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A B S T R A C T

About 50 years ago, Keyfitz (1971) asked how much further a growing human population would increase if
its fertility rate were immediately to be reduced to replacement level and remain there forever. The reason for
demographic momentum is an age–structure inertia due to relatively many potential parents because of past
high fertility. Although nobody expects such a miraculous reduction in reproductive behavior, a gradual decline
in fertility in rapidly growing populations seems inevitable. As any delay in fertility decline to a stationary
level leads to an increase in the momentum, it makes sense to think about the timing and the quantum of the
reduction in reproduction. More specifically, we consider an intertemporal trade-off between costly pro- and
anti-natalistic measures and the demographic momentum at the end of the planning period. This paper uses
the McKendrick–von Foerster partial differential equation of age–structured population dynamics to study a
sketched problem in a distributed parameter control framework. Among the results obtained by applying an
appropriate extension of Pontryagin’s Maximum Principle are the following: (i) monotony of adaptation efforts
to net reproduction rate and convex decrease/concave increase (if initial net reproduction rate exceeds 1/is
below 1); and (ii) oscillating efforts and reproduction rate if, additionally, the size of the total population does
not deviate from a fixed level.
1. Introduction

In the decades after World War II, politicians in some developing
countries refused to accept birth control, fearing that it would stop their
populations from increasing. At the 1974 Bucharest World Population
Conference, the official delegate from Brazil argued strictly against zero
population growth given the ample, still uninhabited spaces in that
country. When confronted by demographers in the audience with the
huge momentum of population growth – namely that Brazil’s popula-
tion would further increase by about two-thirds even if by some miracle
fertility decreased to bare replacement level – the politician refused to
listen.

Revisiting a discussion of French demographers around the middle
of 20th century (P. Vincent, J. Bourgeois-Pichat), Nathan Keyfitz, a
path-breaking population mathematician, was able to derive one of the
most discussed results in the whole of population dynamics: the mo-
mentum formula. According to Keyfitz, the demographic momentum is
the amount of further population growth that will occur if the net repro-
duction rate (NRR) instantaneously shrinks from a value greater than 1
to bare replacement level and stays there forever. The essential feature
is that although stationarity conditions are fulfilled, zero population
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growth is reached only after a while, as the population will continue to
have a young age composition for the not too distant future. The Keyfitz
formula came in the 1970’s just in time to prove that the pro-natalistic
population policy outlined above is simply wrong. Although Keyfitz’s
result is valid for arbitrary initial populations, something of which he
was well aware, he assumed in his seminal paper (Keyfitz, 1971; see
also Keyfitz and Caswell, 2005, section 6.6) a stable age–structure with
growth rate 𝑟 and crude birth rate 𝑏.

Denoting by 𝑒0 the life expectancy (mortality assumed to be con-
stant), by 𝜇 the mean age of childbearing in the stationary population,
and by 𝑅0 the net reproduction rate (NRR) of the initial popula-
tion, the population momentum for an immediate drop in fertility to
replacement level, that is, to an NRR of 1 is given by:

𝑀 =
𝑒0
𝜇

𝑏
𝑟
𝑅0 − 1
𝑅0

. (1)

Note that the momentum expresses the quotient of the total stationary
population divided by the stock of the initial population. Keyfitz’s
calculations typically deliver values of 𝑀 between 1.6 and 1.7 for
several developing countries (among them Brazil).
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Note further that (1) also remains valid for negative population
growth. In that case the stable growth rate is below zero, corresponding
to an 𝑁𝑅𝑅 = 𝑒𝑟𝜇 smaller than 1. A decreasing population shrinks
further for a while until the intended stationary level is reached. The
proof of (1) uses the reproductive value of a woman at a certain age and
measures the expected number of girl-children that woman will have
for the rest of her reproductive life.

As already noted, the result of the momentum also remains valid
for general age distributions. In Preston (1997) (p. 162) the general
formula for the population momentum is given as:

𝑀 = 𝑀(𝑡) = ∫

𝛽

0

𝑐(𝑡, 𝑎)
𝑐𝑠(𝑎)

𝑤(𝑎) d𝑎, (2)

here 𝑐(𝑡, 𝑎) denotes the proportionate age distribution of the popu-
ation at time 𝑡 at replacement fertility level. The age distribution in
he denominator of (2) is the stationary one, which emerges after the
eplacement fertility level has been in place for many years, namely,
𝑠(𝑎) = 𝑙(𝑎) (𝑙(𝑎) denotes the survival probability until age 𝑎). The third
uantity in (2), 𝑤(𝑎), is given as

(𝑎) =
𝑙(𝑎)𝑣(𝑎)

𝜇
, (3)

where

𝑣(𝑎) =
∫ 𝛽
𝑎 𝑙(𝑥)𝑚∗(𝑥) d𝑥

𝑙(𝑎)
(4)

enotes the reproductive value (see Fisher, 1930) of an 𝑎-year old
oman as explained above, with replacement fertility rate 𝑚∗(𝑥). 𝛼 and
denote the minimal and maximal age of childbearing, respectively.

To simplify the following analysis, we follow the approach of Coale
1972) assuming a unique single age at birth denoted by 𝜇. Starting
ith the time at which replacement-level fertility is imposed, each

emale below age 𝜇 expects one birth (none above 𝜇). Thus, we have

(𝑎) = 1 for 𝑎 ≤ 𝜇

= 0 for 𝑎 > 𝜇. (5)

ence, from (2) we obtain

(𝑡) =
𝑒0
𝜇 ∫

𝜇

0

𝑐(𝑡, 𝑎)
𝑙(𝑎)

d𝑎. (6)

After Keyfitz’s path-breaking paper on the population momentum
Keyfitz, 1971), several authors relaxed the assumption of an imme-
iate drop in fertility to replacement level. Schoen and Kim (1998)
ssumed that the growth rate of births linearly declines to zero over
specified time interval, and found an expression for the resulting

opulation momentum. Later, Goldstein (2002) also studied the mo-
entum for a gradual demographic transition to replacement fertility.
y specifying a linear frontier in the Lexis surface, he derived a simple
ormula for the ultimate size of the population (for other relevant work,
e refer to Li and Tuljapurkar, 1999 and Li and Tuljapurkar, 2000). Fe-

chtinger et al. (2023) studied the development of the momentum in a
seudostable context.

Let us mention an inherent dichotomy in the social sciences refer-
ing to the descriptive and normative approach of a discipline. While
ociology and demography mainly be seen as descriptive/explanatory,
ne of the core paradigms of economics is an agent maximizing his/her
tility (or minimizing costs) faced with scarce resources.

A major purpose of the present paper is to illustrate the issue
f optimization in population sciences. This is relevant not only in
opulation policy, where normative aspects play a central role, but
lso in other areas of demography (see e.g., Baudisch, 2008; Leon,
976; Goodman, 1982; Schaffer, 1983; Robson and Kaplan, 2003; Chu
nd Lee, 2006; Robson and Kaplan, 2007; Chu et al., 2008; Dawid
t al., 2009, and Kaplan and Robson, 2009). Consider a government
aced with a rapidly growing population, that is, one with an NRR
52

ubstantially greater than one. If a central planner intends to reach d
ero growth of a closed population, then fertility reduction is the single
nstrument to reach this goal.

Fertility reduction happens not instantaneously, but gradually over
ime. A core question, therefore, posed (and answered at least partially)
y the following analysis is how the central planner should distribute
heir braking efforts over a given planning period. Is it better to start
ith a slow decline and to increase it successively, or should it be

he other way round? And in what sense can better be understood?
et us for the moment avoid the important question as to whether
he politician responsible for population has possible instruments for
educing fertility and whether those instruments are efficient enough
o fulfill the politician’s targets.1 The question of ‘better’ leads us
o the normative approach, that is, to an optimization, where the
lanner/decision maker has to strike a balance between birth control,
hich is clearly costly, and the target of reaching zero population
rowth (and also avoiding fluctuations in the size of the population).
n the following section we thus propose a one-sex age-structured
ntertemporal decision model to derive qualitative results on the shape
f the birth control path. In a nutshell, the goal of our research is
o gain insights into the solution structure in an analytic way. One of
ur results, for instance, is that it is optimal to apply anti- and pro-
atalistic planning most intensively at the beginning of the planning
eriod, followed by a gradual relaxation.

Let us finally stress the fact that we are primarily interested in
he qualitative shape of the optimal solution and that the analysis is
herefore highly stylized in the sense that it is not related to any special
ata sets, that is, with a non-validated model.

The paper is organized as follows. Section 2 introduces a model,
n which a decision maker tries to drive the population momentum
lose to 1 in a cost-efficient way over a given planning period. The
nalysis and analytic properties are presented in Section 3, followed
y numerical results and a discussion in Section 4. An extension of
he model can be found in Section 5, and the paper concludes with
ection 6.

. The model

In the following we consider development of the population as
dynamical system. The reproduction and mortality processes are

esponsible for the population structure (i.e., what the population pyra-
id looks like) and their increase or decrease (in absolute numbers).
athematically, this is defined by the well-known McKendrick–von

oerster equation (see Keyfitz and Keyfitz, 1997) which reads

𝑡(𝑡, 𝑎) + 𝑃𝑎(𝑡, 𝑎) = −𝑝(𝑡, 𝑎)𝑃 (𝑡, 𝑎), 𝑃 (0, 𝑎) = 𝑃0(𝑎),

𝐵(𝑡) ∶= 𝑃 (𝑡, 0) = ∫

𝜔

0
𝜈(𝑡, 𝑎)𝑃 (𝑡, 𝑎) d𝑎, (7)

here 𝑃 (𝑡, 𝑎) denotes the number of 𝑎-year old individuals living at
ime 𝑡 (i.e., in mathematical terms the population density at 𝑡) which
or the sake of simplicity is considered in a one-sex (i.e., female)
opulation.2 𝑝(𝑡, 𝑎) denotes the age-specific mortality rate at 𝑡. The
ondition ∫ 𝜔

0 𝑝(𝑡, 𝑎) d𝑎 = +∞ (for all 𝑡) guarantees 𝜔 to be the maximal
ttainable age (see Aniţa, 2000). 𝑃 (0, 𝑎) denotes the distribution of the
nitial population, exogenously given by 𝑃0(𝑎). 𝐵(𝑡) (as already used in
7)) denotes the number of newborn girls at 𝑡 with 𝜈(𝑡, 𝑎) as the fertility
ate of an 𝑎-year old woman at 𝑡.

At this stage we make the following two crucial simplifications to
he model that ease the mathematical considerations of the intended
erivation of the optimal path of the population momentum:

• Mortality: realized only at the maximal age, i.e., 𝑝(𝑡, 𝑎) = 𝛿(𝑎−𝜔)
for 𝑡 ≥ 0

1 For a brief discussion on that we refer to Section 2.
2 Note, that 𝑃𝑡(𝑡, 𝑎) + 𝑃𝑎(𝑡, 𝑎) denotes the directional derivative of 𝑃 (𝑡, 𝑎) in

irection (1, 1) (since time and age evolves at the same pace).
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• Reproduction: concentrated at a unique age 𝜇, i.e., 𝜈(𝑡, 𝑎) =
𝑅(𝑡)𝛿(𝑎 − 𝜇) for 𝑡 ≥ 0

here 𝛿(𝑥) denotes the Dirac delta function and 𝑅(𝑡) the female fertility
ate at 𝑡.

