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SPATIAL IMPACT ANALYSIS THROUGH QUALITATIVE
CALCULUS: AN EXPLORATION

Henk Voogd

ABSTRACT

In this paper the usefulness of qualitative calculus for spatial
impact analysis will be explored. The major issue of qualitative cal-
culus concerns the sign-solvability problem. Its basic question is
whether, and under what conditions, the direction of changes in a
set of dependent variables in an interconnected system may be
determined solely from the direction of changes in the indepen-
dent variables and a knowledge of the signs, but not the magni-
tudes, of the relevant partial derivatives. After an elaboration of
this problem in Section 2, an overview will be given in Section 3 of
the conditions under which full or partial sign-solvability may
occur. A discussion of how this approach might be applied in urban
and regional planning is given in Section 4, and the paper con-
cludes with some suggestions for further research.



1. Introduction

The critical assessment of proposed courses of action is an important part
of a planning process, and many impact analysis models are available to support
' these assessments (see, for instance, Batty, 1976; Putman, 1979; and Wilson,
1974). Here the term impact analysis means the a priori determination of the
relevant conséquences of system changes that would arise from specific policy
measures. Spatial impact analysis may be seen as a particular type of impact
analysis in that it emphasizes the spatial dimension of these consequences (see

also Nijkamp, 1979, 1981, 1982).

Planning-oriented research in general, and spatial impact analysis in partic-
ular, must usually be carried out under a number of constraints (see also Voogd,

1982), which include:
*  the speed with which results have to be produced;
* the limited amount of suitable quantitative data;
*  the limited availability of (skilled) research (support) stafl.
As a consequence, very few quantitative mathematical models have actually

been used successfully in urban and regional planning. During the last few years,

increasing attention has therefore been paid to approaches which:

* are able to deal with gqualifative information, so that cumbersome data-
gathering activities are no longer required in order to reach meaningful

conclusions;

* are flezible with respect to the inclusion of new information and/or to new

circumstances;

* enable decision-makers to assess (the consequences of) the underlying

assumptions and value judgements.
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In this paper this line of thought will be continued by investigating the use-
fulness of qualitative calculus for spatial impact analysis. The idea of qualitative
calculus (or the calculus of qualitative relations) was originally suggested by
Samuelson in 1947. The major issue of qualitative calculus, the sign-solvability
problem, will be discussed in the next section. The basic question is whether,
and under what conditions, the direction of changes in a set of dependent vari-
ables in an interconnected system may be determined solely from the direction
of changes in the independent variables and a knowledge of the signs, but not
the magnitudes, of the relevant partial derivatives., After the elaboration of this
problem in Section 2 an overview will be given in Section 3 of the conditions
under which full or partial sign-solvability may occur. A discussion of how this
approach might be applied in urban and regional planning is given in Section 4,

and the paper concludes with some suggestions for further research.

2. The Problem

The theory of qualitative calculus is closely related to the concept of com-
parative statics usually employed to examine the effect on an equilibrium
configuration of a system of a change in one or more of the exogenous variables.
The comparative static properties of a system can be derived in a straightfor-
ward way by differentiating the equilibrium equations - the qualitative calculus

approach is outlined below.

Suppose the system under consideration is described by n endogenous
variables, with values z; (i=1,2,...n). and m exogenous variables, which are
represented as o, (k=1,2,..m). The eXogenous variables may be described as
"system parameters'”, or briefly "parameters”, and the endogenous variables

simply as "variables”. The variables and parameters are linked by fundamental
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relationships of the form f;(z,.z5, . ... 250102 . . ., Gp).

