions should test how the inclusion of variability and extremes indicators that have been linked to economic growth alters their findings. Importantly, such biases could also be caused by other climate indicators not explicitly considered here, such as heatwaves or droughts. Furthermore, since the signal clarity is much higher for extreme precipitation and day-to-day temperature variability, these indicators seem more suitable to be included in climate-economy calculations, such as the social cost of carbon.

While our results rest on strong empirical foundations and a wide range of state-of-the-art climate models, there are 189 several reasons why actual GDP impacts may exceed our projections. First, the dose-response functions used here do not 190 explicitly cover some important climate extremes, most notably heat events¹⁶ and droughts²⁷. Second, to be conservative, 191 we abstract from the possibility that climatic shifts do not only change GDP growth in a given year but alter a country's 192 long-run growth trajectory persistently. While such persistence in GDP losses remains empirically debated^{1,2,12,20,32}, it would 193 increase damage estimates substantially^{24,25}. Third, aggregation across time and space is more likely to reduce signals in 194 precipitation patterns due to their lower spatial and temporal correlation compared to annual mean temperature^{11,12}. For these 195 reasons, our results should be seen as an important first step, but they certainly do not exclude the possibility of larger GDP 196 losses. Furthermore, econometric-based dose-response functions like the ones used here have several limitations, e.g., the 197 risk of conflating weather impacts with climatic shifts or the extrapolation of impacts to warming levels that go far beyond 198 historical observations³³----particularly given the unclear role of adaptation¹⁹. In addition, specification questions can further 199 exacerbate socio-economic uncertainties²⁰ and uniform dose-response functions for aggregate GDP can mask heterogeneities 200 between countries, sectors and income segments, with precipitation affecting agriculture and poorer households particularly¹³. 201 Moreover, considering impacts in % of GDP implicitly assigns a lower weight to poorer regions within countries that are 202 disproportionately exposed to climate change risks³⁴. 203

Nevertheless, our study highlights the sizable risks of omitting climate indicators beyond annual mean temperature from damage projections and identifies the most promising fields for additional research. Building on our work, researchers could integrate further climate indicators excluded here, particularly heat and droughts, into a comprehensive assessment of climate change impacts or improve our understanding of potential adaptation, which remains a key limitation for GDP impact projections¹⁰. Aside from improvements in climate modeling, this would also require more empirical studies to robustly identify the link between economic growth and different climatic extremes.

210 References

- Dell, M., Jones, B. F. & Olken, B. A. Temperature shocks and economic growth: Evidence from the last half century. *Am. Econ. Journal: Macroecon.* 4, 66–95, DOI: 10.1257/mac.4.3.66 (2012).
- 2. Burke, M. Global non-linear effect of temperature on economic production. *Nature* 527, 235–239, DOI: 10.1038/
 nature15725 (2015).
- 3. Hsiang, S. *et al.* Estimating economic damage from climate change in the United States. *Sci. (New York, N.Y.)* 356, 1362–1369, DOI: 10.1126/science.aal4369 (2017).
- 4. Seneviratne, S. I. *et al.* Weather and climate extreme events in a changing climate. In Masson-Delmotte, V. *et al.* (eds.)
 Climate Change 2021: The Physical Science Basis, 1513–1766 (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2021).
- Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C. & Sanderson, B. M. Precipitation variability increases in a warmer climate. *Sci. reports* 7, 17966, DOI: 10.1038/s41598-017-17966-y (2017).