The decision maker is able to influence the NRR by effort 𝑘(𝑡)
enoting the relative change of the NRR (i.e., offering education to
omen, making efforts toward gender equality3 for a dynamic mod-
ling approach to the transition of the traditional family structure to
n egalitarian one). For a discussion on the dependence of fertility on
olicy measures, see Bergsvik et al. (2021), Luci-Greulich and Thévenon
2013), Sobotka et al. (2019), Gauthier (2007), and Björklund (2006).

emark. As Tomas Sobotka stresses in a personal communication, the
ssue of influencing fertility is somewhat controversial and is being
isused by authoritarian governments from Iran to Russia. But this

ontroversy aside, the problem also lies in the fact that policies have
n impact that is context-specific, and dependent on other institutions:
he labor market, welfare system, economic development, education,
ender equality, and also culture and norms. The impact also depends
n the initial fertility level, can be short-term or long-term, mostly due
o the tempo effect, or can also impact cohort fertility.

Negative 𝑘(𝑡) decreases reproduction 𝑅(𝑡). Positive 𝑘(𝑡), on the other
hand, (i.e., supporting women, establishing childcare facilities) in-
creases reproduction. For this reason we model 𝑅(𝑡) by means of an
ordinary differential equation4

�̇�(𝑡) = 𝑘(𝑡)𝑅(𝑡), 𝑅(0) = 𝑅0, (8)

where 𝑅0 denotes the initial NRR. Both, negative and positive efforts
are equally costly with decreasing marginal efficiency reflected by
convex (i.e., in our case quadratic) costs 𝐶𝑘2(𝑡). 𝐶 is a model parameter,
that measures the cost of decreasing or increasing 𝑅(𝑡) (for simplicity)
by the same extent. The decision maker has two objectives over a fixed
time horizon 𝑇 . The first intention is to end up with a NRR of 1. From
the literature it is known (as discussed in Section 1) that a change
in reproduction affects the population structure with delay. This is
expressed by the population momentum, which equals 1 for a stationary
population. Therefore, the second intention for the decision maker is to
opt for a population momentum of 1 at 𝑇 .

In the following we assume the first objective (𝑅(𝑇 ) = 1) to be a
hard constraint, that is, the decision maker has to drive reproduction
to 1 at 𝑇 , no matter what the costs may be. The second constraint
(𝑀(𝑇 ) = 1) will be considered soft, which means that the decision
maker is interested in meeting the constraint as closely as possible
(relative to an evaluation of the mismatch). Hence, the decision maker
tries minimizing

(𝑅0) ∶= ∫

𝑇

0
𝐶𝑘2(𝑡) d𝑡 + 𝐺 (𝑀(𝑇 ) − 1)2 , (9)

where the parameter 𝐺 values the mismatch of meeting a population
momentum of 1 at the end of the time horizon. In mathematical terms
(𝑅0) denotes the objective function, 𝐶𝑘2(𝑡) the objective functional,
and 𝐺 (𝑀(𝑇 ) − 1)2 the salvage value function.

Together with the differential Eqs. (7) and (8) as constraints, the
decision maker faces the following finite time optimal control problem

min
𝑘(𝑡)

(𝑅0) (10a)

s.t. 𝑃𝑡(𝑡, 𝑎) + 𝑃𝑎(𝑡, 𝑎) = 0, 𝑃 (0, 𝑎) = 𝑃0(𝑎) (10b)
𝐵(𝑡) = 𝑃 (𝑡, 0) = 𝑃 (𝑡, 𝜇)𝑅(𝑡) (10c)

3 See e.g., Feichtinger et al. (2017).
4 In contrast, the McKendrick–von Foerster Eq. (7) is a partial differential

quation.
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Table 1
Control and state variables.
Independent variables:
time 𝑡
age 𝑎

Control variable:
efforts to adapt the NRR 𝑘(𝑡)

State variables:
Population density of age 𝑎 at 𝑡 𝑃 (𝑡, 𝑎)
NRR at 𝑡 𝑅(𝑡)
Total population at 𝑡 𝑁(𝑡)

State variables (aggregated):
Births at 𝑡 𝐵(𝑡)
Deaths at 𝑡 𝐷(𝑡)

Population momentum at 𝑡 𝑀(𝑡)

�̇�(𝑡) = 𝑘(𝑡)𝑅(𝑡), 𝑅(0) = 𝑅0, 𝑅(𝑇 ) = 1 (10d)

𝑀(𝑡) = 𝜔
𝜇 ∫

𝜇

0
𝑐(𝑡, 𝑎) d𝑎 (10e)

𝑐(𝑡, 𝑎) =
𝑃 (𝑡, 𝑎)

∫ 𝜔
0 𝑃 (𝑡, 𝑎) d𝑎

. (10f)

xpression (10e) for the population momentum can be obtained from
6) as presented in Preston et al. (2001) (see also Feichtinger et al.,
023). Through a reformulation of the Eqs. (10e) and (10f), this prob-
em can be considered as a non-standard form of an age-structured
ptimal control model. First, we observe that the denominator in (10f)
enotes the total population 𝑁(𝑡), which increases by births 𝐵(𝑡) and
ecreases by deaths 𝐷(𝑡) and thus can be considered as a simple
rdinary differential equation

̇ (𝑡) = 𝐵(𝑡) −𝐷(𝑡), 𝑁(0) = 𝑁0

𝐷(𝑡) = 𝑃 (𝑡, 𝜔). (11)

ere, 𝑁0 ∶= ∫ 𝜔
0 𝑃 (0, 𝑎) d𝑎. Secondly, the 𝑐(𝑡, 𝑎) can be inserted into the

xpression for 𝑀(𝑡) to obtain an expression that depends only on state
ariables and can be used for the salvage value function in (9).

Using this for (10), the transformed model reads

in
𝑘(𝑡)

(𝑅0) (12a)

s.t. 𝑃𝑡 + 𝑃𝑎 = 0, 𝑃 (0, 𝑎) = 𝑃0(𝑎) (12b)
𝑃 (𝑡, 0) = 𝐵(𝑡) (12c)

�̇�(𝑡) = 𝑘(𝑡)𝑅(𝑡), 𝑅(0) = 𝑅0, 𝑅(𝑇 ) = 1 (12d)
�̇�(𝑡) = 𝐵(𝑡) −𝐷(𝑡), 𝑁(0) = 𝑁0 (12e)

𝐵(𝑡) = ∫

𝜔

0
𝛿(𝑎 − 𝜇)𝑃 (𝑡, 𝑎)𝑅(𝑡) d𝑎 (12f)

𝐷(𝑡) = ∫

𝜔

0
𝛿(𝑎 − 𝜔)𝑃 (𝑡, 𝑎) d𝑎 (12g)

where we used the Dirac delta function to allow the application of a
uitable Maximum Principle. From a control theoretic point of view,
(𝑡) denotes the control variable, 𝑃 (𝑡, 𝑎), 𝑅(𝑡), 𝑁(𝑡) the state variables,
nd 𝐵(𝑡) and 𝐷(𝑡) the (aggregated) state variables. The population
omentum, denoted by 𝑀(𝑡), which is at the center of the problem,

s a function of state variables. Table 1 summarizes the variables and
he notation of the model at a glance.

The full problem (12) is a non-standard age-structured optimal
ontrol problem. The standard Maximum Principle for these problems
llows for age-structured state variables, as well as for aggregated states
see Brokate, 1985), and additionally for aggregated state variables
hereby capturing the interactions between age-groups (see Feichtinger
t al., 2003). Applications can be found, for example, in demogra-
hy and population economics (see e.g., Arthur and McNicoll, 1977;
eichtinger and Veliov, 2007), in economics (see e.g., Feichtinger
t al., 2006; Prskawetz and Veliov, 2007, or Wrzaczek et al., 2014),
n health economics (see e.g., Kuhn et al., 2010, 2011; Frankovic
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et al., 2020a, or Frankovic et al., 2020b), and in epidemiology (see
e.g., Hethcote, 1988). The above model, however, also includes non-
distributed state variables (e.g., evolving over time only). Thus the
standard Maximum Principle must be extended by applying needle
variations to the Lagrangian formulation of the problem. A sketch of the
proof (for a general formulation of the above problem) can be found in
Appendix. An analogous Maximum Principle has already been applied
for the solution of multi-stage optimal control problems with random
switching time. These problems can be transformed to age-structured
optimal control problems including age-structured and non-distributed
(concentrated) state variables,5 which offers a number of advantages
compared to the standard backwards approach.

3. Optimality conditions and analytic properties

For the solution of the transformed problem (12) we apply the
extended Maximum Principle6 (see Appendix) and define the Hamil-
tonian7 as (skipping 𝑡 and 𝑎 for notation reasons if they are not of
particular importance)

 = − 1
𝜔
𝐶𝑘2 + 𝜉 ⋅ 0

⏟⏟⏟
=0

+ 1
𝜔
𝜆𝑅𝑘𝑅+ 1

𝜔
𝜆𝑁 (𝐵 −𝐷) + 𝜂𝐵𝛿𝜇𝑃𝑅+ 𝜂𝐷𝛿𝜔𝑃 , (13)

here 𝜉(𝑡, 𝑎) denotes the age-structured adjoint variable of the pop-
lation for age 𝑎 at 𝑡. 𝜆𝑅(𝑡) and 𝜆𝑁 (𝑡) denote the (non-distributed)
djoint variables for reproduction and total population at 𝑡 respectively,
nd 𝜂𝐵(𝑡) and 𝜂𝐷(𝑡) the adjoint variables for (the aggregated state
ariables) births and deaths at 𝑡. As is standard in optimal control
heory, adjoint variables can be interpreted as dynamic shadow prices
f the corresponding optimal control problem (i.e., denoting the change
f the objective function if the corresponding state variable is increased
arginally at 𝑎 and/or 𝑡). Moreover, further analysis of the adjoint

ariable (i.e., backwards solution of the corresponding differential
quation, see (15) in this model) shows that adjoint variables are
uture-oriented (i.e., future effects of a marginal increase in the state
ariables are aggregated). See, for example, Kuhn et al. (2010) or Wrza-
zek et al. (2010) who exploit this effect in the context of population
ynamics.

The Hamiltonian directly implies the (necessary) first order condi-
ion for 𝑘(𝑡),

𝑘𝜔 = −2𝐶𝑘 + 𝜆𝑅𝑅 = 0 ⇒ 𝑘 =
𝜆𝑅𝑅
2𝐶

. (14)

his implies that efforts to adapt the NRR depend not only on (i) the
urrent reproduction value (i.e., the state value 𝑅(𝑡)), but also on (ii)
he future effect (i.e., the adjoint value 𝜆𝑅(𝑡)). Moreover, it is crucial
o mention that the sign of the efforts is only determined by the future
ffects (i.e., by the sign of the adjoint variable) and does not depend on
hether reproduction lies above or below the target value of 1 (which
as to be reached at the end of the planning horizon 𝑇 ).

The adjoint equations and transversality conditions complete the
ecessary conditions of the Maximum Principle. We obtain

𝑡 + 𝜉𝑎 = −𝜂𝐵𝛿𝜇𝑅 − 𝜂𝐷𝛿𝜔

�̇�𝑅 = −𝜆𝑅𝑘 − ∫

𝜔

0
𝜂𝐵𝛿𝜇𝑃 d𝑎

�̇�𝑁 = 0

𝜂𝐵 = 𝜆𝑁 + 𝜉(𝑡, 0)

5 See Wrzaczek et al. (2020) for the proof and a discussions and Wrzaczek
2021), Buratto et al. (2022) for applications.

6 Note that the existence of an optimal solution as well as sufficiency
onditions are not considered within this contribution.

