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A B S T R A C T   

Public perception of emerging climate technologies, such as greenhouse gas removal (GGR) and solar radiation 
management (SRM), will strongly influence their future development and deployment. Studying perceptions of 
these technologies with traditional survey methods is challenging, because they are largely unknown to the 
public. Social media data provides a complementary line of evidence by allowing for retrospective analysis of 
how individuals share their unsolicited opinions. Our large-scale, comparative study of 1.5 million tweets covers 
16 GGR and SRM technologies and uses state-of-the-art deep learning models to show how attention, and ex
pressions of sentiment and emotion developed between 2006 and 2021. We find that in recent years, attention 
has shifted from general geoengineering themes to specific GGR methods. On the other hand, there is little 
attention to specific SRM technologies and they often coincide with conspiracy narratives. Sentiments and 
emotions in GGR tweets tend to be more positive, particularly for methods perceived to be natural, but are more 
negative when framed in the geoengineering context.   

1. Introduction 

Geoengineering can be defined as the large-scale, intentional inter
vention into the climate system to counteract anthropogenic climate 
change (Keith, 2000; The Royal Society, 2009). In this context, two sets 
of technologies and methods have been discussed: solar radiation 
management (SRM) and greenhouse gas removal (GGR). While GGR 
technologies address the cause of climate change by removing green
house gases from the atmosphere (Minx et al., 2018), SRM methods aim 
to reduce global warming and climate impacts by reflecting some of the 
sunlight’s energy away from the earth (National Academies of Sciences, 
2021). While some GGR methods such as afforestation are widely 

practiced, most GGR and SRM technologies are still at the conceptual 
R&D stage or in early demonstration and deployment stages. 

Both sets of methods have been discussed, at times controversially, 
within both science and policy circles (Schellnhuber, 2011; Anderson 
and Peters, 2016; Keith, 2021). Assessments highlight fundamental 
differences in the risks associated with planetary scale deployments: The 
sixth assessment report by IPCC Working Group III emphasizes that 
limiting global warming to well below 2◦C requires large-scale GGR 
deployment in addition to ambitious mitigation of greenhouse gas 
emissions and that net-zero commitments by countries imply some level 
of GGR (IPCC, 2022). As climate impacts will surge in the future, SRM 
will be increasingly discussed as a solution, with huge challenges for 
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international governance (Aldy et al., 2021; Abatayo et al., 2020; 
Emmerling and Tavoni, 2018). 

Even though discussions about GGR and SRM have so far been driven 
by scientists and policymakers, it is crucial to engage with the public 
(Buck, 2016; Bellamy, 2018; Carr et al., 2013). Understanding public 
attitudes and concerns about emerging SRM and GGR technologies as 
well as engaging citizens in deliberations about their deployment at 
scale can help prevent or mitigate potential societal conflict (Colvin 
et al., 2020; Forster et al., 2020). How technology adopters and the 
wider public perceive those technologies will influence the prospects for 
researching, developing and scaling them up (Nemet et al., 2018; Cox 
et al., 2020). For example, past experience has shown that even small- 
scale scientific projects have been canceled due to strong public oppo
sition, possibly caused by inadequate communication by and misinfor
mation about the projects. At the same time, from an ethical and justice- 
relevant perspective, understanding public perceptions on integrating a 
broader range of individuals and perspectives, if done well, can support 
responsible innovation efforts of these new and emerging technologies 
(Bellamy, 2018; Low and Buck, 2020). 

Surveys have found that the general population knows very little 
about GGR technologies (Cox et al., 2020; Pianta et al., 2021; Pidgeon 
and Spence, 2017; Sweet et al., 2021; Whitmarsh et al., 2019) and even 
less about SRM (Mercer et al., 2011). Perceptions of GGR and SRM 
technologies range widely, from support to entrenched opposition as 
they are perceived to threaten near-term climate action, have harmful 
side effects, or can even be seen as evidence of global conspiracies. A 
richer understanding of how different technologies are perceived 
emotionally is important, because emotions and worldviews play a key 
role in the perception of technologies and for climate policy support 
(Martiskainen and Sovacool, 2021; Duggan et al., 2021; Wang et al., 
2018; Visschers et al., 2017). Furthermore, worldviews may lead to the 
rejection of scientific insights and recommendations (Lewandowsky 
et al., 2013; Smith and Leiserowitz, 2014), making it difficult to culti
vate an informed public deliberation about the application of SRM and 
GGR technologies and methods as well as the kinds of risk, benefits, 
challenges, and opportunities associated with them (Sovacool, 2021). 

Revealing public perceptions of new and emerging technologies 
using methods such as surveys, experiments or deliberative approaches 
can be challenging. The lack of familiarity of respondents with these 
technologies can result in framing effects and elicited perceptions being 
malleable and readily influenced by the questionnaire (Whitmarsh et al., 
2019; Raimi, 2021; Lenzi, 2019). Moreover, comparative studies are 
usually restricted to three or four GGR or SRM methods and often to one 
or few countries and points in time (Lewandowsky et al., 2013; Spence 
et al., 2021; Carlisle et al., 2020; Bellamy et al., 2019; Jobin and Siegrist, 
2020; Cox et al., 2020). Surveys and qualitative studies are able to 
provide information on representative samples of a population or details 
about psychological mechanisms. However, they are often limited to 
only studying a small number of technologies, thereby making 
comparative assessments across technologies difficult. 

In contrast, social media data can help to understand the commu
nicative and temporal aspects of a potentially large number of new and 
emerging technologies (Cortis and Davis, 2021). Public conversations on 
emerging technologies on social media provide an opportunity to 
investigate how people engage with these topics without being asked. 
Contrary to elicited opinion polls, social media analyses can capture 
various aspects that users associate with those technologies without 
being influenced by the way certain questions are posed. In the context 
of geoengineering, this is a key advantage because studies have high
lighted the importance of framing and with that introducing a bias 
especially for little-known technologies (Pidgeon and Spence, 2017; 
Whitmarsh et al., 2019; Bäckstrand et al., 2011; Wolske et al., 2019). 
This data thus allows identifying the status and evolution of general 
trends in attitudes and emotions towards them. At the same time, user 
interaction is influenced by algorithmic ranking mechanisms that 
amplify users’ exposure to specific content (Huszár et al., 2022; Sen 

et al., 2021). It must also be recognised that users are not representative 
of the general population (Mellon and Prosser, 2017; Barberá and Riv
ero, 2015; Wojcik et al., 2019). User activity on the platform is strongly 
dominated by few very active users, who are often professional com
municators from politics, business, journalism and science. These may 
include stakeholder groups relevant for developing and deploying 
emerging technologies in the future. 