- 6. Masson-Delmotte, V. et al. (eds.) Climate Change 2021: The Physical Science Basis: Contribution of Working Group I to
 the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2021).
- 7. Bathiany, S., Dakos, V., Scheffer, M. & Lenton, T. M. Climate models predict increasing temperature variability in poor countries. *Sci. Adv.* 4, eaar5809, DOI: 10.1126/sciadv.aar5809 (2018).
- **8.** Batibeniz, F., Hauser, M. & Seneviratne, S. I. Countries most exposed to individual and concurrent extremes and near-permanent extreme conditions at different global warming levels. *Earth Syst. Dyn.* **14**, 485–505, DOI: 10.5194/ esd-14-485-2023 (2023).
- 9. Burke, M. *et al.* Opportunities for advances in climate change economics. *Sci. (New York, N.Y.)* 352, 292–293, DOI: 10.1126/science.aad9634 (2016).
- Piontek, F. *et al.* Integrated perspective on translating biophysical to economic impacts of climate change. *Nat. Clim. Chang.* 11, 563–572, DOI: 10.1038/s41558-021-01065-y (2021).
- 11. Damania, R., Desbureaux, S. & Zaveri, E. Does rainfall matter for economic growth? Evidence from global sub-national data (1990–2014). *J. Environ. Econ. Manag.* 102, 102335, DOI: 10.1016/j.jeem.2020.102335 (2020).
- 12. Kotz, M., Levermann, A. & Wenz, L. The effect of rainfall changes on economic production. *Nature* 601, 223–227, DOI: 10.1038/s41586-021-04283-8 (2022).
- Palagi, E., Coronese, M., Lamperti, F. & Roventini, A. Climate change and the nonlinear impact of precipitation anomalies on income inequality. *Proc. Natl. Acad. Sci. United States Am.* 119, e2203595119, DOI: 10.1073/pnas.2203595119 (2022).
- 14. Kotz, M., Wenz, L. & Levermann, A. Footprint of greenhouse forcing in daily temperature variability. *Proc. Natl. Acad.* Sci. United States Am. 118, e2103294118, DOI: 10.1073/pnas.2103294118 (2021).
- Linsenmeier, M. Temperature variability and long-run economic development. J. Environ. Econ. Manag. DOI: 10.1016/j.
 jeem.2023.102840 (2023).
- 16. Callahan, C. W. & Mankin, J. S. Globally unequal effect of extreme heat on economic growth. *Sci. Adv.* 8, eadd3726, DOI: 10.1126/sciadv.add3726 (2022).
- 17. Holtermann, L. Precipitation anomalies, economic production, and the role of "first-nature" and "second-nature" geographies: A disaggregated analysis in high-income countries. *Glob. Environ. Chang.* 65, 102167, DOI: 10.1016/j.gloenvcha. 2020.102167 (2020).
- 18. Kalkuhl, M. & Wenz, L. The impact of climate conditions on economic production: Evidence from a global panel of regions. *J. Environ. Econ. Manag.* 103, 102360, DOI: 10.1016/j.jeem.2020.102360 (2020).
- 19. Kahn, M. E. *et al.* Long-term macroeconomic effects of climate change: A cross-country analysis. *Energy Econ.* 104, 105624, DOI: 10.1016/j.eneco.2021.105624 (2021).
- 253 20. Newell, R. G., Prest, B. C. & Sexton, S. E. The GDP-temperature relationship: Implications for climate change damages.
 254 *J. Environ. Econ. Manag.* 108, 102445, DOI: 10.1016/j.jeem.2021.102445 (2021).
- 255 21. Orlowsky, B. & Seneviratne, S. I. Elusive drought: Uncertainty in observed trends and short- and long-term CMIP5
 256 projections. *Hydrol. Earth Syst. Sci.* 17, 1765–1781, DOI: 10.5194/hessd-9-13773-2012 (2013).
- Pfahl, S., O'Gorman, P. A. & Fischer, E. M. Understanding the regional pattern of projected future changes in extreme precipitation. *Nat. Clim. Chang.* 7, 423–427 (2017).
 - 23. World Bank, World Development Indicators. GDP (constant 2015 US).
- 259 24. Moore, F. C. & Diaz, D. B. Temperature impacts on economic growth warrant stringent mitigation policy. *Nat. Clim.* 260 *Chang.* 5, 127–131, DOI: 10.1038/nclimate2481 (2015).
- 261 25. Kikstra, J. S. *et al.* The social cost of carbon dioxide under climate-economy feedbacks and temperature variability.
 262 *Environ. Res. Lett.* 16, 094037, DOI: 10.1088/1748-9326/ac1d0b (2021).
- 263 **26.** Government of Pakistan. Pakistan floods 2022: Post-disaster needs assessment.
- Naumann, G., Cammalleri, C., Mentaschi, L. & Feyen, L. Increased economic drought impacts in europe with anthropogenic warming. *Nat. Clim. Chang.* 11, 485–491, DOI: 10.1038/s41558-021-01044-3 (2021).
- 266 28. Olonscheck, D., Schurer, A. P., Lücke, L. & Hegerl, G. C. Large-scale emergence of regional changes in year-to-year
 267 temperature variability by the end of the 21st century. *Nat. communications* 12, 7237, DOI: 10.1038/s41467-021-27515-x
 268 (2021).