7 The 1
𝜔

term enters for concentrated state variables and parts of the
bjective function, as the Hamiltonian corresponds to both age and time. See
lso the formulation of the Lagrangian (38) and the Hamiltonian (41) in the
roof of the extended Maximum Principle (Appendix).
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𝜂𝐷 = −𝜆𝑁 (15)

for the adjoint equations, and

𝜉(𝑡, 𝜔) = 0

𝜉(𝑇 , 𝑎) = −2𝐺

(

𝜔
𝜇
∫ 𝜔
0 𝜅(𝑎)𝑃 (𝑇 , 𝑎) d𝑎

𝑁(𝑇 )
− 1

)

𝜔
𝜇

𝜅(𝑎)
𝑁(𝑇 )

𝜆𝑁 (𝑇 ) = 2𝐺 (𝑀(𝑇 ) − 1)
𝑀(𝑇 )
𝑁(𝑇 )

(16)

for the transversality conditions. 𝜅 (1 below 𝜇, 0 above 𝜇) is a con-
tinuous function that allows the transformation of the population mo-
mentum (10e) into a mathematically suitable form that can be dealt
with using the Maximum Principle. As (12) includes initial and end
conditions for 𝑅(𝑡), there is no transversality condition for the corre-
sponding adjoint variable 𝜆𝑅(𝑇 ). To each condition of (16) it is possible
to give a comprehensive interpretation. 𝜉(𝑡, 𝜔) denotes the marginal
value of an increase of 𝜔-year old individuals at 𝑡. The value is certainly
zero, as these people will exit the model (i.e., die) immediately and do
not, moreover, contribute to reproduction. In contrast, 𝜉(𝑇 , 𝑎) evaluates
the reproductive effect of an increase of 𝑎-year old individuals at the
end of the planning horizon. This effect is active for individuals not
older than the reproduction age 𝜇, as these people contribute directly
to the population momentum. Older individuals do not matter for the
population momentum, which implies that 𝜉(𝑇 , 𝑎) is nil for 𝑎 > 𝜇
(mathematically expressed by the function 𝜅(𝑎), which is 1 for 𝑎 ≤ 𝜇
and zero for 𝑎 > 𝜇). 𝜆𝑁 (𝑡) covers the (marginal) effect of the (current)
total population to the deviation of the population momentum at 𝑇 and
is therefore constant over time (see (15)). This in turn enters the adjoint
of the (age-structured) population before 𝑇 via the other adjoints for
births and deaths.

Exploiting (16) we arrive at a simpler representation for 𝜉(𝑡, 𝑎) and
𝜆𝑅(𝑡).

𝜉𝑡 + 𝜉𝑎 = −
(

�̄�𝑁 + 𝜉(𝑡, 0)
)

𝛿𝜇𝑅 + �̄�𝑁𝛿𝜔

=

⎧

⎪

⎨

⎪

⎩

−
(

�̄�𝑁 + 𝜉(𝑡, 0)
)

𝛿𝜇𝑅 for 𝑎 = 𝜇
�̄�𝑁𝛿𝜔 for 𝑎 = 𝜔
0 else

�̇�𝑅 = −𝜆𝑅𝑘 −
(

�̄�𝑁 + 𝜉(𝑡, 0)
)

𝑃 (𝑡, 𝜇), (17)

where

�̄�𝑁 ∶= 2𝐺 (𝑀(𝑇 ) − 1)
𝑀(𝑇 )
𝑁(𝑇 )

, (18)

is a constant. 𝜆𝑁 (𝑡), 𝜂𝐵(𝑡), and 𝜂𝐷(𝑡) can be solved easily for all 𝑡,

𝑁 (𝑡) = �̄�𝑁
𝜂𝐵(𝑡) = �̄�𝑁 + 𝜉(𝑡, 0)

𝜂𝐷(𝑡) = −�̄�𝑁 . (19)

nteresting in that respect is the equality 𝜆𝑁 (𝑡) = �̄�𝑁 , which means that
n additional individual of the total population increases the objective
unction (i.e., decreases costs) if the momentum is too high at 𝑇 , i.e.,

(𝑇 ) > 1 ⟺ increase of 𝑁(𝑡) reduces costs
(momentum too large): 𝜆𝑁 (𝑡) > 0

(𝑇 ) < 1 ⟺ increase of 𝑁(𝑡) increases costs
(momentum too low): 𝜆𝑁 (𝑡) < 0

t is important to understand that 𝜆𝑁 (𝑡) measures the effect assuming
hat 𝑃 (𝑡, 𝑎) hypothetically remains at the same level. This principle is
ell understood in optimal control theory and is the reason why 𝜉(𝑡, 0)
dditionally enters 𝜂𝐵(𝑡), which is discussed in the course of Lemma 1.

Using the adjoint variables and the interpretation of the transversal-
ty conditions gives an important insight into the optimal value of the
eproduction adaptation efforts from a demographic point of view. This

s summarized in the following Lemma and discussed after the proof.
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Lemma 1. Along the optimal transitional path the optimal efforts for
dapting the NRR changes depend negatively on the marginal deviation of
he population momentum at 𝑇 and on the generalized reproductive value
t 𝑡 of one expected progeny (normalized by marginal costs of adaptation
fforts).

roof. Differentiating the (necessary) first order condition (14) with
espect to time implies the dynamics of 𝑘(𝑡), also known as Euler

equation, that is:

�̇�(𝑡) = −
𝑅(𝑡)𝑃 (𝑡, 𝜇)

2𝐶
(

�̄�𝑁 + 𝜉(𝑡, 0)
)

. (20)

As 𝑅(𝑡)𝑃 (𝑡, 𝜇) is strictly positive, the sign of the change of 𝑘 depends on
the two terms �̄�𝑁 and 𝜉(𝑡, 0) (positive sign means a decrease, and vice
versa). ■

To understand this interesting result we first recall that 𝑅(𝑡)𝑃 (𝑡, 𝜇)
enotes the expected number of progeny at 𝑡 (as fertility is concentrated
t age 𝜇) and that 2𝐶 are marginal costs of the adaptation efforts.
ith this in mind it is clear that the sign of �̇� is determined by the

wo terms in brackets, which interestingly focus on different points
n time. First, �̄�𝑁 captures that the expected progeny influences the
opulation momentum at the end of the time horizon. The effect is
ot evaluated at 𝑡, as the corresponding dynamics is nil, which means
hat the effect of an additional individual at 𝑡 shifts forwards to the
nd of the time horizon. Secondly, 𝜉(𝑡, 0) denotes a generalization of

Fisher’s reproductive value (see Fisher, 1930). As discussed and proven
in Wrzaczek et al. (2010) and Feichtinger et al. (2011) (see also the
discussion in Kuhn et al., 2010), the generalization appears as part of
the shadow price of the population within an age-structured optimal
control model if (and only if) births are endogenously determined in
the model. The value is a generalization of Fisher’s value, as the pure
reproductive value (well-known in demography) is weighted by the
effects that one additional progeny has on the objective function (of
the corresponding problem). Before we give further insights into a
decomposition of this generalized value in our model, it is important
and interesting to observe that the evolution of adaptation efforts
depends on the direct effect on population momentum at the end of
the planning horizon and on the indirect effect of expected progeny.8

A complete decomposition of the generalized reproductive value
reveals the different forces of the model that are active for different
ages of different cohorts.

Proposition 1. The generalized reproductive value can be decomposed
into three regions illustrated in Fig. 1: cohorts that have already died before
𝑇 (region 1), cohorts that are alive at 𝑇 but are older than the reproductive
age (region 2), and cohorts that are alive and younger than, or exactly at,
the reproductive age (region 3). For these cohorts 𝜉(𝑡, 0) can be reduced to

𝑡 + 𝜔 < 𝑇 (region 1) ∶ 𝜉1(𝑡, 0) = �̄�𝑁𝑅(𝑡 + 𝜇) − �̄�𝑁 + 𝜉(𝑡 + 𝜇, 0)𝑅(𝑡 + 𝜇)

(21a)

𝑡 + 𝜇 < 𝑇 ≤ 𝑡 + 𝜔 (region 2) ∶ 𝜉2(𝑡, 0) = �̄�𝑁𝑅(𝑡 + 𝜇) + 𝜉(𝑡 + 𝜇, 0)𝑅(𝑡 + 𝜇) (21b)
𝑡 + 𝜇 = 𝑇 (region 2/3) ∶ 𝜉2∕3(𝑡, 0) = �̄�𝑁𝑅(𝑇 ) + 𝜉(𝑇 , 0)𝑅(𝑇 )

− 2𝐺 (𝑀(𝑇 ) − 1) 𝜔
𝜇

1
𝑁(𝑇 )

(21c)

𝑡 + 𝜇 > 𝑇 (region 3) ∶ 𝜉3(𝑡, 0) = −2𝐺 (𝑀(𝑇 ) − 1) 𝜔
𝜇

1
𝑁(𝑇 )

. (21d)

roof. From solving the adjoint equation for 𝜉(𝑡, 𝑎) backwards we
obtain the following general expression

𝜉(𝑡, 𝑎) = ∫

𝜔

𝑎

((

�̄�𝑁 + 𝜉(𝑡 − 𝑎 + 𝑠, 0)
)

𝛿𝜇𝑅(𝑡 − 𝑎 + 𝑠) − �̄�𝑁𝛿𝜔
)

d𝑠+𝜉(𝑡−𝑎+𝜔,𝜔), (22)

8 The reason why (20) gets rid of 𝜆𝑅(𝑡) is a backward solution of the adjoint
quation for 𝜆 (𝑡).
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𝑅

Fig. 1. Lexis diagram with time along the horizontal axis and age along the vertical
axis. Individuals born within region 1 die before 𝑇 . Individuals born within region 2
reproduce but do not die before 𝑇 . Individuals born within region 3 neither reproduce
nor die before 𝑇 .

for a cohort that dies before 𝑇 . For cohorts that die after 𝑇 the
xpression is slightly adapted by changing the upper limit of the
ntegral.

In the following we evaluate this expression for 𝑎 = 0 explicitly
or different cohorts. As the decision makers’ objective is to drive
he population momentum as close to 1 as possible at 𝑡, and as the
opulation momentum is driven by the population size and the relative
ize of the population that has not already reproduced, we consider
ohorts (i) that have already died before 𝑇 (region 1 in Fig. 1), (ii)

cohorts that are alive at 𝑇 but have already reproduced (region 2 in
Fig. 1), and (iii) cohorts that are alive at 𝑇 and have not yet reproduced
(region 3 in Fig. 1). The cohort born at 𝑇 − 𝜇 is special in the sense
hat it reproduces exactly at the end of the planning horizon (lying
n the transition from region 2 to 3). As this cohort is isolated in the
ense that it is only a single cohort (marginally deviating from 𝑇 − 𝜇

means belonging to region 2 or 3) with zero measure, it is denoted
by region 2/3. Moreover, Fig. 1 distinguishes a part ’a’ and ’b’ within
ach region, where ’a’ and ’b’ correspond to individuals who have not
eproduced or have already reproduced at (𝑡, 𝑎). The value for newborns
(𝑡, 0), however, always lies at the lower boundary of the diagram (at
he horizontal axis).