For given values of &, = a2 (k=1,2,...,m) it is postulated that an equilibrium

position can be defined as a set of values Z; (i=1,2,..,n) such that

filZ1.%82 ... Zpiafad,....a%) =0 (i=1.2,..n) (2.1)

The problem is now to determine the changes in the equilibrium values of
the variables brought about by changes in one or more of the parameters. 1f we
assume that small changes in ap occur, then the change in the equilibrium
values of the variables can be obtained by differentiating (2.1) totally, which

gives:

dfi(Z1.83 ... . Znafad, ..., a2 =0 (i=12,..n) (2.2)

of, of;
i Ldz.*_rzn: Ldak =
Bak

—OTy
j=1 0z; k=1

It is assumed in equation (2.2) that all of the functions are differentiable.
The partial derivatives are evaluated at the equilibrium position
(Z1.Z2, . . ., Zail?, . .. ,cx°”‘). In addition, it is postulated that an equilibrium
position exists for any conflguration of parameter values; i.e., the changes in the
variables dz; are such that (2.1) is in equilibrium at parameter values of both af

and ag+d oy .

Equation (2.2) can be rewritten in matrix notation by defining:

8f, 9f, 0f 1

8z, 06xzn = = Oz,
0z 8f2 8f 2
0z, 0z, ~ ' 0Oz,
A=| - oo (2.3)

0fn Ofn  Ofn

tazl 8z, ° ' Bz,

X = [dz,.dTe, . . ., 0T, ] (2.4)



and

b = (afl/ aak)dak , ﬁ (afz/aak)dak N f (afn/aak)dak (25)
k=1

1 k=1

g

which implies that equation (2.2) can be expressed by

Ax=-b (R.6)
Equation (2.6) clearly represents a linear system which is well-known in com-
parative statics. Given matrix A and vector b, the problem is to solve for vector
x. If Ais nonsingular, the solution to (2.8) is given by .

x=-A"b (2.7)
It is usually assumed in qualitative calculus that the only information available
to solve (2.7) is information concerning the signs of the entries in A and b. These
signs are defined as follows:

sgn a;; = 0 if af-,,/ 62:,-:0 (28)
— i 8f/ 0z;<0

and

4

m
+ if Y (8f;/ 8ay)d oy >0
k=1

m
sgnb; =( 0 if ), (8f;/80)d =0 (2.9)
k=1

m
— if };(8fi/ 8a)d oy <0
L k=1

It was Samuelson (1947) who first noted that there are 3" possible sign pat-
terns for vector x in (2.7) and hence qualitative information on A and b must be
sufficient to eliminate 3" —1 of these. Therefore, if the signs of the elements of A
and b are known, it is usually possible to determine one or more of the signs of

the entries of vector x.

This may be best illustrated by means of a simple example. Consider the

following model:
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A=f(B.p)
B =g(C.,p)
C = h(A)

where A4,B and C are endogenous variables and p a system parameter ( exo-
genous variable). Differentiating these equations gives the following result:

dA - fpdB — fpdp =0

dB — gcdC — gpdp =0

dC —hydA = 0

where fp fp. gc, gp, and hy are partial derivatives. Displaying this information
in the form of equation (2.3) yields the following structure for matrix A, where

rows and columns are labelled for ease of identification:

d4d dB dC
f. 1 -fp 0
g. 0 1 =-g¢
h.-h 0 1
and for vector b
dp
I
9p
0

The next step is to judge the signs of the various derivatives. Let us take the
given signs as they are except that (- fg) will be positive. Hence, we obtain the

following qualitative system:

I+ + 0] faa] I+
0 + —-Id5=l+
- 0 +| |dC 0

Since the determinant of the sign matrix is positive, a solution can be found

using (2.7). This gives the following result:

[da] M+ + +]+] [+
dB:——_.+=I_
ac - — +] [0 -

As we can see, the postulated sign patterns in this example suggest that an
increase in variable A and a decrease in variables B and C can be expected. This

example is said to be fully sign-solvable., It will be obvious that there are many
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cases in which only a part of the signs of the solution vector may be determined.

Such systems are said to be partially sign-solvable.