- 269 29. de Vries, I. E., Sippel, S., Pendergrass, A. G. & Knutti, R. Robust global detection of forced changes in mean and
 extreme precipitation despite observational disagreement on the magnitude of change. *Earth Syst. Dyn.* 14, 81–100, DOI:
 271 10.5194/esd-14-81-2023 (2023).
- 30. Hawkins, E. & Sutton, R. Time of emergence of climate signals. *Geophys. Res. Lett.* 39, L01702, DOI: 10.1029/ 2011GL050087, (2012).
- **31.** Kotz, M., Lange, S., Wenz, L. & Levermann, A. Changes in mean and extreme precipitation scale universally with global mean temperature across and within climate models. *Earth ArXiv Prepr*. DOI: 10.31223/X5C631 (2022).
- **32.** Bastien-Olvera, B. A., Granella, F. & Moore, F. C. Persistent effect of temperature on GDP identified from lower frequency temperature variability. *Environ. Res. Lett.* **17**, 084038, DOI: 10.1088/1748-9326/ac82c2 (2022).
- 278 33. Dell, M., Jones, B. F. & Olken, B. A. What do we learn from the weather? The new climate-economy literature. *J. Econ. Lit.* 52, 740–798, DOI: 10.1257/jel.52.3.740 (2014).
- 34. Byers, E. *et al.* Global exposure and vulnerability to multi-sector development and climate change hotspots. *Environ. Res. Lett.* 13, 055012, DOI: 10.1088/1748-9326/aabf45 (2018).
- 282 35. Zhang, X. *et al.* Indices for monitoring changes in extremes based on daily temperature and precipitation data. *WIREs* 283 *Clim. Chang.* 2, 851–870, DOI: 10.1002/wcc.147 (2011).
- **36.** Zhang, X., Hegerl, G., Zwiers, F. W. & Kenyon, J. Avoiding inhomogeneity in percentile-based indices of temperature extremes. *J. Clim.* **18**, 1641–1651, DOI: 10.1175/JCLI3366.1 (2005).
- 37. Murakami, D., Yoshida, T. & Yamagata, Y. Gridded GDP projections compatible with the five SSPs (shared socioeconomic pathways). *Front. Built Environ.* 7, 760306, DOI: 10.3389/fbuil.2021.760306 (2021).
- 38. Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W. & Zelinka, M. Climate simulations: recognize the 'hot model' problem. *Nature* 605, 26–29, DOI: 10.1038/d41586-022-01192-2 (2022).
- Tabor, K. & Williams, J. W. Globally downscaled climate projections for assessing the conservation impacts of climate change. *Ecol. Appl.* 20, 554–565, DOI: 10.1890/09-0173.1 (2010).

292 Acknowledgements

- ²⁹³ The authors thank Mathias Hauser, Joscha Krug, as well as participants at the NAVIGATE-ENGAGE Summer School 2023
- ²⁹⁴ for valuable comments. This work was supported by the European Union's Horizon 2020 research and innovation program,
- European Research Council (ERC) under grant agreement no. 948220, project no. GREENFIN (P.W.) and by the Natural
- ²⁹⁶ Environment Research Council under grant agreement no. NE/S007415/1 (J.S.K.).

297 Author contributions statement

All authors conceived the study. F.B. prepared the underlying climate data and conducted the bias correction. P.W. and J.R. performed the data aggregation and developed the projection methodology. P.W. carried out the impact projections, analyzed and visualized the results, and wrote the manuscript. All authors reviewed the manuscript.

301 Additional information

302 No authors declared any conflict of interest.

303 Methods

Climatic data We take daily temperature and precipitation projections from a total of 33 CMIP6 models to calculate annual climate, extreme and variability indicators for the 1850–2100 period, building on previous country-based analyses of projected

 $_{306}$ changes in climate extremes at different global warming levels⁸. We use three pairs of representative concentration pathways

(RCPs) and shared socioeconomic pathways (SSPs); two of them covering lower emissions and slower warming throughout
 this century with continued strong economic growth and convergence (SSP1-1.9 and SSP1-2.6) and a third one with higher

this century with continued strong economic growth and convergence (SSP1-1.9 and SSP1-2.6) and a third one with higher warming, high inequality and generally lower GDP growth (SSP3-7.0). As not all three RCP-SSP pairs are available for all

³¹⁰ CMIP6 models, we arrive at a total of N = 71 model-scenario pairings, for each of which we use one realization only (see

Table S1 in the **Supplementary Information**). Time series switch between historical scenarios and the respective RCP-SSP

pair in 2015. Consistent with our source of empirically calibrated dose-response functions using ERA5 data¹², we calculate

annual average temperature T, annual total precipitation RA as well as four climate indicators using the equations listed below

before downscaling and re-gridding annual temperature and precipitation indicators from 2.5° to 0.25° (i.e., the grid resolution of ERA5).