• For 𝜉1(𝑡, 0): set 𝑎 = 0, 𝑡 + 𝜔 < 𝑇 implies 𝜉(𝑡 + 𝜔,𝜔) = 0. Using the
definition of the Dirac delta function implies (21a).

• For 𝜉2(𝑡, 0): set 𝑎 = 0, since 𝑎 > 𝜇 again 𝜉(𝑡 + 𝜔,𝜔) = 0 (recall
the definition of the function 𝜅). Using the definition of the Dirac
delta function implies (21b), where in contrast to 𝜉1(𝑡, 0) the age
of 𝜔 will not be reached within the planning horizon.

• For 𝜉3(𝑡, 0): set 𝑎 = 0, 𝑎 ≤ 𝜇 implies the above expression (21d). As
the cohort dies after 𝑇 the Dirac delta function for death (𝛿(𝑎−𝜔))
is nil. The integral over 𝛿(𝑎−𝜇) equals 1 for cohorts born at 𝑇 −𝜇
(region 2/3) and zero otherwise. ■

The result just derived allows us to gain valuable insights into the
tructure of optimal adaptation rates of fertility. In a first step we are
ble to show that any policy with an ’up and down’ of the NRR is
uboptimal. Although such a behavior might be expected, we are able
o prove it analytically (i.e., in a logical consistent way). As the proof
f the following proposition will show, the validity of the following
nequality of the demographic momentum is required:

(𝑇 ) < 𝜔
𝜇
, (23)

which follows directly from (6). A formal proof can alternatively be
found in Feichtinger et al. (2023) (Proposition 1). Although (23) was
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shown for rectangular mortality and a unique birth age of mothers, we
suspect that it holds true for general mortality and fertility schedules.

Proposition 2. Assume that an optimal solution for (12) exists and let
∗(𝑡) denote the optimal efforts to adapt the NRR. Then 𝑘∗(𝑡) does not
hange the sign.

roof. In an optimal solution the first order condition (14) has to
old and 𝑅(𝑡) is trivially strictly positive. Hence, the sign of 𝑘∗(𝑡)

is determined by 𝜆𝑅(𝑡). Backwards solution of the corresponding ad-
oint equation (solving (17) backwards reverses the sign of 𝑘 in the
xponential function) yields

𝑅(𝑡) = 𝜆𝑅(𝑇 )𝑒∫
𝑇
𝑡 𝑘(𝑠′) d𝑠′ + ∫

𝑇

𝑡
𝑒∫

𝑠′
𝑡 𝑘(𝑠′′) d𝑠′′ (�̄�𝑁 + 𝜉(𝑠′, 0)

)

𝑃 (𝑠′, 𝜇) d𝑠′,

(24)

where �̄�𝑁 is given by (18) and 𝜉(𝑠′, 0) by Proposition 1.
Due to (21d) the sign of 𝜉(𝑡, 0) does not change the sign within

region 3. For region 2 we consider a cohort that is sufficiently near to
region 3, that is, such that the corresponding progeny already belong
to region 3 ((𝑡 + 𝜇) + 𝜇 > 𝑇 ). Using (21b) and the definition of �̄� we
obtain

𝜉2(𝑡, 0) =
(

�̄�𝑁 + 𝜉(𝑡 + 𝜇, 0)
)

𝑅(𝑡 + 𝜇)

= 2𝐺 (𝑀(𝑇 ) − 1) 1
𝑁(𝑇 )

(

𝑀(𝑇 ) − 𝜔
𝜇

)

𝑅(𝑡 + 𝜇). (25)

A comparison with 𝜉3(𝑡, 0) shows that the sign does not change if
𝑀(𝑇 ) < 𝜔

𝜇 (see (23)). Reproducing this argument analogously implies
hat 𝜉(𝑡, 0) has the same sign for all 𝑡.

Since further �̄�𝑁 −𝜉3(𝑡, 0) vanishes in the definition of 𝜆𝑅(𝑡), the sign
of 𝜆𝑅(𝑡) does not change for all 𝑡 due to (23). ■

The result, that the optimal adaptation efforts do not change the
ign in any planning interval, can be sharpened such that it always
ehaves monotonic. Note that such a shape of efficient birth control
s both intuitively plausible as well as generally true.

orollary 1. Assume that an optimal solution for (12) exists and let 𝑘∗(𝑡)
enote the optimal efforts to adapt the NRR. Moreover, assume that the
ortality at the begin of the planning horizon is rectangular, i.e.,𝑀(0) < 𝜔

𝜇 .
Then 𝑘∗(𝑡) is strictly monotonic over the entire time horizon according to

𝑀(0) > 1 ⟹ 𝑘∗(𝑡) < 0, �̇�∗(𝑡) > 0, �̈�∗(𝑡) < 0

for 𝑡 ∈ [0, 𝑇 ] ∶ decreasing momentum
(0) = 1 ⟹ 𝑘∗(𝑡) = 0, �̇�∗(𝑡) = 0, �̈�∗(𝑡) = 0

for 𝑡 ∈ [0, 𝑇 ] ∶ constant momentum
𝑀(0) < 1 ⟹ 𝑘∗(𝑡) > 0, �̇�∗(𝑡) < 0, �̈�∗(𝑡) > 0

for 𝑡 ∈ [0, 𝑇 ] ∶ increasing momentum. (26)

Proof. Consider the last part of the time horizon [𝑇−𝛥, 𝑇 ] and 𝑀(𝑡) > 1.
𝛥 is sufficiently small such that 𝑀(𝑡)−1 does not change the sign. Then
Proposition 2 implies that 𝑀(𝑇 −𝛥) > 1 implies 𝑀(𝑇 ) > 1 and negative
𝑘∗(𝑡) in 𝑡 ∈ [𝑇 −𝛥, 𝑇 ]. Observe, also that for negative 𝑘∗(𝑡) the condition
𝑀(0) < 𝜔

𝜇 is stronger than 𝑀(𝑇 ) < 𝜔
𝜇 . Applying Proposition 2 and going

ack in time implies that 𝑘∗(𝑡) (for all 𝑡) is negative for 𝑀(0) > 1. Again,
he condition on the rectangular mortality at 𝑡 = 0 is stronger than at
= 𝑇 and therefore sufficient.

To derive the sign of �̇�(𝑡) we plug (18) and (21) into the Euler
q. (20). Evaluation of the four cases of (21) together with the assump-
ion 𝑀(𝑡) > 1 for 𝑡 ∈ [0, 𝑇 ] proves the assertion. For the curvature of 𝑘(𝑡)

we take the derivative of the Euler Eq. (20) w.r.t. time. By manipulation
we obtain the curvature as the product of �̇�(𝑡) (which is positive) and
a negative term, which finishes the proof.

For 𝑀(𝑇 ) < 1 the proofs work analogously. For 𝑀(𝑇 ) = 1
the population starts in a stationary situation and no intervention is
necessary. ■
56
Finally, the paths of optimal adaptation rates turn out to be con-
cave/convex for 𝑅(0) ≷ 1. These results are intuitively plausible. A
decision maker who is concerned about the shrinking population should
start with intensive pro-natalistic measures followed by a gradual relax-
ation until stationary conditions occur, that is, 𝑅(𝑇 ) = 1 are reached at
terminal time 𝑇 .

Note that in all three properties of the efficient fertility adaptation
trajectories – that is, unique signs of 𝑘∗(𝑡), the sign’s monotony, and
most intensive efforts occur at the beginning, followed by a successive
decline – and are lost under more general targets, for example, by
including a penalty for fluctuations of the population size as considered
in Section 5.

4. Numerical results and discussion

To illustrate the optimal paths of the efforts to adapt the repro-
duction and related trajectories over time, we solve (12) numerically
with a gradient based optimization algorithm (for theoretical details
see Veliov, 2003). At this stage we are interested in observing and
interpreting the qualitative behavior and use artificial parameters. We
are not interested in a realistic calibration, which can only be achieved
with a considerable model extension at the cost of losing (and this is
another reason for not following this) all the analytical conclusions we
have drawn in the previous section.

Hence, we assume life up to the age 𝜔 = 100 and a reproduction
age of 𝜇 = 30 years. For the cost parameters we choose 𝐶 = 10 (control
costs) and 𝐺 = 105 (cost of mismatch of the population momentum at
𝑇 ). For the planning period we use 𝑇 = 200 years.

Numerous numerical runs with different parameters show robust-
ness with respect to changes in 𝐶 and 𝐺. Additional numerical runs for
different net reproduction ages are presented in Section 4.1. The time
horizon has also been varied. The results are briefly discussed at the
end of this section, but not presented here.

We consider four scenarios corresponding to the initial NRR: very
high (very young population, 𝑅0 = 5), high (young population, 𝑅0 =
2.5), low (old population, 𝑅0 = 0.75), and very low (very old popu-
lation, 𝑅0 = 0.5). The population is normalized to an initial size of
𝑁0 = 100 for all cases with a density (𝑃0(𝑎)) of a stable population
corresponding to the (initial) reproduction scenario.

The results are presented in Figs. 2–6, and are discussed later in this
paper.

Fig. 2 illustrates the optimal adaptation efforts of reproduction
over time and reveals three qualitative properties of the time paths
depending on the scenario (i.e., on the initial reproduction value 𝑅0,
which can be greater or smaller than the stationary value 1). For
𝑅0 > 1 the optimal efforts 𝑘∗(𝑡) are always negative, monotonically
increasing and concave, while for 𝑅0 < 1 it holds that 𝑘∗(𝑡) > 0,
and gradually decreases in a convex manner. All these properties have
also been proven analytically as summarized in Corollary 1. While
the first two properties are straightforward, the concavity/convexity is
more remarkable. It means that both efficient anti- and pro-natalistic
measures should be applied most intensively at the beginning of a
planning interval, but gradually relaxed in the period that follows.
Mathematically, the reason lies in the effectiveness of the efforts, which
becomes higher the larger the reproduction value 𝑅(𝑡) deviates from
ts stationary level 1. If this assumption (multiplicativity of 𝑘(𝑡) and
𝑅(𝑡) in the (8)) were be relaxed, Corollary 1 would hold without the
concavity/convexity result.

Fig. 3 shows how 𝑘∗(𝑡) affects the NRR over time (as defined by
(8)). The convex/concave shape carries over, but is markedly different
compared to the efforts: this is due to multiplication. Moreover, it is
obvious that the NRR of a (very) young population (𝑅0 > 1) stays above
1 for 𝑡 ∈ [0, 𝑇 ) until it reaches 1 at 𝑇 (forced by the constraint 𝑅(𝑇 ) = 1).
For a (very) old population the opposite can be observed. This effect
also follows from Corollary 1 and the classic Bellman principle.



Theoretical Population Biology 155 (2024) 51–66G. Feichtinger and S. Wrzaczek

a
o
b
a
p
i
i
T
o
w
(
m

t
m
c
p
o

Fig. 2. Optimal adaptation of reproduction 𝑘∗(𝑡) over time.
Fig. 3. Reproduction 𝑅∗(𝑡) over time.
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Although the decision maker aims for a population momentum of 1
t the end of the time horizon, we are interested in the development
ver time as shown in Fig. 4 (colored lines: 𝑀(𝑡) for 𝑡 ∈ [0, 𝑇 ), colored
ullets: 𝑀(𝑇 )). As for 𝑘∗(𝑡) and 𝑅∗(𝑡), the population momentum stays
bove/below 1 for a young/old population throughout the planning
eriod. However, the convex/concave behavior disappears due to the
ntertwined time-lag effects of the total population and the correspond-
ng age-structure. Moreover, we see that 𝑀(𝑇 ) will match 1 equally.
he higher the initial reproduction number deviates from the stable
ne, the higher the population momentum deviates from 1 at 𝑇 as
ell, as the decision maker balances the costs of the adaptation efforts

which are considerably higher for adapting larger deviations) with the
ismatching costs of the momentum.