So far, qualitative calculus has received particular attention in economics
(e.g., see Allingham and Horishuima, 1973; Rader, 1972), ecology (e.g., see
Jeffries, 1974; Levins, 1974) and mathematics {e.g., see Klee and Ladner, 1981;
Maybee and Quirk, 1969; Michel and Miller, 1977). Apart from the sign-solvability
problem, much attention has been paid to the stability properties of the sys-
tems under consideration. The main reason for this is that changes in a system
might lead to time paths {for the variables) that do not approach any equili-
brium position (see, inter alia, Quirk, 1981; Quirk and Ruppert, 1965; Jefiries et
al., 1977). This stability problem is especially important in long-term predictive
studies of large-scale {e.g., global) systems. Since a qualitative spatial impact
analysis does not focus on long-term predictions, but more on the expected
consequences of a policy measure given the present structure of the system, the

stability problem will not be considered any further here.

3. Conditions for Sign-Solvability

One of the first attempts to find the necessary and sufficient conditions for
full sign-solvability was made by Lancaster (1962), who tried to establish a gen-
eral sign pattern ("'standard form") within which all sign-solvable systems can be
accommodated. Instead of using a matrix A and vector b, he considered an aug-
mented matrix C of order n x {(n+1), thus converting system (2.8) into

Cy=0 (3.1)
where

C=[A:b] (3.2)
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y= 5% (3.3)

Lancaster (1962) noted that a qualitative solution of system (3.1) does not sim-
ply depend on the number of zeros, minus signs and plus signs in C, but also on
their arrangement in the matrix. He further noted that the following manipula-
tions of the pattern of signs could be carried out without affecting the signs of

the solution vector y:

(1) interchanging any two rows of C;

() interchanging any two columns of C;
(3) reversing all the signs in any row of C.

The first operation changes only the order in which the equations are written
and does not affect the solution vector y. The second operation changes the
order of the variables and, as a consequence, the order of the entries of the
solution vector. The third operation implies multiplying an equation by (-1) and

this does not affect the properties of y either. Finally, it is also possible to
(4) reverse all the signs in any column of C,

which implies the replacement of a particular y; by —y;. This will naturally affect
the solution vector but can of course be taken into account when interpreting

the outcome of a qualitative solution.

Lancaster showed that matrix C is fully sign-solvable if it can be rearranged,

using the operations described above, into the fellowing pattern of signs:

- + + + . +
0 — + + ., +
00 -+ . +
sgnC=|[. . - (3.4)
0000 .. -+

Any system whose sign matrix can be manipulated into this standard pattern is
completely qualitatively determinate. Gorman (1964) showed, however, that pat-

tern (3.4) is a sufficient but not necessary condition for full sign-solvability. Sub-
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sequently, in reaction to Gorman's article, Lancaster (1964) improved (3.4) by

providing a more general standard pattern, viz.:

I, ¢
sgnC=|D; O, (3.5)

0: D

where:

C, is of order 1 x k and contains only negative entries

C; is of order 1 x (n+1—k) and contains only positive entries

0, is a zero matrix of order (k—1) x (n+1~k)

0; is a zero matrix of order (n—k) x k

D, is of order (k—1) x k and has a sign pattern similar to (3.4) or to Citself

D; is of order (n—k) x (n+1-k) and also has a sign pattern similar to (3.4) or to

C itself.

However, even (3.5) does not represent the necessary conditions for full
sign-solvability, as Lancaster himself showed about fifteen years later {(Lancas-

ter, 1981).

Sufficient and necessary conditions for full sign-solvability have been put
forward by Bassett, Maybee, and Quirk (1968), who presented with the help of
graph theory a theorem which asserts that system (2.8) is fully sign-solvable if
and only if, using permutations and sign changes, it can be put in the form

Fz=h
where F is of order n x n and
(a) fu <0, i=12,..n
(b) all cycles in F of length greater than one are nonpositive
(c)h=<0
(d) Ay # 0, which implies that every path f (i-k) in F ending in k is nonnegative

foreveryi=12,.n;i!=k .

This theorem uses the fact that a qualitative matrix can be represented as



-10_

a signed digraph (see, inter alia, Christofides, 1975; Harary et al., 1965; Roberts,
1976 ). This may be illustrated by means of a simple example. Consider the fol-

lowing system:

F-z=h (3.6)
r-ooorzl lo
0+"‘0'23—0
++ 0 - |z, 0

The qualitative matrix upon which the graph of this system can be based has the

following sign pattern (with structure conform (8.2)):

0000
Q=g L 25 3
++0-0
which can be represented by the graph shown in Figure 1, where positive signs

are represented by a solid arc and negative signs by a dotted arc.