Social media analyses can therefore complement the survey litera
ture and inform policy makers and technology proponents regarding 
how to engage in debates and how to resolve potential conflicts early on. 
Social media and in particular Twitter1 data has been used in the liter
ature to study attention, sentiments and emotions on climate change in 
general (Cody et al., 2015; Kirilenko et al., 2015; Moore et al., 2019; 
Falkenberg et al., 2022; Mouronte-López and Subirán, 2023), in times of 
the Covid-19 pandemic (Smirnov and Hsieh, 2022; Sisco et al., 2023), as 
well as related to energy technologies (Loureiro and Alló, 2020). So far, 
there are only two social media analyses on general and solar geo
engineering (Tingley and Wagner, 2017; Debnath et al., 2023), which 
find a high prevalence of misinformation and tweets spreading con
spiracy theories. However, none of them looks into specific geo
engineering technologies. 

In this paper, we present an analysis of 1.5 million tweets related to 
general geoengineering, GGR and SRM topics as well as a total of 16 
SRM and GGR technologies. We compile a dataset based on 78 indi
vidual keyword searches that cover the entire history of Twitter, starting 
in 2006. By comparing tweet counts, we quantify how attention to 
different SRM and GGR technologies has evolved over time. We apply 
state-of-the-art deep learning models based on BERTweet (Nguyen et al., 
2020) and other RoBERTa models (Liu et al., 2019) to identify topical 
clusters and measure sentiments and emotions. We validate classifiers 
against each other and use manual annotations to ensure the robustness 
of our results. This allows us to compare sentiments and emotions to
wards different technologies. Finally, we investigate how ubiquitous 
conspiracy theories are for different technologies. In summary, we map 
out trends in social media activity on geoengineering and show parallels 
as well as differences to findings from survey-based methods. 

2. Material and methods 

2.1. Twitter dataset 

The data gathering and processing for this paper was conducted 
closely following ethical recommendations for using semi-public social 
media data for empirical research (Williams et al., 2017) and adhering 
to Twitter’s Terms of Service. We develop a comprehensive keyword 
search and download tweets through the Twitter API v2, giving us access 
to the entire database of tweets back to 2006. In total, we search Twitter 
using 78 distinct sub-queries (see Supporting Information). Each sub- 
query contains a keyword or combination of keywords. We download 
tweets separately for each sub-query, excluding non-English tweets, 
retweets, and very recent tweets after December 31, 2021. 

We carefully check a random sample from each sub-query to make 
sure that it largely yields tweets that are relevant to the study, i.e. that 
talk about geoengineering, modifying the climate or removing carbon 
from the atmosphere. In an iterative process, we refine or exclude sub- 
queries to get higher shares of relevant tweets (at least 80%). If the 
proportion of irrelevant tweets is high (e.g. because an acronym is used 
differently or serves as a stock market ticker), we restrict the query by 
excluding tweets with certain unrelated keywords or requiring that 
more general keywords such as “climate”, “emission” or “CO2” are 
mentioned as well. If sub-queries did hardly yield any relevant results, 

1 At the time of revising this paper (Sept. 2023), Twitter has been renamed to 
X. However, we use the platform’s old name in the paper because this was its 
original name at the time of writing and data acquisition. 
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we removed them. This refinement of sub-queries allows us to reduce 
noise in our dataset. 

Sub-queries are organized into categories at two levels. At the top 
level, we group tweets into “Geoengineering” if they contain general 
geoengineering keywords, into “SRM” if they contain keywords related 
to solar radiation management in general or specific technologies for 
implementing SRM, “GGR” if they discuss greenhouse gas removal and 
related technologies and “CCS” if they talk about carbon capture and 
storage. CCS refers to technologies to capture carbon from exhaust gases 
of fossil combustion, which is why it is not a GGR technique. However, it 
is closely related to many GGR techniques like DAC(CS) and BECCS, 
often discussed alongside GGR in public debates, and sometimes even 
erroneously collated. For these reasons, we included it into our analysis. 
The second level contains categories for 5 distinct SRM and 11 GGR 
technologies as well as four categories for general mentions of geo
engineering, SRM, GGR, and CCS. Table 1 shows the list of technologies 
that we included as well as the total number of tweets retrieved for each 
technology. As tweets can contain keywords from several categories, the 
sums over subcategories may be larger than the counts at the top level or 
the total. 

We collected the data in April 2022. In total, the dataset contains 
1,452,184 unique tweets from 314,484 distinct users. Of those, 111,700 
tweets (or 7.7%) are retrieved by two or more of the sub-queries. All 
tweets got 1,917,720 retweets, 460,678 replies and 4,245,861 likes, i.e. 
on average 1.3 retweets, 0.3 replies and 2.9 likes per tweet. However, 
the distribution of retweets, replies and likes is highly skewed with the 
majority of tweets not receiving any reactions at all (i.e. the median is 
zero). The average number of retweets per tweet is more than twice as 
high as an estimate for all English-language tweets from the Twitter 
count API (0.6 retweets per tweet). 

2.2. Text analysis methods 

We augment the corpus-level analysis of our compiled dataset of 
tweets by applying pre-trained language models. First, we utilize them 
to create an overview of the topical distribution by embedding all 
tweets. Second, we classify the sentiments and emotions conveyed in 
tweets. 