Fig. 5 presents the total population over time. It is remarkable that
he shape of these trajectories is homologous to that of the population
omentum. In addition, we see that the size of the total population

hanges considerably over the 200 years. In our scenario of a very old
opulation (i.e., 𝑅0 = 0.5) the total population goes down to a little
57

ver 10% of the initial value. In the case of a very young population d
i.e., 𝑅0 = 5) it increases by a factor of almost 180. This clearly relates
o the fairly restrictive assumption that the total size of the population
s not considered at all in the objective function. This will be relaxed
n Section 5, where the decision maker aims for the total population
o remain around a constant level, in addition to the end constraint
(𝑇 ) = 1 and the objective of bringing the momentum as close to 1 as
ossible at 𝑇 .

Finally, Fig. 6 shows the progressive aging/rejuvenation of a
oung/old initial population for 𝑅0 > 1 and 𝑅0 < 1, respectively, and
hows an almost stationary population after 200 years for every scenario
t a different population size corresponding to the initial NRR.

emark 1. It should be stressed that these results are numerical ones.
lthough the qualitative results are supported by numerous numerical
uns with different model parameters, we should note that analytical
roof(s) that go beyond those of Section 3 (formulated in Proposition 2
nd Corollary 1) are not available. However, analytical proofs for the
hape of the optimal solution of optimal control models are inherently

ifficult to obtain (in particular for the case of the age-structured
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Fig. 4. Optimal population momentum 𝑀∗(𝑡) over time.
Fig. 5. Total population 𝑁∗(𝑡) over time (left-hand panel: 𝑅0 = 0.5 and 𝑅0 = 0.75, right-hand panel: 𝑅0 = 2.5 and 𝑅0 = 5).
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ptimal control model), which should be noted as a special feature of
his model.

emark 2. Further note, that the tiny edges across the age-time space
hich are visible in Fig. 6 are no numerical mistake, but due to
ur base assumptions regarding the mortality and reproduction sets
t one fixed age (i.e., 𝜇 = 30 and 𝜔 = 100). Technically the edges
merge at the boundaries between regions 1–2 and 2–3 of Fig. 1. At
hese lines, the transversality conditions change disruptively (see (16)),
hich continues iteratively from the back to the front of the planning
eriod.

The results discussed within this section are robust against varia-
ions of the time horizon 𝑇 . The optimal efforts as well as the NRR
how the same qualitative shape, but are more/less pronounced for a
maller/larger 𝑇 , while the match of the population momentum to 1
eteriorates/improves. The population develops accordingly.

.1. Variable age of fertility 𝜇

The results of Figs. 2–6 are based on a fixed reproduction age of
= 30 years. Now, as already mentioned before, we are varying 𝜇 and

omparing the base case with a 5-year lower and higher age (i.e., 25
nd 35 years). Figs. 7–8 show the results for the high (young population,
0 = 2.5) and low (old population, 𝑅0 = 0.75) scenario. Throughout the

igures, the black line shows the result for the younger reproduction age
𝜇 = 25), the red one for the benchmark reproduction age (𝜇 = 30, as
58

o

sed for Figs. 2–6), and the blue one for the older reproduction age
𝜇 = 35).

The very high (very young population, 𝑅0 = 5) and very low (very
ld population, 𝑅0 = 0.5) scenarios give rise to analogous conclusions,
ut are not shown in order not to overload the figures.

The left-hand panel of Fig. 7 shows the optimal efforts to adapt the
RR for a young population (left-hand panel). The behavior of every

ine follows the shape discussed in the previous section (monotony,
oncavity/convexity). However, for a young population with a younger
eproduction age (black line) the efforts are (i) stronger initially com-
ared to the benchmark case (red line), but (ii) lower after approx-
mately 70 years. In the case of an older reproduction age it is the
ther way around. The first effect (i) corresponds to a higher initial
opulation momentum as can be seen from the right-hand panel in
ig. 7, which implies that the decision maker has to put more effort
nto bringing it down. The second effect (ii) then results from the initial
ncrease, which implies a more rapid reduction of the NRR. To reach
he end constraint 𝑅(𝑇 ) = 1, however, the efforts have to be decreased
fterwards. The optimal behavior of 𝑘∗(𝑡) also explains the shape of the
RR (see middle panel of Fig. 7) which shows a higher/lower curvature

or a younger/older reproduction age.

For an older initial population (𝑅0 < 1) the effects are just the

pposite, as shown in the right-hand panels of Fig. 8.
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Fig. 6. Population density 𝑃 (𝑡, 𝑎) over time (top-left-hand panel: 𝑅0 = 2.5, top-right-hand panel: 𝑅0 = 5, lower-left-panel: 𝑅0 = 0.75, lower-right-panel: 𝑅0 = 0.5).
Fig. 7. Optimal adaptation of reproduction 𝑘∗(𝑡) (left-hand panel), NRR 𝑅∗(𝑡) (middle panel) and population momentum 𝑀∗(𝑡) (right-hand panel) for different 𝜇 for a young
population 𝑅0 = 2.5.
Fig. 8. Optimal adaptation of reproduction 𝑘∗(𝑡) (left-hand panel), NRR 𝑅∗(𝑡) (middle panel) and population momentum 𝑀∗(𝑡) (right-hand panel) for different 𝜇 for an old
population 𝑅0 = 0.75.
4.2. Robustness check: Effect of model simplifications

The theoretical results of Section 3 are possible due to the simpli-
fying assumption that mortality and fertility are concentrated at ages
𝜔 and 𝜈, respectively. While the concentrated fertility rate does not
appear in the proofs and therefore seems to be unproblematic, the
59
concentrated mortality rate is explicitly used in the proof of Proposi-
tion 2. To study the implications of the simplification, we thus rely
on numerical runs in two steps. First, we allow the fertility to be
realistically distributed between the ages of 15 and 40 years keeping
the mortality rate concentrated at 𝜔. Secondly, we additionally assume
a continuous mortality rate between all ages.
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Fig. 9. Case distribution fertility: Optimal adaptation of reproduction 𝑘∗(𝑡) (left panel), 𝑅∗(𝑡) (middle panel) and population momentum 𝑀∗(𝑡) (right panel) for 𝑅0 = 0.75 (old
opulation) and 𝑅0 = 2.5 (young population).
Fig. 10. Case distribution fertility and mortality: Optimal adaptation of reproduction 𝑘∗(𝑡) (left-hand panel), 𝑅∗(𝑡) (middle panel) and population momentum 𝑀∗(𝑡) (right-hand
panel) for 𝑅0 = 0.75 (old population) and 𝑅0 = 2.5 (young population).
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Let us quickly revisit the general model and discuss the implications
f a distribution of the fertility and mortality rate. The McKendrick–von
oerster equation and the equations for births and deaths now read

𝑡 + 𝑃𝑎 = −𝑝(𝑡, 𝑎)𝑃 (𝑡, 𝑎), 𝑃 (0, 𝑎) = 𝑃0(𝑎), 𝑃 (𝑡, 0) = 𝐵(𝑡) (27a)

𝐵(𝑡) = ∫

𝜔

0
𝜈(𝑎)𝑃 (𝑡, 𝑎)𝑅(𝑡) d𝑎 (27b)

𝐷(𝑡) = ∫

𝜔

0
𝑝(𝑡, 𝑎)𝑃 (𝑡, 𝑎) d𝑎. (27c)

The rest of the general problem (12) remains the same, except that the
general expression for the optimal momentum (2) has to be used in the
objective function. The Hamiltonian of the general problem reads

 = − 1
𝜔
𝐶𝑘2 − 𝜉𝑝𝑃 + 1

𝜔
𝜆𝑅𝑘𝑅 + 1

𝜔
𝜆𝑁 (𝐵 −𝐷) + 𝜈𝑃𝑅 + 𝑝𝑃 , (28)

which implies that the first order condition (14) does not change. The
mortality and fertility rate, however, change the adjoint equations for
𝑃 (𝑡, 𝑎) and 𝑅(𝑡) which become

𝜉𝑡 + 𝜉𝑎 = 𝑝𝜉 − 𝜈𝑅 − 𝜂𝐷𝑝 (29a)

�̇�𝑅 = −𝜆𝑅𝑘 − ∫

𝜔

0
𝜈𝑃 d𝑎. (29b)

with the corresponding transversality conditions. Thus, the relaxation
of the simplification of the concentrated fertility rate enters (29b) into
the second term on the right-hand side, where fertility is distributed
among all cohorts within the fertile age at 𝑡. The relaxation of the
concentrated mortality rate enters twice in (29a). The first term is
added to the adjoint equation and accounts for the decrease in the
population (along the life-cycle of a cohort) due to mortality. Secondly,
the third term on the right-hand side is no longer concentrated at the
maximal age 𝜔, but distributed according to the mortality rate.

Fig. 9 shows the optimal adaptation of reproduction (left-hand
panel), the NRR (middle panel) and the population momentum over
time (right-hand panel) for a fertility distributed between 15 and 40
years. The plots show the results for (very) young (𝑅0 > 1) and (very)
old populations (𝑅0 < 1), which are only slightly different from the
ones in Figs. 2–6. We therefore conclude (running a series of examples
with various parametric constellations) that for this relaxation the main
analytical properties (Proposition 2 and Corollary 1) still hold. The
60

analytical reason for this is that the fertility distribution only slightly
adapts the adjoint Eq. (29b) via the second term and this term is not
critical in the proofs of Section 3.

Fig. 10 illustrates the optimal adaptation of reproduction (left-hand
panel), the NRR (middle panel), and the population momentum over
time (right-hand panel) if, additionally, the mortality rate is distributed
(realistically) over the entire life course (i.e., from birth to the maximal
age 𝜔). In this case, the numerical runs show robust behavior for (very)
young (𝑅0 > 0), but different behavior for (very old) populations
(𝑅0 < 1). In the latter case, the monotony of the optimal adaptation
efforts remains, but can change the sign during the time horizon. This in
turn implies a wave in the NRR and the optimal momentum over time.
Analytically this lies in the fact that rectangular mortality is crucial
for the proof of Proposition 2 (states that 𝑘(𝑡) does not change the
sign), which does not hold in general. The intuition for this effect is
hidden in the last term of the adjoint equation (and the transversality
condition). If mortality is concentrated at 𝜔, this term is zero for the
cohorts that are born within (𝑇 , 𝑇 − 𝜔] (region 2 and 3 in Fig. 1)
but equal to −𝜂𝐷𝑝 = �̄�𝑁𝑝 for the continuous mortality rate. So now,
hese cohorts also change the population momentum (negatively) by
ontributing to deaths. This reversing effect dominates the sign of 𝜆𝑅(𝑡)

at the end of the time horizon. This in turn implies that this wave is an
anticipation effect of the predefined finite time horizon. The result of
Corollary 1 seems to be partially true. While the monotony has already
been discussed, the slope (decreasing or increasing) seems to be robust.