We can see that condition (a) of the theorem is satisfied by system (83.6)
since the diagonal of ¥ contains only minus signs. Because matrix A must be
nonsingular, there exists a nonezero term in the expansion of the determinant
of A which can be brought to the diagonal and made negative. In order to
guarantee the nonsingularity of F, all of the terms in the expansion of det F must
have the same sign. This is due to condition (b).We can see from Figure 1 that
matrix Q satisfies this condition because neither of the two cycles of length
greater than one (i.e., fa3.f 32 and fz4.f 42 ) is positive. Condition (c) is evidently
also fulfilled. In addition, Figure 1 shows three paths to 5 ( fas (+): faz:ifas (+.

+): fa2.f 25 (+. +)), all of which are positive, thus fulfilling condition {d).

It should be noted that full sign-selvability is not always possible given only
the sign patterns of A and b or C, respectively. Often only some of the signs of
the solution vector may be determined. A sufficient, but not always necessary,

condition for partial sign-solvability is given by Maybee (1981) as follows:
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17\
'] []
¢

Yo

Figure 1. A graph of qualitative matriz Q

The system Ay = b is partially sign-solvable if by admissible qualitative
operations (as discussed before) Ay = b can be transformed into the system
Ex = ¢, where ¢;4<0, ¢;<0 for i=1,2,..,n and z;=0 for any signed variable, and

where Ex = ¢ can be partitioned into

Ell Elz
Ea; Eop

Cy

- [‘31
where

(a) diagonal elements in E;; are negative and all cycles in E,, are nonpositive;
(b) if z; is a signed variable then k is an index appearing in E;;;

(c) either E;; or Eo, is a block of zeros;

(d) all positive cycles in E are contained in ¥gp and if Epz contains any nonzero
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cycles, then every index in E;,; appears in a positive ecycle;
(e) ¢;=0 for every index i appearing in E;; ;
(f) c;<0 and z; is a signed variable implies that every chain e(k »i) is nonnega-
tive.

The proof of this theorem can be found in Maybee (1981).

4. Spatial Qualitative Calculus

As already mentioned in the introductory section, qualitative calculus is of
great potential interest in spatial planning because of its limited demand for
data. The relationship of qualitative calculus to comparative statics also has
many parallels in urban and regional modeling, in which an equilibrium situation
is very often postulated (see, for example, Andersson and Persson, 1979; Have-

man and Hollendeck, 1980; Putman, 1979; and Wilson, 1974).

Urban and regional equilibrium models can be divided into two broad
categories: spatial interaction models and spatial allocation models. Spatial
interaction models can be (roughly) characterized by the following general
equilibrium structure:

Fi(ZTiz Tz dazntay) =0 (2(2)=12...2:i=12,...,)k=12..(2.2)) (4.1)

whereas spatial allocation models have the following structure:
Fi(Zi Tz 82190z, @a) =0 (2(2)=1,2,...Z;i=1.2,..,[;1=1,2,..(AZ)) (42)
The variables in (4.1) and (4.2) can be defined as follows:
Ziy is the value of variable i for zone z {2(2)=1,2,...2)
d,z' is the value of the friction (usually distance) between zones z and 2’
t..- is the number of interactions (e.g., trips) between zones z and z'
gsz is the amount of activity @ (a=1,2,..,4) to be allocated in zone 2

@, is the total amount of activity a.



-13-

The number of variables in (4.1) and (4.2) is much greater than that usually
found in the systems to which qualitative calculus is generally applied. As a
result, it is impossible to establish the qualitative determinacy of a spatial sys-
tem manually. Computer algorithms are necessary, but there are - unfor-
tunately - hardly any appropriate algorithms available. Some steps in this direc-
tion have been taken by Lancaster (1965,1968), but his algorithms are not par-
ticularly suitable for large systems due to the fact that their complexity

increases with the number of variables involved.