To provide a high-level overview of the fine-grained thematic 
structure of all tweets in our corpus, we embed them into a high- 
dimensional vector space using BERTweet (Nguyen et al., 2020), 
which was pre-trained on 850 million English-language tweets posted 
between 2012 and 2020. For the purpose of visualization and interactive 

exploration, we reduce the dimensionality using tSNE (Van der Maaten 
and Hinton, 2008), which preserves the pairwise distances of vectors 
from the high-dimensional space in a two-dimensional projection. Given 
the size of our dataset, the projection was trained in batches. This two- 
dimensional layout enables us to quickly explore and compare entire 
clusters of tweets based on their prevalent terms and hashtags. 
Furthermore, we selectively color tweets based on our classification 
scheme and other meta-information. 

To analyze how users perceive the different aspects of geo
engineering, we classify all tweets using pre-trained transformer-based 
classifiers for sentiment. Sentiments are not to be confused with stances: 
Whereas stance reflects someone’s position towards something, the 
sentiment indicates whether a thought is expressed in a positive, neutral 
or negative way. However, anecdotal evidence based on the annotation 
of a random sample of tweets from our dataset suggests some correlation 
between the two. Given the large number of available models, we used 
the models which performed best on commonly used gold-standard 
datasets. For sentiment analysis, we used two models trained on the 
dataset shared for the SemEval 2017 Task 4 (Rosenthal et al., 2017) 
containing 50,000 annotated English-language tweets collected at the 
end of 2016. Annotations in this dataset are 40% positive and 16% 
negative sentiment, which could potentially lead to imbalances in the 
performance to detect both classes. 

Emotions differ from sentiments as they do not refer to the general 
tone of language but rather the presence of expressions associated with 
specific emotions. For example, a text can contain expressions of fear but 
can still have a positive sentiment. Whereas sentiment analysis focuses 
on the tone of a given text, emotion or affect analysis provides a more 
fine-grained assessment of indicators in the language of a text that point 
to certain emotions, such as anger, fear, sadness, or disgust. Emotion 
classification does not actually determine the emotional state of the 
author at the time of writing, but the emotionality of the used language. 

For our analysis, we compared four different emotion classifiers, of 
which three are pre-trained deep learning models and one is a dictionary 
approach. There are several taxonomies to define discrete emotions. The 
SemEval 2018 Task 1 dataset contains 10,000 annotated English tweets 
with 12 emotion classes (Mohammad et al., 2018), the EmoVent dataset 
contains 7,303 English tweets with 8 emotion classes (Plaza del Arco 
et al., 2020), and the GoEmotions dataset contains 58,000 annotated 
English reddit comments with 27 emotion classes (Demszky et al., 
2020). They all suggest their respective mapping to the taxonomy with 
seven emotion classes proposed by Ekman (1992) or group them into 
positive, negative, and ambiguous or neutral classes. Aside from deep- 

Table 1 
Overview of the classification scheme and composition of the dataset (tweet counts by technology type and average number of retweets, replies and likes per tweet).  

Top-level category Tweet count Technology category Tweet count Retweets per tweet Replies per tweet Likes per tweet 

Geoengineering 788,668 Geoengineering (general) 788,668 0.80 0.21 1.1 

SRM 50,644 SRM (general) 36,921 1.26 0.75 3.1   
Stratospheric aerosol injection 7,673 1.00 0.50 1.7   
Cloud brightening 4,166 0.65 0.24 1.4   
Surface albedo modification 1,624 0.61 0.39 1.4   
Cloud thinning 238 0.77 0.31 1.1   
Space shades 744 0.71 0.23 3.3 

GGR 458,960 GGR (general) 141,237 2.34 0.59 6.8   
Methane removal 3,548 0.80 0.33 1.9   
Ocean fertilization 8,541 0.49 0.14 0.7   
Ocean alkalinization 270 1.67 0.40 3.7   
Enhanced weathering 6,967 0.94 0.35 2.8   
Biochar 19,312 0.65 0.21 1.9   
Afforestation and reforestation 81,518 3.05 0.51 8.5   
Ecosystem restoration 19,808 4.62 0.56 13.1   
Soil carbon sequestration 91,946 1.42 0.27 3.4   
BECCS 20,600 1.49 0.46 3.0   
Blue carbon management 59,286 2.68 0.28 6.8   
Direct air capture 22,959 1.37 0.61 4.7 

CCS 182,083 CCS 182,083 1.47 0.40 3.3  
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learning models trained on these datasets, we also applied a conven
tional dictionary-based model using the NRC lexicon (Mohammad and 
Turney, 2013). After predicting the labels, we use the above-mentioned 
mapping to group emotions into positive (e.g. joy), negative (e.g. fear), 
neutral (no emotion detected or low model confidence) and thus make 
results comparable between different classifiers. In the results section, 
we focus on the findings from the classifier based on the SemEval dataset 
(Mohammad et al., 2018) given that this one had the highest overlap 
with our manual annotation (see Section 2.3). 

During initial exploration of our dataset, we discovered a large 
number of tweets containing conspiratorial views, such as the existence 
of chemtrails, chemwebs, or other secret programs that supposedly seek 
to control populations with the help of geoengineering. It is important to 
note that this does not include controversial statements, unconventional 
technology ideas, or fact-checking a tweet’s content, which is also pre
sent in our data set. The strong presence of conspiracy theories in geo
engineering debates on Twitter has already been described by Tingley 
and Wagner (2017) and Debnath et al. (2023). We recorded the presence 
of potential conspiracies as part of the annotation of a subset of 400 
tweets. Using majority voting, we found 35% of tweets to be potentially 
conspiracy related, with an average Cohen’s kappa score for inter-rater 
agreement of 0.60. 

We use this annotation to develop a filter based on boolean searches 
of prevalent keywords in these tweets (see Supporting Information). 
Applying the filter to the entire Twitter dataset identified 17% of tweets 
as conspiracy-related. We tested the filter with our annotated dataset 
and found a precision of 94% and a recall of 62%. Thus, the filter can 
only give a lower estimate of the actual number of conspiracy-related 
texts. 

2.3. Evaluation of sentiment and emotion classifiers 

To evaluate the performance of the pre-trained sentiment and 
emotion classifiers, we directly compared their results and also 
compared the predictions by classifiers to a manually annotated test set. 
Based on these comparisons, we chose one sentiment and one emotions 
classifier for the presentation of results in Section 3. 