For *day-to-day temperature variability*:

$$\tilde{T}_{x,t} = \frac{1}{12} \sum_{a=1}^{12} \left(\frac{1}{D_a} \sum_{d=1}^{D_a} (T_{x,d,a,t} - \bar{T}_{x,a,t})^2 \right)^{0.5}$$
(1)

where $T_{x,d,a,t}$ is the temperature for grid cell *x* of day *d* of month *a* in year *t* and $D_a \in \{28, 29, 30, 31\}$ is the number of days in the respective month *a*. $\overline{T}_{x,a,t}$ denotes the mean temperature in month *a* of year *t* for the respective grid cell.

For extreme precipitation (based on the 99.9th percentile):

$$\hat{RD}_{x,t} = \sum_{d=1}^{365} R_{x,d,t} \times I(R_{x,d,t} > R_{x,99p9,base})$$
(2)

where $R_{x,d,t}$ is the precipitation of grid cell *x* on day *d* of year *t*, *I*() is an indicator function, and $R_{x,99p9,base}$ denotes the 99.9th percentile of daily precipitation in grid cell *x* over a historical baseline period.

For number of wet days with precipitation exceeding 1mm/d:

$$RD_{x,t} = \sum_{d=1}^{365} I(R_{x,d,t} > 1 \text{mm/d})$$
(3)

Grid cell-level annual climate indicators are then aggregated to the subnational region level (ADM1) using the geospatial data from the Database of Global Administrative Areas (GADM, v3.6) and area-weighting.

For *monthly precipitation deviation*, which we calculate only at the ADM1-level and not at the grid cell level, consistent with ref.¹²:

$$RM_{i,t} = \sum_{a=1}^{12} \frac{R_{i,a,t} - \bar{R}_{r,a,base}}{\sigma_{i,a,base}} \times \frac{\bar{R}_{i,a,base}}{\bar{R}_{A_{i,base}}}$$
(4)

where $R_{i,a,t}$ denotes precipitation totals in month *a* of year *t* for a given ADM1-level region *i*. Variables denoted by a bar represent averages across the baseline period, either for the full year or for a specific month, while $\sigma_{i,a,base}$ denotes the month-specific standard deviation across the baseline period for region *i*. As for all other climate indicators, region-level monthly precipitation $R_{i,a,t}$ is derived from grid cell-level values based on area-weighting.

For the baseline-dependent climate indicators \hat{RD} and RM, our source of dose-response functions¹² uses 1979–2019 as the 326 historical baseline period, during which global warming averaged +0.84°C according to Berkeley Earth data (the best estimate 327 for the observed warming and, in a previous version, used in the IPCC AR6⁶). To maintain consistency, we identify climate 328 model- and RCP-SSP pair-specific 41-year windows during which global warming is +0.84°C. Warming level windows are 329 calculated following the approach by ref.⁸ and displayed in Table S1 in the **Supplementary Information**. Then, we use 330 this model- and scenario-specific 41-year window as the baseline period. This ensures that, despite model differences, all 331 climate indicators are based on the same baseline in terms of global warming. However, percentile-based indicators, such as 332 extreme precipitation defined by precipitation above the 99.9th percentile, can lead to artificial jumps beyond the reference 333 period, meaning overestimated frequency increases. This is because the density is monotonically decreasing around the 99.9th 334 percentile of the true distribution³⁵, thus creating artificial jumps and exceedances outside the reference period^{8, 36}. To correct 335 this, we use the bootstrap resampling procedure developed by ref.³⁶. We estimate thresholds by excluding one year and adding 336 a random year from the 41-year reference period in consecutive order. The thresholds found in each iteration are applied to the 337 excluded year. We then average the 41 thresholds obtained through bootstrap resampling to use for future periods. 338