The decomposition principles developed in graph theory and matrix algebra
(e.g., see Himmelblau, 1973) may be very useful in this case. Decomposition
involves a rearrangement of rows and columns in a large system of equations
such that it is possible to solve a group of small systems of equations instead of
the original large system. For example, under some special conditions, the
matrix A associated with a particular system can be rearranged and then parti-
tioned such that all of the submatrices other than those on the main diagonal
are filled with zeros. Then A is said to be block diagonal, and the system it
represents is said to be completely decomposable into its constituent subsys-
tems. If permuting the rows and columns of A leads to a set of equations that

can be displayed as

|.Eu Em] ) I'Xl (4.3)

0 Ex Xo

where E;, is a 7 x 7 submatrix, Es; is a (n-r) X (n~r) submatrix, 1<r<n, of E

[
-k

and x; X;c; and cz are suitably permuted and partitioned versions of x and ec.
The second of the equations derived from the above matrix equation can now be
solved for X3, and substituting this value in the first equation yields x;. Thus, the
solution of the original matrix equation is reduced to the solution of two lower-
order matrix equations. A square matrix E is said to be reducible if there exists

a permutation matriz P such that
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PEPT = (4.4)

E,;: E;2
0 Ep

where the E;;'s are submatrices of E as defined above. Otherwise, E is said to be

irreducible (Vemuri, 1978).

Given matrix E, systematic procedures (e.g., from graph theory) can be
used to determine the permutation matrix P (see Bellman and Cooke, 1970). The

following algorithm is a very attractive example of this.

First, an adjacency matriz Amust be derived from a graph G ( E ) based on

a given sign matrix E. The elements of A are defined by

i if sgn e,;j#O

% = |0 otherwise (4.5)

The second step is to determine a reachability matriz R, which can be derived

from the adjacency matrix A as follows:

n .
R=s(1+ ) A (4.6)
i=1
where 1 is an identity matrix and n is the dimension of A The function f(z), is

defined as:

7@ =5 othirise (+7)
In addition, the so-called strong components of G(E) must be determined. This
can be done by constructing an auxiliary matrix Q:

Q=RxRf (4.8)
where x denotes a product of elements. The nonzero entries g;; of Q indicate
that vertices i and j in graph G(E) are mutually reachable. A set of vertices that

are mutually reachable is called a strong component. Note that a strong com-

ponent may consist of only one vertex.

By using these strong components as vertices, a condensed graph G°(E) of
G(E) can be constructed, with a condensed adjacency matrix A* of G'(E).

Assume that the vertices in the original graph G(E) are denoted by n,;np - - -
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ete.

The next step is to locate a column of zeros in A and to relabel the original ver-
tices n; included in this strong component as v, v; _v,, where k represents the
number of vertices included in the particular strong component. Then delete
this row and column in A® and repeat this step. Relabel the next group of ver-
tices as vg;,. V42, . - ., etc.. This step therefore reorders the old vertices n; as
new vertices v;. This information can be used to construct a binary matrix P,
whose entries p;; are defined as:

_ 1 ifng=y;
Py = [0 otherwise (4.9)

Matrix P is the desired permutation matrix.

In a discussion included in the proceedings of a symposium on computer-
assisted analysis, Maybee put forward an algorithm that may possibly be used to
identify large sign-solvable systems (see Greenberg and Maybee, 1981, pp.321).
The algorithm first identifies a nonzero term in the expansion of the deter-
minant of the A matrix, and moves it, using an algorithm of Duff and Reid {(1978)
to the principal diagonal. Next, the strong components of the resulting matrix
are determined in order to check that all cycles are negative. The so-called

"depth-first search” algorithm of Tarjan (1972) is recommended for this task.

In general, it can be concluded that the algorithmic properties of qualita-
tive calculus represent a still largely unexplored area, and the sign-solvability of
large systems is especially problematic. 1f this approach is adopted for spatial
impact analysis to any extent, then particular attention must be paid to the

development of efficient algorithms.