We manually annotated 400 tweets from our dataset to estimate how 
well the pre-trained classification models, which were trained on 
different data, can adapt to the domain-specific terminology in our 
corpus and the potentially distinct phrasing not observed during 
training. Similar to the inter-rater agreements reported by the publica
tions on the data sets used to train our classifiers that range from 0.10 to 
0.38, depending on dataset and emotion class, our five annotators 
reached a Fleiss’ kappa score of 0.19 for emotions and 0.30 for senti
ments. In general, we annotated a larger fraction of our dataset with 
neutral emotion (63%) than those reported for the training datasets 
(around 40–50%). However, this corresponds to the predictions of the 
pre-trained classifiers on our dataset (63.2%). 

For each pre-trained classifier, we looked at the distributions of 
positive and negative sentiments and emotions (Fig. S6). We observe 
relatively consistent results across sentiment classifiers, both in the 
share of detected sentiments and their multi-class confusion matrix (see 
Fig. S2). The second sentiment model that we used (BERTweet trained 
with SemEval 2017 corpus) produced very similar results to the first one 
used for the main results of the paper (see Fig. S6). Shares do only differ 
by a few percentage points. However, sentiment classifier results differ 
from human annotation on subsets of the data. We coded 53% of the 
general geoengineering tweets as negative. 13% and 5% of the SRM and 
GGR tweets received a negative label, respectively. The shares of posi
tive tweets were 5%, 2%, and 11% for general, SRM, and GGR tweets. 
The remaining tweets were coded as neutral or ambiguous. In compar
ison, the model classified 35, 25 and 15% as negative as well as 7, 9 and 
21% as positive. This comparison shows that the model does not align 
with shares from manual annotations in each subset of our data but 
reproduces relative patterns. 

The emotion classifiers show a high divergence in shares for the 
grouped emotions (see Fig. S2 and Fig. S6). The dictionary-based 
approach (NRC) as well as the RoBERTa model trained on the Twee
tEval dataset only find fractions of tweets smaller than 40% to be 
neutral, which neither aligns with the other classifiers, nor our manual 
annotations. Based on our evaluation, we are most confident in the re
sults of the RoBERTa and BERTweet model trained on the GoEmotions 
dataset with the reduced Ekman taxonomy of 7 different emotion classes 
(joy, surprise, sadness, anger, fear, disgust, neutral or other). Our 
manual annotation recorded diverging shares of negative emotions, 
ranging from 23% in general geoengineering tweets to 8% in SRM and 
1% in GGR tweets. All other tweets were either coded as being neutral or 
ambiguous, whereas only less than 1% were annotated with a positive 
emotion. In the paper, we focus on the results of the BERTweet model, 
because its classifications best align with our manual annotation. 
Nevertheless, we reviewed results also for the other three classifiers and 
found mostly consistent patterns in differences between subsets of our 
data. Although emotion classifiers have low agreement and overall 
shares differ, the relative patterns mostly align. 

Especially for the emotion classification, low inter-coder agreement 
is a challenging issue. Some of the datasets used to train the classifiers 
mitigate this problem with multi-label annotation (i.e. allowing to 
assign more than one emotion during annotation). However, this can 
lead to contradictory annotation (e.g. neutral plus a non-neutral 
emotion) and may distort classifiers towards detecting more emotions 
than a single annotator would identify. This may explain the low shares 
of predicted neutral labels, which are not in line with our manual 
annotation. We therefore suggest developing better internal and 
external evaluation approaches of emotion analyses on tweets than often 
seen in the literature (Loureiro and Alló, 2020; Qiao and Williams, 
2022). 

3. Results 

3.1. Attention and user engagement 

Attention on Twitter focuses on general geoengineering and GGR. 
We measure the (relative) attention to technologies and topics based on 
the number of tweets containing particular keywords. Whereas the 
attention to GGR and geoengineering is very high, the share of tweets on 
SRM is only 3.4% in our dataset. Tweets containing general geo
engineering terms make up about half of the entire dataset (54%), fol
lowed by GGR (35%) and CCS (13%), but there is a distinct temporal 
dynamic towards the latter (see Fig. 1). 

Attention on Twitter shifted from general geoengineering to GGR. 
Fig. 1a shows that the development over time can be divided into 
distinct phases: First, the increase up to 2013 coincided with the in
crease of the total number of English-language tweets on Twitter (see 
Fig. S5) and is therefore mostly driven by the overall expansion of the 
social media platform. Our estimate of the total number of English- 
language tweets over time suggests that this number peaked around 
2013 after its initial rapid growth and decayed slowly until 2018, when 
growth picked up again until today. Second, geoengineering topics 
expanded further between 2013 and 2015. Based on the aforementioned 
estimates, the ratio of geoengineering tweets more than tripled (from 
one in every 271,000 before 2014 to one in every 75,000 after). The 
number of tweets using general geoengineering keywords peaked in 
2015 and has decreased since then. Third, this decrease has been 
compensated by a strong expansion of tweets on GGR and related 
technologies in recent years. Since 2020, the share of GGR tweets is even 
higher than the share of general geoengineering tweets (see Fig. S7a). 
The increase was only interrupted by a drop in 2020 following the 
outbreak of the Covid-19 pandemic. However, attention quickly recov
ered in 2021 and was about 75% higher than in 2020 and 62% higher 
than in 2019, the year with most attention before the pandemic. CCS 
saw a similar increase in 2021, but has received more stable attention in 
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the years between 2011 and 2018. Communication about SRM grew 
slowly until a peak in 2018, but remains at very low levels compared to 
GGR and general geoengineering discussions. 