5. Extension: Penalizing fluctuations of the total population

Within the basic model (12) of Section 2, the decision maker aims to
bring the population momentum as close to 1 as possible within a given
planning period 𝑇 . Adaptations to the NRR are costly, which is why
they should also be minimized. The theoretical analysis (i.e., unique
sign of 𝑘(𝑡) as proven in Corollary 1) as well as the numerical runs
see Fig. 5) show a drastic change in the size of the total population,
lthough the population momentum at 𝑇 is close to 1.

This section enriches the basic model (12) by penalizing deviations
rom a predefined size of the population over the entire time horizon.
ence, we add the quadratic distance from an exogenously given �̄�

aggregated over time) to the objective function (9). This yields

̄ (𝑅0) ∶= (𝑅0) +
𝑇
(

𝑁(𝑡) − �̄�
)2 d𝑡, (30)
∫0
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Fig. 11. Optimal adaptation of reproduction 𝑘∗(𝑡) over time (left-hand panel: 𝑅0 = 2.5 and 𝑅0 = 5, right-hand panel: 𝑅0 = 0.5 and 𝑅0 = 0.75).
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hich is minimized with respect to the same dynamical system.
Note that this is a change in the objective function and different

rom the robustness check in Section 4.2. Here we change the perfor-
ance measure of the problem (which is very specific to the decision
aker), whereas the relaxation corresponds to the level of abstraction

f the mathematical model.

.1. Analysis

As in Section 3 we rely on the Maximum Principle and add the term
(𝑁−�̄�)2 to the Hamiltonian. From the Hamiltonian maximization we
btain the necessary first order condition

=
𝜆𝑅𝑅
2𝐶

. (31)

ote that, formally, the condition reads equivalent to (14), but it is
ifferent, as the adjoint equation for 𝜆𝑁 differs corresponding to the
enalization term in the objective function, i.e.,

̇𝑁 = 2(𝑁 − �̄�). (32)

he rest of the adjoint equations and the transversality conditions are
nalogous to (15) and (16), respectively. The Euler equation of 𝑘(𝑡) also
emains formally the same as in the base model (see Eq. (20)), but due
o the penalizing term 𝜆𝑁 (𝑡) is not constant and depends on 𝑡, that is:

̇ = −
𝑅(𝑡)𝑃 (𝑡, 𝜇)

2𝐶
(

𝜆𝑁 (𝑡) + 𝜉(𝑡, 0)
)

, (33)

which basically means that the result of Lemma 1 holds in more general
form.

By simplification of the adjoint equations we obtain

𝜉𝑡 + 𝜉𝑎 =

⎧

⎪

⎨

⎪

⎩

−
(

�̄�𝑁 − 𝛥(𝑡) + 𝜉(𝑡, 0)
)

𝛿𝜇𝑅 for 𝑎 = 𝜇
(

�̄�𝑁 − 𝛥(𝑡)
)

𝛿𝜔 for 𝑎 = 𝜔
0 else

�̇�𝑅(𝑡) = −𝜆𝑅𝑘 −
(

�̄�𝑁 − 𝛥(𝑡) + 𝜉(𝑡, 0)
)

𝑃 (𝑡, 𝜇)

𝜆𝑁 (𝑡) = �̄�𝑁 − 𝛥(𝑡)

𝜂𝐵(𝑡) = �̄�𝑁 − 𝛥(𝑡) + 𝜉(𝑡, 0)

𝜂𝐷(𝑡) = −�̄�𝑁 + 𝛥(𝑡) (34)

where the new term 𝛥(𝑡) ∶= ∫ 𝑇
𝑡 2(𝑁(𝑡) − �̄�) d𝑡 denotes the (aggregated)

marginal deviation of 𝑁(𝑡).
By following the same steps as in Section 3 (without going into

detail) we get

𝜆𝑅(𝑡) = 𝜆𝑅(𝑇 )𝑒∫
𝑇
𝑡 𝑘(𝑠′) d𝑠′ + ∫

𝑇

𝑡
𝑒∫

𝑠′
𝑡 𝑘(𝑠′′) d𝑠′′ (�̄�𝑁 − 𝛥 + 𝜉(𝑠′, 0)

)

𝑃 (𝑠′, 𝜇) d𝑠′.

(35)

The complete decomposition of the generalized reproductive value
(as presented in Proposition 1 for the case of the basic model) can be
61

obtained as follows.
Proposition 3. The generalized reproductive value can be decomposed
into three regions, as illustrated in Fig. 1: cohorts that have already died
before 𝑇 (region 1), cohorts that are alive at 𝑇 but are older than the
reproductive age (region 2), and cohorts that are alive and younger than,
or exactly at, the reproductive age (region 3). For these cohorts 𝜉(𝑡, 0) can
be reduced to

𝑡 + 𝜔 < 𝑇 (region 1) ∶ 𝜉1(𝑡, 0) =
(

�̄�𝑁 − 𝛥
)

𝑅(𝑡 + 𝜇) −
(

�̄�𝑁 − 𝛥
)

+𝜉(𝑡 + 𝜇, 0)𝑅(𝑡 + 𝜇) (36a)
𝑡 + 𝜇 < 𝑇 ≤ 𝑡 + 𝜔 (region 2) ∶ 𝜉2(𝑡, 0) =

(

�̄�𝑁 − 𝛥
)

𝑅(𝑡 + 𝜇)

+ 𝜉(𝑡 + 𝜇, 0)𝑅(𝑡 + 𝜇) (36b)
𝑡 + 𝜇 = 𝑇 (region 2/3) ∶ 𝜉2∕3(𝑡, 0) =

(

�̄�𝑁 − 𝛥
)

𝑅(𝑇 ) + 𝜉(𝑇 , 0)𝑅(𝑇 )

−2𝐺 (𝑀(𝑇 ) − 1) 𝜔
𝜇

1
𝑁(𝑇 )

+ 𝛥(𝑇 ) (36c)

𝑡 + 𝜇 > 𝑇 (region 3) ∶ 𝜉3(𝑡, 0) = −2𝐺 (𝑀(𝑇 ) − 1) 𝜔
𝜇

1
𝑁(𝑇 )

+𝛥(𝑡 + 𝜇). (36d)

Proof. The Proposition can be proven by following the same steps as
in the proof of Proposition 1. ■

The decomposition of the generalized reproductive value has been
used in the basic model to show how the optimal efforts adapt to the
NRR if the mortality is rectangular at 𝑇 . This is formulated in Propo-
sition 2 for the basic model. Following the steps of the proof reveals
that 𝜉2(𝑡, 0) and 𝜉3(𝑡, 0) does not exclude an opposite sign even under
he assumption of rectangular mortality rate due to the additional
luctuation factor ∫ 𝑡+2𝜇

𝑡+𝜇 2(𝑁(𝑡) − �̄�) d𝑡.
As a result, an extension of Proposition 2 cannot be shown, which

eans that adaptation waves are possible within the planning horizon
𝑘(𝑡) ≶ 0 for 𝑡 ∈ [0, 𝑇 ]).

.2. Numerical example and discussion

For an illustration of the optimal paths we use the same four
cenarios as for the benchmark case (very young, young, old, very old
opulation) together with the same reproduction age 𝜇 = 30. The cost

parameters and the time horizon remain the same. For the intended
population size �̄� (which is a new parameter), we choose the initial
size of 100.

Figs. 11–14 are similarly structured as Figs. 2–5 and differ only in
the number of scenarios plotted in one figure. While it was straightfor-
ward to distinguish all four scenarios in the benchmark case, now the
lines are crossing multiple times, which makes it difficult to observe
and explain the main intuition. Therefore, the left-hand panels of
Figs. 11–14 plot the case of a very young and young population, while
the very old and old can be found in the right-hand one.

Fig. 11 shows the optimal efforts to adapt the NRR for young popu-
lations in the left-hand panel and for old ones in the right-hand panel.
Analogous to the results of the base model (12) (see Fig. 2) efforts start
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Fig. 12. Reproduction 𝑅∗(𝑡) over time (left-hand panel: 𝑅0 = 2.5 and 𝑅0 = 5, right-hand panel: 𝑅0 = 0.5 and 𝑅0 = 0.75).
Fig. 13. Optimal population momentum 𝑀∗(𝑡) over time (left-hand panel: 𝑅0 = 2.5 and 𝑅0 = 5, right-hand panel: 𝑅0 = 0.5 and 𝑅0 = 0.75).
Fig. 14. Total population 𝑁∗(𝑡) over time (left-hand panel: 𝑅0 = 2.5 and 𝑅0 = 5, right-hand panel: 𝑅0 = 0.5 and 𝑅0 = 0.75).
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s negative/positive for the young/old populations. However, now the
enalization of fluctuations implies that the efforts can change the sign
potentially) multiple times before they eventually approach zero at 𝑇 .
his behavior, which could be excluded analytically (Proposition 2 and
orollary 1 within the base model), clearly corresponds to the aim of
eeping the total size of the population at �̄� (i.e., the penalization of
he deviation). This means that the decision maker has to counteract a
igh/low initial NRR immediately and vigorously (i.e., more vigorously
han without the penalization) right after the beginning of the planning
eriod. These efforts, however, oppose the end-state constraint 𝑅(𝑇 ) =
and the aim of ending at a population momentum close to 1. The

ecision maker must thus turn around after the initial efforts. This
nterplay may take place more than once, but is more pronounced if
he initial deviation of the NRR is higher, as can be seen in the right-
and panel of Fig. 11 (old populations). In the left-hand panel this can
nly be observed for 𝑅0 = 2.5. For 𝑅0 = 5 the planning period is just
oo short for the decision maker to bounce back.

The optimal path of the NRR is plotted in Fig. 12 follows the
daptation efforts and shows the oscillating behavior before the state
onstraint at the end is fulfilled 𝑅(𝑇 ) = 1. Also in case of the NRR
62

a

he waves are damped down over time. Due to the multiplicative
nteraction in the dynamic of 𝑅(𝑡) (see (8)) the trajectories in Fig. 12
re more smooth than in Fig. 11, in which the small dents are due to
he same reason as discussed in Remark 1.

Fig. 13 plots the optimal trajectory of the population momentum
ver time. The shape broadly follows that of Figs. 11 and 12. However,
n contrast to the results of the base model a higher/lesser initial
omentum does not imply a higher/fewer deviation from 1 at 𝑇 (see
iscussion of Fig. 4), as the population momentum in this case already
rosses 1 (depending on 𝑇 , 𝑅0 and 𝜇 maybe several times) before 𝑇 .

Fig. 14 finally shows the size of the total population over time. The
eft-hand panel (young population) supports the statement (made in the
iscussion of Fig. 12) that the time horizon is too short for the decision
aker to sufficiently satisfy all three opposing objectives (which are:

nd-state constraint, driving the population momentum close to 1, and
eeping the population size near �̄�). This is obvious from the fact
hat the trajectories in the left-hand panel show a small population
t 𝑇 . Due to the very high initial NRR, the decision maker had to go
n very vigorously to break the rapid population explosion, implying
lso a sharp decrease of 𝑅(𝑡). The rest of the further planning period
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Table 2
Descriptive vs normative approach and analytical vs numerical solutions.

Mathematical approach Results

Analytical Numerical

Descriptive: stable population theory, component method of
pseudostable populations population projections

Normative: 𝑘∗(𝑡), 𝑁∗(𝑡) 𝑃 ∗(𝑡, 𝑎)

was used to meet 𝑅(𝑇 ) = 1 and to approach 1 with the population
momentum. Due to the time lag in the population increase 𝑁(𝑡) there

as not enough time to catch up again with �̄� . The right-hand panel
old population) shows that the decision maker is more flexible in the
ense that the direction of the adaptation of the NRR can be changed
ore than once. As a result the total population at the end is closer to
̄ than in the left-hand panel.