GDP impacts The dose-response function describing growth in GDP per capita (on a log-scale) is represented as a sum of functions specific to each climate indicator $C_{i,t}$ for ADM1-level region *i* in year *t*. These functions are denoted by $h^C(C_{i,t})$, where

$$C \in \{T, RA, \tilde{T}, \hat{RD}, RD, RM\}$$

For each climate indicator, we derive the functional form of h^C from the main specification by ref.¹², which jointly estimates the impact of all six indicators on GDP per capita growth using region and year fixed effects and is displayed in Table S4, column 5 in the **Supplementary Information**. For instance, for annual precipitation *RA* the relationship with GDP per capita growth is estimated as a quadratic relationship such that

$$h^{RA}(RA_{i,t}) = \beta_1^{RA} RA_{i,t} + \beta_2^{RA} RA_{i,t}^2$$
(5)

where β_1^{RA} and β_2^{RA} are the respective regression coefficients. All dose-response functions are displayed in Figure S7 in the Supplementary Information.

To calculate the impacts of climate change, we compare annual economic impacts against the average impact during the historical baseline period for the same model-scenario pair, such that our impacts represent changes from a hypothetical scenario in which climate remains constant, following previous studies^{2,13}. As a baseline period for GDP impacts, we again use the +0.84°C global warming level window for a given climate model *m* and RCP-SSP pair *s* for consistency with the calculation of our climate indicators. Therefore, annual impacts in % of GDP due to shifts in a given climate indicator *C* relative to the baseline period are calculated as follows

$$\delta_{i,t}^{C} = \exp\left(h^{C}(C_{i,t})\right) - \frac{1}{41} \sum_{k \in K} \exp\left(h^{C}(C_{i,k})\right)$$
(6)

where *K* is the model-scenario-specific baseline period corresponding to $+0.84^{\circ}$ C of global warming. Note that we exponentiate to convert log-scale impacts to % of GDP.

Importantly, the model specification by ref.¹² specifies the dose-response function annual temperature in first-differences compared to previous years and not in absolute levels:

$$h^{T}(T_{i,t}, T_{i,t-1}, T_{i,t-2}) = \beta_{1}^{T}(T_{i,t} - T_{i,t-1}) + \beta_{2}^{T}(T_{i,t-1} - T_{i,t-2}) + \beta_{3}^{T}(T_{i,t} - T_{i,t-1})T_{i,t} + \beta_{4}^{T}(T_{i,t-1} - T_{i,t-2})T_{i,t-1}$$

$$(7)$$

To translate this dose-response function into impact projections, we calculate cumulative impacts following ref.¹⁸, such that annual temperature impacts due to warming compared to the baseline period are derived as follows:

$$\delta_{i,t}^{T} = exp\left(\sum_{j=k_{0}}^{t} h^{T}(T_{i,j}, T_{i,j-1}, T_{i,j-2})\right) - \frac{1}{41} \sum_{k \in K} exp\left(\sum_{j=k_{0}}^{k} h^{T}(T_{i,j}, T_{i,j-1}, T_{i,j-2})\right)$$
(8)

where k_0 denotes the first year in the model- and scenario-specific baseline period K.

For extreme precipitation \hat{RD} , the dose-response function estimated by ref.¹² interacts extreme rainfall with the annual mean temperature *T* because the marginal impact of extreme precipitation is found to be lower in warmer climates. Projecting this out under climate change, however, would make the strong assumption that global warming increases the resilience of countries to extreme precipitation worldwide. Since there is no evidence supporting such a positive feedback of warming and since the heterogeneity of extreme rainfall effects in ref.¹² is equally well-explained by a country's latitude (see R2 and Adjusted R2 in Table S4 of ref.¹²), which is time-constant, we hold temperature in the interaction constant at the average level during the baseline period such that

$$h^{\hat{RD}}(\hat{RD}_{i,t}) = \beta_1^{\hat{RD}}\hat{RD}_{i,t} + \beta_2^{\hat{RD}}\hat{RD}_{i,t} \frac{1}{41} \sum_{k \in K} T_{i,k}$$
(9)

Since impacts are additive in log-scale, the total impact from all six climate indicators combined can be calculated by using the sum of all impacts, i.e., $h^{RA}(\cdot) + \sum_{j=k_0}^{t} h^T(\cdot) + h^{\tilde{T}} + ...$ instead of the impacts from an individual climate indicator in Equation 6. Using only the dose-response functions for \tilde{T} , \hat{RD} , RD and RM yields the joint impact of variability and extremes.