Attention to specific GGR methods grows, while attention to SRM 
remains low and at a general level. The number of overall tweets on GGR 
is not only more than an order of magnitude larger, but there are also 
many more references to specific GGR methods, as indicated by the 
number of tweets with technology-specific keywords. Of the more than 
450,000 tweets on GGR, about 31% contain generic keywords such as 

“greenhouse gas removal”, “carbon dioxide removal”, or “negative 
emissions”. The remainder comprises technology-specific communica
tion on soil carbon sequestration (20%), afforestation/reforestation 
(17%), and blue carbon (12%). Direct air capture, bioenergy with CCS, 
ecosystem restoration, biochar, ocean fertilization and enhanced 
weathering each have shares of 5% or less. Methane removal, the only 
method for greenhouse gases other than carbon dioxide in our data set, 
and ocean alkalinization are the least discussed GGR methods, with only 
about 3,500 and 270 tweets, respectively. In contrast, of the about 

Fig. 1. Yearly tweet counts. (a) For general geoengineering (Geoengineering), greenhouse gas removal (GGR), solar radiation management (SRM) and carbon 
capture and storage (CCS). (b) GGR tweet counts by technology (breakdown of green bar in panel (a)). (c) SRM tweet counts by technology (breakdown of blue bar in 
panel (a)). Data for years 2006 to 2008 are not shown because the counts for these years are zero or very low. 

F. Müller-Hansen et al.                                                                                                                                                                                                                        



Global Environmental Change 83 (2023) 102765

6

57,000 tweets on SRM, more than half contain general keywords (66%) 
and only a small number of tweets use technology-specific keywords 
such as stratospheric aerosol injection (22%). All other SRM technolo
gies have shares of less than 10% of the total number of SRM related 
tweets. 

Users engage more with GGR topics than with SRM and general 
geoengineering. On average, general geoengineering tweets were 
retweeted around 0.8 times and received 1.1 likes per tweet. We see 
slightly higher engagement in SRM (and CCS) tweets with 1.2 (1.5) 
retweets and 2.7 (3.3) likes per tweet and much higher engagement in 
GGR tweets with 2.1 retweets and 6.0 likes per tweet. These differences 
are not driven by tweets from users that tweet very frequently about 
these topics, as the analysis of average retweets, replies and likes per 
user highlights. Average per user retweets are 0.4, 1.0 and 1.4 for gen
eral geoengineering, SRM and GGR, respectively (see Table S1 for 
further details). The distributions of retweets and likes per tweet as well 
as per user are highly skewed, with a majority of tweets not receiving 
any reactions, which gives median values of zero for each of these 
distributions. 

The distribution of tweets per user is also strongly skewed (see 
Fig. S4) and follows a power-law as other social and online phenomena 
(Newman, 2005). While on average, there are 4.6 tweets per user in our 
dataset, the 1% most active users posted about 44% of the tweets in our 
dataset. The next 9% contributed 26% of all tweets; 63% of all users 
tweeted only once and thereby contributed 13% of all tweets. These 
numbers also differ between subsets: Average tweets per user are higher 
for general geoengineering tweets (5.8) and lower for SRM, GGR and 
CCS (2.3, 2.7 and 3.3, respectively). Also the share of tweets from the top 
10% most active users differs considerably between 76% for general 
geoengineering tweets, 60% for CCS, 56% for GGR and 54% for SRM. 
These differences suggest that Twitter communication about general 
geoengineering is more concentrated on a few users than for CCS, GGR 
and SRM. 

3.2. Sentiments and emotions 

We classify tweets with respect to their sentiment, or tone, as 
described in Section 2.2. Fig. 2 compares the shares of tweets with 
positive and negative sentiments in subsets of our dataset. These shares 
are computed at the level of tweets, but looking at average sentiments 

grouped by user yields very similar results (see Fig. S8). General geo
engineering tweets have high shares of negative sentiment (30%) and 
low shares of positive sentiment (6%). Because this makes up more than 
half of the dataset, this leads to a high overall share of 23% negative 
tweets compared to only 13% positive ones in the entire dataset. The 
share of negative GGR tweets is much lower (14%) and the share of 
positive ones higher (24%), also compared to SRM (24% negative, 9% 
positive). CCS tweets are also more positive (19%) than negative (15%). 

We observe that technology-specific subsets of tweets have on 
average lower shares of negative sentiment than tweets containing 
general keywords on geoengineering, SRM or GGR. Interestingly, 
stratospheric aerosol injection for SRM and ocean fertilization for GGR 
are the only technologies that feature a higher share of negative senti
ments than general tweets. This is related to concerns that have led to 
public opposition towards field experiments on those technologies, such 
as detrimental environmental effects, slippery slope towards large-scale 
implementation, and poor governance or even illegality of projects (Low 
et al., 2022; Strong et al., 2009; Osaka, 2023). 

Sentiments are more positive for technologies perceived closer to 
nature. Across GGR and SRM technologies there are substantial differ
ences in the tone of respective tweets. Our results highlight that tweets 
on GGR technologies tend to be associated with more positive than 
negative sentiments, except ocean fertilization. BECCS has broadly 
balanced positive and negative sentiments. Land-based biological GGR 
methods such as afforestation, biochar, blue carbon or ecosystem 
restoration have high shares of tweets with positive and low shares of 
tweets with negative sentiments. Among the SRM technologies, strato
spheric aerosol injection has the lowest share of positive vis-a-vis the 
highest share of negative tweets. The pattern is reversed for cloud 
brightening and also for space-based sunshields, but tweets counts are 
too low for a reliable signal. All other SRM technologies have rather low 
shares of both positive and negative tweets. 

We analyze potential framing effects by comparing the share of 
sentiments between GGR tweets that additionally mention general 
geoengineering keywords to those that do not. Tweets containing both 
GGR and general geoengineering keywords are composed of 30% 
negative, 64% neutral, and 6% positive tweets. GGR tweets without 
reference to geoengineering, conversely, contain 14% negative, 63% 
neutral, 23% positive sentiments. This shows that framing GGR as a 
geoengineering technology leads to less positive and more negative 

Fig. 2. Share of sentiments and emotions as well as share of conspiracy-related tweets for each technology category.  
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sentiments. 
Emotions follow similar patterns to sentiments and add nuance to the 

findings from the sentiment analysis. For the entire dataset, we find 3% 
positive, 85% neutral and 12% negative emotions. Fig. 2 shows shares 
for all technology classes. We can see patterns similar to the sentiments: 
Tweets with more general keywords tend to entail more negative emo
tions, and GGR tweets are associated much more with positive emotions 
than SRM and General tweets. Compared to sentiment analysis, both 
positive and negative emotions are less prevalent. Other notable dif
ferences to the patterns observed for sentiments include less negative 
emotions towards ocean fertilization and more positive emotions to
wards blue carbon. 