Another issue raising by considering qualitative calculus from the perspec-
tive of spatial impact analysis concerns the qualitative determinacy of a spatial

system such as (4.1) or (4.2). A large number of zero entries may be expected in
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the A matrix, since spatial activities are often concentrated in a limited set of
zones. Consequently, it is not certain that A will be nonsingular, which is, how-
ever, necessary to solve the complete system according to (2.7). If nonsingular—
ity is not guaranteed on the basis of the sign-pattern of A alone, one can

nevertheless proceed by decomposing A as follows (cf. Maybee, 1961):

[‘A'll A12
A= Ag; Agz

where A;; and Ag; are square matrices, Ajz is a block of zeros and Ap; has a

(4.10)

nonzero determinant. Hence, the system will be partially sign-solvable.

Given the large number of variables involved in (4.1) and (4.2) it seems real-
istic to expect that full sign-solvability will seldom occur unless additional infor-
mation about the system is available (see also Lancaster, 1962). The incorpora-
tion of additional (quantitative or qualitative) information can be done in two

ways:
(1) by specifying and calibrating the equations which are not sign-solvable;

() Dby using the fact that linear combinations of equations are allowed in

matrix theory.

The first method is basically a rather conventional modeling approach.
Although effective in solving the qualitative determinacy problem, it does not
seemn to be very efficient in this case. If one part of the system has to be
modeled quantitatively, it is only a small step to treat the whole system in the
same way. Note that this approach is only useful if complete equations are cali-
brated: quantification of single entries of A is pointless. Even with many quanti-

tative elements in A the system may still remain completely unsolvable !

The second approach is more interesting because in this case only addi-
tional ordinal information must be provided. For example, suppose the following

qualitative matrix is given:
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-+ +
sgnD=|+ 0 +
-+

Row 2 may, for instance, be subtracted from row 3, which results in the following

pattern:

[

- + +
+ 0 +
sgn(dg;—da;) — sgn(dss—dzg)

If it is known that dg,>d,, and dgz<dzg then the third row of sgn E will be com-

sgnE =

pletely different from the third row of sgn D, i.e.,

- + +
sgnE=l+ 0 +
+ —

By using the principle of linear combination of rows in the correct way, many
qualitatively unsclvable systems may become qualitatively solvable with addi-
tional information. The necessary ordinal data may be obtained quite easily,

especially if it concerns a comparison of zonal variables in spatial systems.

5. Some Concluding Remarks

The preceding section suggests that qualitative calculus may be a promis-
ing method of dealing with non-numerical information. It is very attractive in
urban and regional analysis, because the output of a qualitative analysis will
often be just as useful as the results of a more sophisticated quantitative
analysis. Qualitative calculus yields information about the direction in which a
variable may change. Quantitative models will, of course, provide quantitative
output, not only about the direction but also about the size of the changes. But
every competent modeler will know that this quantitative information is intrinsi-
cally unreliable due to modeling errors, specification errors, data-measurement
errors, calibration errors, and so torth. Hence, the only useful output of a quan-

titative model will often be the "direction” of the expected changes. If this infor-
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mation can be obtained more easily by a less demanding approach, like qualita-

tive calculus, it is evidently worth investigating.

This paper suggests one important topic that should receive urgent.atten-
tion in the near future: the development of fast algorithms for the sign-
solvability of large (spatial) systems. Further work also needs to be done on the
incorporation of additional qualitative and quantitative information into the
problem, especially in connection with constraints (e.g., physical barriers). One
possibility might be an extension to so-called "matricial forms" (¢f. Greenberg,
1981). Finally, it might be interesting to explore in more detail the relationships
between qualitative calculus, structural models (see, for example, Linstone et
al., 1979 and Kane, 1979), and various kinds of path analyses (see, for example,
Blalock, 1972; Joreskog, 1977; Folmer, 1980), since these three approaches all
employ graph theoretical ideas. An interesting open question is to what degree
qualitative calculus might be extended into these areas of research. It is clear
that qualitative calculus is opening several very intriguing new avenues of spatial

methodological research which invite further investigation.
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