When projecting damages of climate change, a core methodological choice is whether to assume that impacts affect GDP 368 levels, such that the economy bounces back in the following year, or whether to assume that a part of damages persists and 369 alters the long-run growth trajectory. Assuming persistence has a substantial impact on damage projection trajectories and the 370 associated uncertainty^{20,24,25}. Recent empirical analyses differ in methods and outcomes, with no consensus yet^{1,2,10,20,32}. 371 To be conservative, here we assume no persistence, noting that this leads to underestimated impact levels and uncertainty 372 bands in projections if impacts, in fact, do persist over time. In addition, we follow ref.²⁵ in equating log-scale GDP per capita 373 impacts with log-scale GDP impacts, i.e., assuming that any decrease in GDP per capita is caused by a climate change-induced 374 reduction in economic output and not by an increase in population. 375

Spatial aggregation of GDP impacts We aggregate GDP impacts from the subnational detail (ADM1) to the country level 376 (ADM0) using GDP weighting. For GDP weights, we use 2010 GDP data downscaled to a 0.5° grid by ref.³⁷. To deal with 377 105 outlier grid cells with raw GDP data exceeding \$1e20, we apply a ceiling at \$1e10, which is the next highest grid-cell 378 GDP value in the dataset. Note that we hold this intra-country distribution of income constant across all years and SSPs. This 379 simplification stems from the SSPs not directly informing spatial intra-country GDP per capita distributions and also serves to 380 prevent our results from being driven by changes in the weighting scheme over time rather than climatic changes, which is 381 standard practice in the literature². To calculate GDP impacts at the global level, we weigh each country i with its share in 382 global GDP in year t as per the respective SSP. Since the SSP Database does not provide GDP growth trajectories for a number 383 of small sovereign countries, namely Andorra, Liechtenstein, Nauru, North Korea, San Marino, South Sudan and Tuvalu, these 384 economies are not represented in our damage projections for the global economy, which, given their joint economic size, is 385 unlikely to affect our conclusions. 386

GDP impact distribution For each CMIP6 model-scenario pair, we draw estimates for the dose-response function parameters 387 $\beta_1^{RA}, \beta_2^{RA}, \beta_1^T, \dots$ jointly from the multivariate Gaussian distribution estimated by ref.¹² (main specification, standard errors 388 clustered at the country level). Combining 71 model-scenario pairings with 1,000 draws for the dose-response function 389 parameters, this provides us with 71,000 different impact projection pathways for each territory. For each model-scenario 390 pairing, we then identify the 20 years corresponding to a global warming level of +1°C, +1.5°C, +2°C, +3°C, and +4°C 391 respectively, following the approach by ref.⁸. This provides us with a conditional distribution of GDP impacts for a given 392 territory and warming level. Aside from reducing the importance of individual RCP-SSP scenarios, conditioning results on 393 global warming levels also reduces the need to omit or down-weight 'hot models' in CMIP6, which project too much warming³⁸. 394 Since not all models reach all warming levels for the same RCP-SSP and some models are not available for some scenarios 395 (see Table S1 in the **Supplementary Information**), we weight models inversely such that each CMIP6 model has the same 396 sampling probability for each warming level following ref.¹⁶. All summary statistics of the distribution (means, percentiles, 397 variances, ...) are calculated using these CMIP6 model weights. 398

Variance decomposition Following ref.³, we attribute the observed variance in our GDP impact distribution to the sources of uncertainty. Let $\delta_{t,m,s,b}^{C}$ denote the global GDP impacts from climate indicator *C* in year *t* based on a CMIP6 model *m* under RCP-SSP scenario *s* using dose-response function parameter draw *b*. Let *GWL* be the set of all model-scenario-year combinations that imply a given global warming level. Then the conditional variance of impacts for a given warming level *GWL* can be decomposed as

$$Var(\delta_{t,m,s,b}^{C}|GWL) = Var(\delta_{t,m,s,b}^{C}|GWL, m = m_{0}, t = t_{0}, s = s_{0}) + Var(\delta_{t,m,s,b}^{C}|GWL, m = m_{0}, b = b_{0}) + Var(\delta_{t,m,s,b}^{C}|GWL, t = t_{0}, s = s_{0}, b = b_{0}) + \Lambda$$
(10)