We find that the specific emotion ‘disgust’ dominates in both general 
geoengineering and SRM tweets (10% and 7% respectively, see Fig. 2). 
This is followed by ‘fear’ and ‘anger’ (2–3.5%), while ‘joy’ only con
tributes 2% and 1%, respectively. For GGR, the picture is different: ‘joy’ 
(6%) is followed by ‘disgust’ (4%), and ‘fear’ (2%), while anger is below 
1%. ‘Sadness’ and ‘surprise’ are hardly present in any of the subsets of 
tweets. For specific technologies, the relatively high shares of ’joy’ for 
afforestation/reforestation (11%) and blue carbon (10%) and the high 
share of ’disgust’ for stratospheric aerosol injection (13%) are notable. 
There are also considerable differences between tweets that can be 
related to conspiracy theories and others: the former have a 2.9 times 
higher share of ‘anger’ and 1.8 times higher share of ‘disgust’ while only 
half the share of ‘joy’ than the latter. 

3.3. Conspiracies and semantic proximity 

High shares of general geoengineering and SRM tweets contain 
conspiracy-related keywords. Using a filter based on a boolean keyword 
search, we identify a lower estimate for the share of tweets related to 
conspiracy theories in each subset of our data (Fig. 2). We find con
spiracy theories to be most prevalent for general geoengineering tweets 
(30%). For SRM tweets, the share is still high at 16%, while GGR and 

CCS tweets scarcely contain conspiracy-related keywords (0.15% and 
0.07%). Among technology-specific tweets, the share of conspiracy- 
related tweets is highest for stratospheric aerosol injection with 32%. 
A prominent example of these conspiracies is the “chemtrails” theory, 
whose adherents believe that nefarious actors (often governments or 
secret societies) are injecting chemicals into the atmosphere, disguised 
as contrails of airplanes. Nonetheless, it is likely that these numbers 
underestimate the amount of conspiracy-related tweets in our dataset, as 
they capture only about two thirds of manually annotated tweets. 

Over time, we find that the share of conspiracy theory-related tweets 
varies on a monthly basis between 20% and 50% for general geo
engineering tweets. For both general and SRM tweets, there is a trend 
towards lower shares of conspiracy-related tweets starting around 2016. 
While the share of tweets on GGR with conspiracy-related content is 
very low, those tweets containing both GGR and general geoengineering 
keywords have a much higher share of 1%, which can be linked to 
conspiracies. Interestingly, conspiracy-related tweets receive far less 
likes (1.1 compared to 3.3 likes per tweet) and are retweeted slightly less 
than other tweets (1.2 compared to 1.3 retweets/tweet). 

As described in Section 2.2, we embed all tweets in a high- 
dimensional space using a state-of-the-art natural language model 
(Nguyen et al., 2020). Fig. 3 shows the result of reducing this space to a 
plottable two-dimensional map. Each dot in the map represents one 
tweet. Close pairwise proximity between dots indicates higher semantic 
similarity in the content of tweets. The locations of tweets in the 
embedding space strongly correlate with the technology category, 
indicating that the queries produce coherent and largely consistent sets 
of tweets. 

In the map, most clusters with SRM tweets also contain general 
geoengineering tweets. This points towards SRM being more often 
mentioned in similar contexts as geoengineering, using similar frames. 
Most GGR and CCS tweets are well separated from general geo
engineering in the map. Exceptions are two clusters containing both 
geoengineering and GGR tweets (marked as red circles in Fig. 3). Both 

Fig. 3. Map of tweets using a two-dimensional projection of the high-dimensional tweet embeddings. Each dot in the figure corresponds to a tweet and is colored 
according to top-level categories (blue: General geoengineering, orange: SRM, green: GGR, grey: CCS). The relative distance between dots shows their semantic 
similarity. Manual annotations (circles) point to regions in which tweets from a technology category are concentrated (based on Fig. S1). 

F. Müller-Hansen et al.                                                                                                                                                                                                                        



Global Environmental Change 83 (2023) 102765

8

contain high shares of conspiracy-related tweets (13 and 7%). The map 
also shows that similar technologies, like CCS, BECCS and DAC, are 
located closer to one another than more diverse technologies such as soil 
carbon, afforestation/reforestation and enhanced weathering. 

4. Discussion 

4.1. Trends and drivers of perceptions 

Our findings regarding the attention and user engagement with 
different geoengineering technologies are in line with evidence from the 
literature. The low share of tweets on SRM points towards little famil
iarity with these types of technologies. This aligns with the finding from 
surveys that these technologies are hardly known in the public (Mercer 
et al., 2011; Visschers et al., 2017). The greater attention to and more 
technology-focused discussions on GGR suggest greater awareness of 
and familiarity with GGR. This is particularly apparent for conventional 
and land-based GGR methods such as afforestation or soil carbon man
agement as also found in surveys (Jobin and Siegrist, 2020; Sweet et al., 
2021). This might also explain why users are much more likely to 
retweet and like tweets about GGR. Another explanation for sharing 
GGR more than other geoengineering tweets could be that these tech
nologies have much higher support rates in surveys (Jobin and Siegrist, 
2020). Apart from this, GGR is moving up on the policy agenda in many 
industrialized countries as net-zero goals both at the level of countries 
and firms are announced (Schenuit et al., 2021; Boettcher et al., 2023) 
and is pushed by start-ups, engineers and scientists who disseminate 
content on these technologies. These factors also contribute to 
increasing trends and higher sharing metrics on Twitter. 

Our result that GGR is more positively discussed than SRM and 
geoengineering in general is also well in line with the finding from 
surveys that SRM technologies have lower support rates than GGR 
(Jobin and Siegrist, 2020; Carlisle et al., 2020). Studies report higher 
support for GGR methods like afforestation/reforestion, biochar and soil 
carbon management (Sweet et al., 2021; Wolske et al., 2019; Bellamy, 
2022), for which we also find higher shares of positive sentiments and 
emotions. Survey studies explain this by the perceived naturalness of 
these methods (Sweet et al., 2021; Shrum et al., 2020; Bertram and 
Merk, 2020). The mostly negative sentiments in SRM tweets are further 
driven by controversial debates both in academia and in the public 
about these technologies, their unknown side-effects, and their highly 
uncertain implications for governance (Macnaghten and Szerszynski, 
2013; Aldy et al., 2021). 