The numerical solution of the extended model illustrates that many
f the conclusions of the basic model do not carry over. In particular,
he core results of Proposition 2 and Corollary 1, which cannot be
roven here, are not only analytically intractable, but indeed wrong if
luctuations in the population are punished. It turns out to be typical for
aves in the adaptation efforts, NRR, the population momentum, and

he total population to be optimal if the time horizon is large enough
o catch up with the end constraint reasonably before 𝑇 .

. Conclusions and extensions

Demography is a descriptive/explanatory science. Moreover, nor-
ative aspects are central in population policy, and mathematical

ptimization models play hardly any role in population dynamics. The
urpose of the present research is to illustrate how intertemporal opti-
ization methods can be applied to deal with an important population
roblem, namely that of the demographic momentum.

Before we summarize the results that we obtained in our analysis,
et us refer to Table 2 where the dichotomies between a descrip-
ive/normative approach on the one hand and an analytical/numerical
pproach on the other are exemplified.

As time and age are the core variables of population dynamics,
istributed parameter control is an appropriate tool for analyzing prob-
ems pertinent to these. For a short introduction to the optimization of
ge-structured models compare Grass et al. (2008) (chapter 8.3).

Let us stress the following trade-off that arises in that context. The
esults we obtain by a suitable extension of Pontryagin’s Maximum
rinciple are generally true (i.e., for all pertinent data sets), as they
re derived in an analytical way. But one has to pay a price for the
enerality of these results, namely the simplification of the models
onsidered. To mention just two of them: in our analysis it is assumed
hat everybody survives to a fixed age 𝜔 and every girl in the one-sex
odel is born at a unique age of her mother, 𝜇.

The main insights from our analysis are as follows. By putting costly
fforts into adapting the NRR, the decision maker aims to approach the
opulation momentum as close to 1 as possible under the constraint
hat the NRR equals 1 at 𝑇 (see Sections 2 and 4). For this model
he analytical analysis proves a monotonic negative concave/positive
onvex optimal path of the adaptation efforts for negative/positive for
n old/young initial population (starting from a stable population in the
umerical examples). The curvature cannot be shown for the optimal
ath of the population momentum.

If fluctuations in the total number of the population are addi-
ionally penalized (as analyzed in Section 5), the monotony and the
urvature cannot be shown analytically nor obtained numerically. The
btained solutions show oscillating behavior for the optimal adaptation
ffort paths, which carries over to the NRR, total population, and
he population momentum. The reasons for this can be found in the
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ncrease/decrease of the population for an initial NRR higher/lower 𝑢
han 1. To counteract this development (avoiding penalization costs),
he decision maker chooses higher adaptation efforts (compared to the
ase scenario of Sections 2 and 4), which implies a too strong effect
ollowed by opposite efforts, and so forth.

Both models (base model and extension) propose the derivation of
n efficient adaptation rate of fertility in an optimal way for arbitrary
nitial NRRs as the value added of a population dynamic optimization
roblem presented in this paper.

There are several possible extensions. First, besides including the
luctuations of the total population 𝑁(𝑡), penalization of deviations of
he age–structure (see (10f)) from a desired one (e.g., the stationary
opulation), should also be considered. In another extension one could
elax the symmetry of the (quadratic) penalization of the deviations
oth in the salvage value as well as in the fluctuations term (𝑁(𝑡)−�̄�)2.
further task would be to create a model without rectangular mortality

nd/or a fixed birth age.
A possible extension of the framework proposed in the paper is the

pplication to a pest or endangered species. In an ecological context in
oth cases it makes sense to consider the control of the fertility sched-
le, which (because of the time-lagged effect of fertility) affects the
opulation dynamics differently than conventional methods (e.g., use
f poisons, releasing animals from breeding programs). See, for in-
tance, Seal (1991) for a general discussion. Dell’Omo and Palmery
2002) who discuss the concept of fertility control in vertebrate pest
pecies in comparison to conventional use of poisons, and Ramsey
2005) who formulates a mathematical model to study the population
ynamics of brushtail possums subject to fertility control by using
mmunocontraceptive vaccines, are just two further examples of the
ense literature in this context. Interestingly Bartholow (2007) projects
he costs for several contraceptive treatments to manage wild horse
opulations, which is an important measure in the objective function
i.e., the cost of the control variable) of our proposed model. Certainly
he dynamics for non-human species is often modeled in a simplified
ay. However, the application of our model requires an age-structured
opulation with an endogenous fertility process. Moreover, for several
pecies an ‘isolated’ model that does not consider other species and
o which a predator–prey relation is natural, is not realistic. In this
ase, our modeling framework has to be extended by an age-structured
redator–prey dynamics (see e.g., Gazis et al., 1973 for an early con-
ribution or Wrzaczek et al., 2010 for a continuous-time formulation)
hich is an interesting task for future research.
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ppendix. Extension of the maximum principle

In this section we extend the Maximum Principle for age-structured
ptimal control problems (see Feichtinger et al., 2003) to ‘standard’
tate variables that only depend on time (and not on age). In the follow-
ng general model 𝑢(𝑡, 𝑎) ∈ 𝑈 and 𝑣(𝑡) ∈ 𝑉 are control variables; 𝑦(𝑡, 𝑎)
nd 𝑥(𝑡) state variables (with corresponding initial condition for 𝑥,
nitial density, and boundary condition for 𝑦(𝑡, 𝑎)); and 𝑄(𝑡) aggregated
tate variables. Time and age are denoted by 𝑡 and 𝑎, respectively.

In the following we present the sketch of a proof for the following
ptimal control model

max
𝑇 𝜔

𝐿 (𝑦(𝑡, 𝑎), 𝑥(𝑡), 𝑄(𝑡), 𝑢(𝑡, 𝑎), 𝑣(𝑡), 𝑡, 𝑎) d𝑎 d𝑡

(𝑡,𝑎)∈𝑈,𝑣(𝑡)∈𝑉 ∫0 ∫0
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+ ∫

𝜔

0
𝑆 (𝑥(𝑇 ), 𝑦(𝑇 , 𝑎), 𝑇 , 𝑎) d𝑎 (37a)

s.t. 𝑦𝑡(𝑡, 𝑎) + 𝑦𝑎(𝑡, 𝑎) = 𝑓 (𝑦(𝑡, 𝑎), 𝑥(𝑡), 𝑄(𝑡), 𝑢(𝑡, 𝑎), 𝑣(𝑡), 𝑡, 𝑎) (37b)
�̇�(𝑡) = 𝑔(𝑥(𝑡), 𝑄(𝑡), 𝑣(𝑡), 𝑡) (37c)

𝑄(𝑡) = ∫

𝜔

0
ℎ (𝑦(𝑡, 𝑎), 𝑥(𝑡), 𝑄(𝑡), 𝑢(𝑡, 𝑎), 𝑣(𝑡), 𝑡, 𝑎) d𝑎 (37d)

𝑦(0, 𝑎) = 𝑦0(𝑎) (37e)
𝑦(𝑡, 0) = 𝑦𝑏(𝑥(𝑡), 𝑄(𝑡), 𝑣(𝑡), 𝑡) (37f)
𝑥(0) = 𝑥0, (37g)

with objective functional 𝐿(⋅), an (age-structured) salvage value func-
tion 𝑆(⋅), system dynamics 𝑓 (⋅) and 𝑔(⋅), and aggregation density ℎ(⋅).
For details on the regularity conditions of the involved functions we
refer to Feichtinger et al. (2003).

For a sketch of the proof of an appropriate Maximum Principle we
apply the needle variations principle to the Lagrangian of the above
problem (37). The Lagrangian reads (for notational reasons we suppress
the functional dependencies of 𝐿, 𝑓 , 𝑔, ℎ on state and control variables)

(𝑥, 𝑦,𝑄, 𝑢, 𝑣, 𝜆, 𝜉, 𝜂) = ∫

𝑇

0

{

∫

𝜔

0

[

𝐿 + 𝜉(𝑡, 𝑎)
(

𝑓 − 𝑦𝑡 − 𝑦𝑎
)

]

d𝑎

+ 𝜆(𝑡) (𝑔 − �̇�) + 𝜂(𝑡)
(

∫

𝜔

0
ℎ d𝑎 −𝑄

)}

d𝑡

+ ∫

𝜔

0
𝑆 (𝑥(𝑇 ), 𝑦(𝑇 , 𝑎), 𝑇 , 𝑎) d𝑎. (38)

Integration by parts 𝜆(𝑡)�̇�(𝑡) and 𝜉(𝑡, 𝑎)
(

𝑦𝑡(𝑡, 𝑎) + 𝑦𝑎(𝑡, 𝑎)
)

implies

∫

𝑇

0
𝜆(𝑡)�̇�(𝑡) d𝑡 = 𝜆(𝑇 )𝑥(𝑇 ) − 𝜆(0)𝑥(0) − ∫

𝑇

0
�̇�(𝑡)𝑥(𝑡) d𝑡, (39a)

∫

𝜔

0
𝜉(𝑡 + 𝑎, 𝑎)

(

𝑦𝑡(𝑡 + 𝑎, 𝑎) + 𝑦𝑎(𝑡 + 𝑎, 𝑎)
)

d𝑎

= 𝜉(𝑡 + 𝜔,𝜔)𝑦(𝑡 + 𝜔,𝜔) − 𝜉(𝑡, 0)𝑦(𝑡, 0)

− ∫

𝜔

0

(

𝜉𝑡(𝑡 + 𝑎, 𝑎) + 𝜉𝑎(𝑡 + 𝑎, 𝑎)
)

𝑦(𝑡 + 𝑎, 𝑎) d𝑎, (39b)

∫

𝜔

𝑎0
𝜉(𝑎 − 𝑎0, 𝑎)

(

𝑦𝑡(𝑎 − 𝑎0, 𝑎) + 𝑦𝑎(𝑎 − 𝑎0, 𝑎)
)

d𝑎

= 𝜉(𝜔 − 𝑎0, 𝜔)𝑦(𝜔 − 𝑎0, 𝜔) − 𝜉(0, 𝑎0)𝑦(0, 𝑎0)

− ∫

𝜔

𝑎0

(

𝜉𝑡(𝑎 − 𝑎0, 𝑎) + 𝜉𝑎(𝑎 − 𝑎0, 𝑎)
)

𝑦(𝑎 − 𝑎0, 𝑎) d𝑎, (39c)

∫

𝑇−𝑡

0
𝜉(𝑡 + 𝑎, 𝑎)

(

𝑦𝑡(𝑡 + 𝑎, 𝑎) + 𝑦𝑎(𝑡 + 𝑎, 𝑎)
)

d𝑎

= 𝜉(𝑇 , 𝑇 − 𝑡)𝑦(𝑇 , 𝑇 − 𝑡) − 𝜉(𝑡, 0)𝑦(𝑡, 0)

− ∫

𝑇−𝑡

0

(

𝜉𝑡(𝑡 + 𝑎, 𝑎) + 𝜉𝑎(𝑡 + 𝑎, 𝑎)
)