where all variables with a zero subscript are median-like values and the first, second and third term capture the marginal 404 variance due to dose-response function parameter draws, scenario-years, and CMIP6 models, respectively. A accounts for the 405 interaction of these three variance components. For the median-like model m_0 , we select ACCESS-CM2, which produces 406 near-median results both for overall damages and for variability & extremes. However, we conduct robustness checks with 407 two alternative model candidates in Figures S4 and S5 in the **Supplementary Information**. Similarly, b_0 is the dose-response 408 function parameter draw that across all CMIP6 models and scenario-years produces the median GDP impact for a given climate 409 indicator C at +3°C of global warming. Lastly, for each CMIP6 model, we set s_0 and t_0 to the scenario-year that yields the 410 median GDP impacts for a given global warming level and climate indicator (note that scenario-years vary across warming 411 levels such that we cannot choose s_0 and t_0 solely based on the +3°C warming level). The interaction term Λ is the residual 412 between the total observed variance and the marginal variances. As this can be negative³, we take the absolute value of Λ and 413 rescale such that marginal variances and Λ add to 100% for simplicity, but we display results with negative interaction terms in 414 Figure S3 in the **Supplementary Information**, resulting in identical conclusions. 415

Bias correction To ensure that our results are not driven by CMIP6 model bias, we bias-correct our climate indicators using the previously used change factor (CF) methodology³⁹. The initial iteration of the CF approach involves using raw outputs from models and subtracting historical averages from future simulated values to generate climate anomalies. These anomalies are subsequently added to the corresponding historical average based on an observational dataset. This correction process, referred to as the "delta method", assumes consistent variability in both future and reference periods. For any climate indicator *C* out of the six indicators considered here, the formula for the bias-corrected value using the delta method is presented below:

$$C_{x,t,m,s}^{cor} = \bar{C}_{x,ref}^{ERA5} + \left(C_{x,t,m,s} - \bar{C}_{x,ref,m,s}\right)$$
(11)

In the formula, $C_{x,t,m,s}$ represents the raw climate indicator output of climate model m under scenario s in year t for grid cell 422 x. $\bar{C}_{x,ref}^{ERA5}$ represents the average value of the same climate indicator in the observational dataset ERA5 during the historical 423 reference period. $\bar{C}_{x,ref,m,s}$ represents the corresponding reference period average for the climate model m under scenario s 424 (see Table S1 in the **Supplementary Information**). We bias-correct each annual indicator separately, and for the monthly 425 precipitation deviation apply the delta method to the underlying monthly precipitation amounts. As a historical reference 426 period, we utilize ERA5 data from 1950–1990, which corresponds to global warming of +0.38°C according to Berkeley Earth. 427 Thus, for the model- and scenario-specific historical average $\bar{C}_{x,ref,m,s}$, we used a 41-year period that also corresponds to global 428 warming of +0.38°C. The reason behind selecting 1950–1990 and hence +0.38°C of warming as a reference is to bias-correct 429 the indicators using a period with less influence of anthropogenic forcing. To avoid implausible values resulting from the 430 delta method, we impose zero lower bounds for all climate indicators that are, by definition, non-negative. In addition, the 431 bias-corrected monthly precipitation deviation in some selected cases yields values that are one or two orders of magnitude 432 above the maximum in the ERA5-based sample by ref.¹² or the maximum in our raw CMIP6 data. To address these outliers, 433 we cap bias-corrected monthly precipitation deviation at the highest value observed for the raw CMIP6 data (i.e., 9.1), which 434 affects only 353 ADM1-level model-scenario-year observations (out of approx. 64 million). 435

While our approach to correct for model bias ensures the highest consistency for each indicator with the ERA5 data used to estimate dose-response functions¹², it can also introduce inconsistencies between the different climate indicators derived from the same daily values of temperature or precipitation and, as outlined above, leads to outlier values in a few cases. Therefore, we use bias-corrected results only as a robustness check and display all our main results using the bias-corrected CMIP6 data in the **Supplementary Information**, noting that all conclusions drawn in this study hold when using the bias-corrected data instead.

⁴⁴² Data & code availability. CMIP6 temperature and precipitation data are available at https://esgf-node.llnl.gov/projects/cmip6.

⁴⁴³ Scripts to estimate the dose-response functions deployed here, as well as the underlying climate and economic data, are available

from https://zenodo.org/record/5657457. All additional data and scripts required to replicate the analysis and to create the

figures in this study will be made available upon acceptance.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

• 230718SupplementaryInformation.pdf