Furthermore, we find that general geoengineering as well as SRM 
tweets have a much higher share of conspiracy-related content. Surveys 
have found that a high percentage of a representative US population 
tends to believe that there is some truth in the ‘chemtrails’ conspiracy 
theory (Mercer et al., 2011, find that 3% believe it is true, 14% believe it 
is somehow true). The number of conspiracy-related tweets, and users 
sharing these tweets, is comparatively larger than shares from this sur
vey, but this is not surprising as Twitter is known to over-represent 
extreme positions. While strong links between geoengineering, SRM 
and conspiracy theories on social media have been found previously 
(Tingley and Wagner, 2017; Debnath et al., 2023), our comparative 
approach shows differences between SRM and geoengineering tweets 
and that this finding does not extend to GGR debates. Finally, we find a 
decreasing trend in the share of conspiracy-related content in our 
dataset, which might be the result of Twitter’s (then) increased effort to 
reduce misinformation on its platform (Allcott et al., 2019) and 
spreaders of conspiracy theories moving to other topics such as Covid-19 
and anti-vaccination (Shahi et al., 2021). 

4.2. Geoengineering framing 

Our analysis of tweets, how their content is related in the semantic 
map and the sentiment and emotion in different subsets indicate that 

using a geoengineering framing results in more negative sentiment and 
may be more prone to misinformation. The semantic map in Fig. 3 shows 
that SRM has a much higher semantic proximity to general geo
engineering tweets. This may be an indication for SRM often being 
framed in the context of geoengineering, while this is the exception for 
GGR. One such exception is the closer semantic proximity of ocean 
fertilization tweets to geoengineering, which might be linked to the 
controversial experiments discussed for this technology (Low et al., 
2022). 

The semantic proximity of tweets about geoengineering (general), 
SRM (general), stratospheric aerosol injection, and to a lesser extent 
ocean iron fertilization in Fig. 3 suggests that “geoengineering” might be 
thought by many to refer specifically to these options, and to exclude 
most forms of GGR. Such an interpretation might also be linked to the 
very similar sentiments, emotions, and tendency for conspiracy theories 
in these technologies. 

Last but not least, the notion “geoengineering” is used both to 
describe a group of technologies (with contested system boundaries) as 
well as to ascribe certain properties to one or many technologies, often 
in a pejorative way. This points to “geoengineering” being a floating 
signifier, i.e. a concept with no commonly agreed upon meaning (Farkas 
and Schou, 2018). As the “geoengineering” concept is comparably new, 
not only for the public, but also in academic discussions (Keith, 2000), 
people attach very different meanings to it, making it an ideal term for 
political contestation. This has implications for what terminology is 
most effective for communicating with the public about different op
tions of emerging climate technologies for mitigating and reducing the 
impact of climate change. In particular, it suggests that using the term 
“geoengineering” to refer to GGR options negatively associates them 
with much more controversial SRM technologies. 

4.3. Policy implications 

Our results highlight stark differences in how SRM and GGR are 
communicated on Twitter. There is little discussion of SRM and it is 
overall negative and often related to conspiracies, which points to a 
premature public debate. On the contrary, GGR is much more discussed, 
hardly linked to conspiracies and mentioned more often in positive 
contexts – with the exception of ocean fertilization. This points to much 
more support for GGR methods than SRM, as also found in the survey- 
based literature (Jobin and Siegrist, 2020; Carlisle et al., 2020). We 
therefore recommend to clearly distinguish between SRM and GGR in 
policy debates and avoid lumping them together under the umbrella 
term “geoengineering”. Public support for large-scale deployment of 
GGR is important for keeping the Paris climate goal within reach. To 
secure this support for GGR, communicators should avoid the “geo
engineering” framing. 

It may also be advisable to minimize the joint discussion of SRM and 
GGR policies and implementation. Discussing these very different ap
proaches jointly comes with the risk of “controversy spillovers” from 
more problematic SRM to less problematic GGR (Cuppen et al., 2020; 
Westlake et al., 2023). Such spillovers also influence the perception of 
single GGR technologies. For example, BECCS and DACCS might be 
negatively impacted by scepticism about CCS from fossil sources. 
Methods such as afforestation, blue carbon management and soil carbon 
sequestration (sometimes labelled “nature-based solutions”) have 
highest approval in surveys and are therefore likely the least contro
versial to implement in the near future. 

More broadly, computer-assisted social media analyses can provide a 
preview and overview of potential concerns, opposition and appraisal 
surfacing in the public discussion about the development and deploy
ment of emerging technologies. This can help policy makers and other 
stakeholders to address such concerns early on. Monitoring these de
bates can also inform the development of strategies to counter and 
inoculate the public against misinformation. Our study has shown that 
part of the debate, particularly about geoengineering and SRM, are 
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shaped by emotions and disinformation. Disinformation campaigns 
often appeal to user’s emotions rather than engaging rationally in a 
debate because emotional engagement increases belief in and thus 
sharing of misinformation (Martel et al., 2020; Horner et al., 2021). This 
can lead to entire social media debates being dominated by minority 
opinions, which might spread further. In times of populist opposition to 
climate solutions, it is therefore important to consider these non-rational 
elements in policy discourses when communicating about new tech
nologies and policies. Given the plasticity of perceptions of future 
technologies and taking the limitations of social media data into account 
(see next section), further survey-based and qualitative social science 
work is needed to deepen insights into how public perceptions are 
formed and which factors influence support for emerging climate 
technologies. 