𝑦(𝑡 + 𝑎, 𝑎) d𝑎, (39d)

where the integration of the population related expression is distin-
guished into three cases. (39b) corresponds to cohorts that are born
and die within the planning period (i.e., for all 𝑡 ∈ [0, 𝑇 − 𝜔]), (39c)
corresponds to cohorts that have already been born before 𝑡 = 0 (initial
population density, that is, for all 𝑎0 ∈ [0, 𝜔] and therefore 𝑡 = −𝑎0 +𝑎),
and (39d) to cohorts that are born within the planning period but have
not died at 𝑇 (i.e., for all 𝑡 ∈ [𝑇 − 𝜔, 𝑇 ]). Plugging into the Lagrangian
gives the following expression,

(⋅) = ∫

𝑇

0

{

∫

𝜔

0

[

𝐿 + 𝜉(𝑡, 𝑎)𝑓
]

d𝑎 + 𝜆(𝑡)𝑔 + 𝜂(𝑡)
(

∫

𝜔

0
ℎ d𝑎 −𝑄

)}

d𝑡

−
(

𝜆(𝑇 )𝑥(𝑇 ) − 𝜆(0)𝑥(0) − ∫

𝑇

0
�̇�(𝑡)𝑥(𝑡) d𝑡

)

− ∫

𝑇−𝜔

0

(

𝜉(𝑡 + 𝜔,𝜔)𝑦(𝑡 + 𝜔,𝜔) − 𝜉(𝑡, 0)𝑦(𝑡, 0)

− ∫

𝜔

0

(

𝜉𝑡(𝑡 + 𝑎, 𝑎) + 𝜉𝑎(𝑡 + 𝑎, 𝑎)
)

𝑦(𝑡 + 𝑎, 𝑎) d𝑎
)

d𝑡

− ∫

𝜔
(

𝜉(𝜔 − 𝑎0, 𝜔)𝑦(𝜔 − 𝑎0, 𝜔) − 𝜉(0, 𝑎0)𝑦(0, 𝑎0)
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0 i
−∫

𝜔

𝑎0

(

𝜉𝑡(𝑎 − 𝑎0, 𝑎) + 𝜉𝑎(𝑎 − 𝑎0, 𝑎)
)

𝑦(𝑎 − 𝑎0, 𝑎) d𝑎

)

d𝑎0

− ∫

𝑇

𝑇−𝜔

(

𝜉(𝑇 , 𝑇 − 𝑡)𝑦(𝑇 , 𝑇 − 𝑡) − 𝜉(𝑡, 0)𝑦(𝑡, 0)

− ∫

𝑇−𝑡

0

(

𝜉𝑡(𝑡 + 𝑎, 𝑎) + 𝜉𝑎(𝑡 + 𝑎, 𝑎)
)

𝑦(𝑡 + 𝑎, 𝑎) d𝑎
)

d𝑡

+ ∫

𝜔

0
𝑆 (𝑥(𝑇 ), 𝑦(𝑇 , 𝑎), 𝑇 , 𝑎) d𝑎. (40)

Defining the Hamiltonian as

(⋅) = 𝐿 + 𝜉(𝑡, 𝑎)𝑓 + 1
𝜔
𝜆(𝑡)𝑔 + 𝜂(𝑡)ℎ (41)

nd plugging in (40) we arrive at

(⋅) = ∫

𝑇

0 ∫

𝜔

0
 d𝑎 d𝑡 − ∫

𝑇

0
𝜂(𝑡)𝑄 d𝑡

−
(

𝜆(𝑇 )𝑥(𝑇 ) − 𝜆(𝑡0)𝑥(𝑡0) − ∫

𝑇

0
�̇�(𝑡)𝑥(𝑡) d𝑡

)

− ∫

𝑇−𝜔

0

(

𝜉(𝑡 + 𝜔,𝜔)𝑦(𝑡 + 𝜔,𝜔) − 𝜉(𝑡, 0)𝑦(𝑡, 0)

− ∫

𝜔

0

(

𝜉𝑡(𝑡 + 𝑎, 𝑎) + 𝜉𝑎(𝑡 + 𝑎, 𝑎)
)

𝑦(𝑡, 𝑎) d𝑎
)

d𝑡

− ∫

𝜔

0

(

𝜉(𝜔 − 𝑎0, 𝜔)𝑦(𝜔 − 𝑎0, 𝜔) − 𝜉(0, 𝑎0)𝑦(0, 𝑎0)

− ∫

𝜔

𝑎0

(

𝜉𝑡(𝑎 − 𝑎0, 𝑎) + 𝜉𝑎(𝑎 − 𝑎0, 𝑎)
)

𝑦(𝑎 − 𝑎0, 𝑎) d𝑎

)

d𝑎0

− ∫

𝑇

𝑇−𝜔

(

𝜉(𝑇 , 𝑇 − 𝑡)𝑦(𝑇 , 𝑇 − 𝑡) − 𝜉(𝑡, 0)𝑦(𝑡, 0)

− ∫

𝑇−𝑡

0

(

𝜉𝑡(𝑡 + 𝑎, 𝑎) + 𝜉𝑎(𝑡 + 𝑎, 𝑎)
)

𝑦(𝑡 + 𝑎, 𝑎) d𝑎
)

d𝑡

+ ∫

𝜔

0
𝑆 (𝑥(𝑇 ), 𝑦(𝑇 , 𝑎), 𝑇 , 𝑎) d𝑎. (42)

For deriving the first variation we consider needle variations9

(see Alekseev et al., 1987) of control and state variables (taking the
limit of 𝜖 from the right), that is

𝑥(𝑡) → 𝑥(𝑡) + 𝜖𝛿𝑥(𝑡), (43a)
𝑣(𝑡) → 𝑣(𝑡) + 𝜖𝛿𝑣(𝑡), (43b)

𝑦(𝑡, 𝑎) → 𝑦(𝑡, 𝑎) + 𝜖𝛿𝑦(𝑡, 𝑎), (43c)
𝑢(𝑡, 𝑎) → 𝑢(𝑡, 𝑎) + 𝜖𝛿𝑢(𝑡, 𝑎), (43d)
𝑄(𝑡) → 𝑄(𝑡) + 𝜖𝛿𝑄(𝑡), (43e)

which gives

d
d𝜖

(⋅)||
|𝜖=0+

= ∫

𝑇

0 ∫

𝜔

0

[

𝑢𝛿𝑢 +𝑣𝛿𝑣 +𝑥𝛿𝑥 +𝑦𝛿𝑦 +𝑄𝛿𝑄
]

d𝑎 d𝑡

− ∫

𝑇

0
𝜂(𝑡)𝛿𝑄 d𝑡

− 𝜆(𝑇 )𝛿𝑥(𝑇 ) + ∫

𝑇

0
�̇�(𝑡)𝛿𝑥(𝑡) d𝑡

− ∫

𝑇−𝜔

0

(

𝜉(𝑡 + 𝜔,𝜔)𝛿𝑦(𝑡 + 𝜔,𝜔)

− 𝜉(𝑡, 0)
(

𝑦𝑏𝑥(𝑡, 0)𝛿𝑥 + 𝑦𝑏𝑄(𝑡, 0)𝛿𝑄 + 𝑦𝑏𝑣(𝑡, 0)𝛿𝑣
)

−∫

𝜔

0

(

𝜉𝑡(𝑡 + 𝑎, 𝑎) + 𝜉𝑎(𝑡 + 𝑎, 𝑎)
)

𝛿𝑦(𝑡, 𝑎) d𝑎
)

d𝑡

− ∫

𝜔

0

(

𝜉(𝜔 − 𝑎0, 𝜔)𝛿𝑦(𝜔 − 𝑎0, 𝜔)

9 In this context, 𝛿 denotes a variation of a curve such that the varied curve
s of the same type.
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Table 3
Correspondence of the optimal momentum model (12) with the general model (37).

Optimal momentum model General model

Control variables 𝑘(𝑡) 𝑣(𝑡)
– 𝑢(𝑡, 𝑎)

State variables 𝑃 (𝑡, 𝑎) 𝑦(𝑡, 𝑎)
𝑅(𝑡), 𝑁(𝑡) 𝑥(𝑡)

Aggregated variables 𝐵(𝑡), 𝑁(𝑡) 𝑄(𝑡)

Salvage value 𝐺 (𝑀(𝑇 ) − 1)2 ∫ 𝜔
0 𝑆 (𝑥(𝑇 ), 𝑦(𝑇 , 𝑎), 𝑎, 𝑇 ) d𝑎

− ∫

𝜔

𝑎0

(

𝜉𝑡(𝑎 − 𝑎0, 𝑎) + 𝜉𝑎(𝑎 − 𝑎0, 𝑎)
)

𝛿𝑦(𝑎 − 𝑎0, 𝑎) d𝑎

)

d𝑎0

− ∫

𝑇

𝑇−𝜔

(

𝜉(𝑇 , 𝑇 − 𝑡)𝛿𝑦(𝑇 , 𝑇 − 𝑡)

− 𝜉(𝑡, 0)
(

𝑦𝑏𝑥(𝑡, 0)𝛿𝑥 + 𝑦𝑏𝑄(𝑡, 0)𝛿𝑄 + 𝑦𝑏𝑣(𝑡, 0)𝛿𝑣
)

−∫

𝑇−𝑡

0

(

𝜉𝑡(𝑡 + 𝑎, 𝑎) + 𝜉𝑎(𝑡 + 𝑎, 𝑎)
)

𝛿𝑦(𝑡 + 𝑎, 𝑎) d𝑎
)

d𝑡

+ ∫

𝜔

0

[

𝑆𝑥 (⋅) 𝛿𝑥(𝑇 ) + 𝑆𝑦 (⋅) 𝛿𝑦(𝑇 , 𝑎)
]

d𝑎. (44)

The condition d
d𝜖(⋅)

|

|

|𝜖=0+
= 0 is necessary for optimality of the prob-

em. This implies

=
[

𝑢
]

𝛿𝑢(𝑡), (45a)

=
[

∫

𝜔

0
𝑣 d𝑎 + 𝜉(𝑡, 0)𝑦𝑏𝑣(𝑡, 0)

]

𝛿𝑣(𝑡), (45b)

=
[

∫

𝜔

0
𝑥 d𝑎 + �̇�(𝑡) + 𝜉(𝑡, 0)𝑦𝑏𝑥(𝑡, 0)

]

𝛿𝑥(𝑡), (45c)

0 =
[

𝑦 +
(

𝜉𝑡(𝑡, 𝑎) + 𝜉𝑎(𝑡, 𝑎)
)]

𝛿𝑦(𝑡, 𝑎), (45d)

0 =
[

∫

𝜔

0
𝑄 d𝑎 − 𝜂(𝑡) + 𝜉(𝑡, 0)𝑦𝑏𝑄(𝑡, 0)

]

𝛿𝑄(𝑡), (45e)

0 =
[

−𝜆(𝑇 ) + ∫

𝜔

0
𝑆𝑥 d𝑎

]

𝛿𝑥(𝑇 ), (45f)

0 = [−𝜉(𝑡, 𝜔)] 𝛿𝑦(𝑡, 𝑎), (45g)
0 =

[

−𝜉(𝑇 , 𝑎) + 𝑆𝑦
]

𝛿𝑦(𝑇 , 𝑎), (45h)

which together form a suitable Maximum Principle for problem (37).
In particular, (45a)–(45b) corresponds to the Hamiltonian maximizing
condition, (45c)–(45e) to the adjoint equations, and (45f)–(45h) to the
transversality conditions.

Table 3 summarizes how the optimal momentum model (12) fits in
the general model (37).
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