4.4. Limitations 

Our findings are based on Twitter data, which is known for specific 
user characteristics, communication patterns as well as algorithmic 
feedback mechanisms (Sen et al., 2021; Mellon and Prosser, 2017). 
Some effects of these biases on our results are reduced by the compar
ative approach we chose. For example, we can assume that the influence 
of demographic characteristics of users on posting behavior is similar 
across subsets of our data, such that differences between subsets are not 
driven by them. Additionally, our keyword-based searches come with 
some caveats. First, we only include those tweets in our analysis that 
explicitly mention keywords related to geoengineering or SRM and GGR 
technologies. However, some tweets may be part of longer debates be
tween users or threads that focus on these topics without mentioning 
these specific keywords in each tweet. Second, despite the great care we 
took in designing the search queries (see Section 2.1), we might still miss 
relevant keywords that our multidisciplinary author team was not aware 
of, thereby unintentionally introducing biases into the dataset. The 
above comparison of our main findings with results from representative 
surveys indicates, however, that the Twitter user base posting about 
geoengineering seems to express qualitatively similar attitudes. This 
gives us confidence in the robustness of our findings. 

Our comparison of several state-of-the-art sentiment and emotion 
classifiers revealed a huge disparity of results between emotion classi
fiers, while the labels of sentiment classifiers had a much higher 
agreement. The evaluation of emotion classifiers in our domain was 
complicated by two factors: First, emotion classifiers use different la
beling schemes that are not easily comparable and cannot be matched to 
each other. This is why we mapped results to three classes of positive, 
negative and neutral emotions for the comparison between classifiers. 
Secondly, manually annotating the emotion of short texts such as tweets 
can be ambiguous because there are often only slight indications of 
emotional language features. For example, mentioning risks of an SRM 
technology like reducing crop yields can be interpreted as an expression 
of fear, but could also simply be neutral information. We therefore 
expect that automated sentiment and emotion classification also in
volves mistakes. This can affect the absolute number of annotations for 
each category. However, we assume that errors in automatic annotation 
are evenly distributed across categories and that therefore the reported 
shares, i.e. the relative numbers, of each category of sentiments and 
emotions are much more reliable than single annotations. Comparing 
the results of the emotion and sentiment analysis confirms that this 
assumption is reasonable. Our results highlight that some of the iden
tified sentiment is driven by emotional wording, with negative emotions 
being more prevalent than positive ones even in subsets with balanced 
sentiments. Thus, the emotion analysis can be used to validate patterns 
found with sentiment analysis and add more nuance to the ways that 
particular technologies are associated with positive or negative senti
ment. However, we caution against overinterpreting the results of the 
emotion analysis because even manual annotation of tweets comes with 
low agreement between different annotators and the agreement 

between majority annotation with the emotion classifier is low. 

5. Conclusions 

This paper provides a comprehensive overview of communication 
about geoengineering and related technologies on Twitter over the 
entire history of the social media platform. It expands previous analyses 
both in scope—looking at SRM and GGR—and through the use of a 
comparative research design. As such, it presents a complementary line 
of evidence on public perceptions of emerging technologies, which are 
constantly shaped by public debates and are therefore hard to assess by 
traditional survey methods. 

Attention on Twitter has shifted from general geoengineering 
communication to specific GGR technologies. The term “geo
engineering” often comes with negative connotations as do many SRM 
technologies. In contrast, most GGR technologies are discussed posi
tively at large, especially those using natural sinks such as afforestation, 
ecosystem restoration, blue carbon and soil carbon sequestration. This 
confirms findings in the survey-based literature: methods that are 
perceived as more natural receive more approval. Our results suggest 
that SRM is strongly linked to the geoengineering framing, while general 
GGR and most GGR methods are increasingly discussed independently. 
In parallel, GGR methods that have been discussed for much longer in 
other contexts – such as forest management, biochar, ecosystem resto
ration – are now being incorporated into climate solution debates and 
repurposed as carbon removal, which can be both a challenge and op
portunity for their public support. These findings imply that policy de
bates about GGR should avoid the “geoengineering” frame and discuss 
GGR separately from SRM to circumvent controversy spillovers. 

The work presented in this paper is a first step towards a better un
derstanding of public perceptions about the emerging technologies of 
SRM and GGR on social media. Overall, we contribute to the growing 
efforts to systematically collect and analyze data pertaining to public 
opinion about climate change on social media, and factors that influence 
it (Kirilenko et al., 2015; Moore et al., 2019; Effrosynidis et al., 2022). To 
extend insights into public perceptions of these topics, future work 
should characterize user groups and networks between users to learn 
about the different engagement of stakeholders such as politicians, 
journalists, scientists or business representatives. Furthermore, links to 
external content in geoengineering tweets provide rich materials about 
what types of information sources people use and share. Finally, ex
tensions to other social media such as Reddit could help to generalize 
findings across platforms. 
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Barberá, P., Rivero, G., 2015. Understanding the Political Representativeness of Twitter 
Users. Soc. Sci. Comput. Rev. 33, 712–729. https://doi.org/10.1177/ 
0894439314558836. 

Bellamy, R., Lezaun, J., Palmer, J., 2019. Perceptions of bioenergy with carbon capture 
and storage in different policy scenarios. Nature Commun. 10, 743. https://doi.org/ 
10.1038/s41467-019-08592-5. 

Bellamy, R., 2018. Incentivize negative emissions responsibly. Nature Energy 3, 
532–534. https://doi.org/10.1038/s41560-018-0156-6. 

Bellamy, R., 2022. Mapping public appraisals of carbon dioxide removal. Global Environ. 
Change 76, 102593. https://doi.org/10.1016/j.gloenvcha.2022.102593. 

Bertram, C., Merk, C., 2020. Public Perceptions of Ocean-Based Carbon Dioxide 
Removal: The Nature-Engineering Divide? Front. Climate 2, 594194. https://doi. 
org/10.3389/fclim.2020.594194. 

Boettcher, M., Schenuit, F., Geden, O., 2023. The formative phase of German carbon 
dioxide removal policy: Positioning between precaution, pragmatism and 
innovation. Energy Res. Soc. Sci. 98, 103018 https://doi.org/10.1016/j. 
erss.2023.103018. 

Buck, H.J., 2016. Rapid scale-up of negative emissions technologies: social barriers and 
social implications. Climatic Change 139, 155–167. https://doi.org/10.1007/ 
s10584-016-1770-6. 
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