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Multidimensional well-being of US 
households at a fine spatial scale 
using fused household surveys
Kevin Ummel1, Miguel Poblete-Cazenave  2,3 ✉, Karthik akkiraju4, Nick Graetz5, 
Hero ashman1, Cora Kingdon1, Steven Herrera tenorio1, aaryaman Sunny Singhal1, 
Daniel aldana Cohen1 & Narasimha D. Rao3,4

Social science often relies on surveys of households and individuals. Dozens of such surveys are 
regularly administered by the U.S. government. However, they field independent, unconnected 
samples with specialized questions, limiting research questions to those that can be answered by a 
single survey. The presented data comprise the fusion onto the American Community Survey (ACS) 
microdata of select donor variables from the Residential Energy Consumption Survey (RECS) of 2015, 
the National Household Travel Survey (NHTS) of 2017, the American Housing Survey (AHS) of 2019,  
and the Consumer Expenditure Survey - Interview (CEI) for the years 2015–2019. This results in an 
integrated microdataset of household attributes and well-being dimensions that can be analyzed 
to address research questions in ways that are not currently possible. The underlying statistical 
techniques, designed under the fusionACS project, are included in an open-source R package, 
fusionModel, that provides generic tools for the creation, analysis, and validation of fused microdata.

Background & Summary
Ideally, social scientists would have access to a “comprehensive survey” that employs a large sample size, asks 
many questions on various topics, is representative of the general population, and enjoys perfect recall and 
accuracy. Such a survey would allow researchers to examine spatial patterns at higher resolution, analyze dif-
ferences across detailed population subgroups, explore relationships among a wide range of phenomena, and 
build detailed micro-simulation models to anticipate policy impacts across households and communities. 
Unfortunately, a truly comprehensive survey is impossible. Budgets and sample sizes are limited; respondent 
participation suffers if too many questions are asked; and the scope of social phenomena is too large for a single 
survey instrument. In practice, a diverse collection of surveys exists at any one time, varying in size, subject 
matter, structure, and provenance.

Practitioners regularly impute or otherwise predict a variable or two from one dataset on to another. 
Piecemeal, ad hoc data fusion is a common necessity of quantitative research. Proper data fusion, on the other 
hand, seeks to systematically integrate two different samples into one microdata set. The desire to “fuse” or 
otherwise integrate independent datasets has a long history, dating to at least the early 1970’s1,2. The most prom-
inent examples of data fusion have involved administrative record linkage3–7. This consists of exact matching 
or probabilistic linking of independent datasets, using observable information like social security numbers, 
names, or birth dates of individuals. Record linkage, the gold standard, can yield important insights and high 
levels of statistical confidence. However, it is rarely feasible for the kinds of publicly available microdata that 
most researchers use day-to-day (nevermind the difficulty of accessing administrative data). The challenge and 
promise recognized 50 years ago by Nancy and Richard Ruggles remains true today:

Unfortunately, no single microdata set contains all of the different kinds of information required for the problems 
which the economist wishes to analyze. Different microdata sets contain different kinds of information… great deal 
of information is collected on a sample basis. Where two samples are involved the probability of the same individual 
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appearing in both may be very small, so that exact matching is impossible. Other methods of combining the types of 
information contained in the two different samples into one microdata set will be required1.

Here we present the first results of the fusionACS project, a group of synthetic microdatasets8 that fuses 
selected data on energy consumption, appliances, and insecurity from the Residential Energy Consumption 
Survey (RECS) of 2015; on transportation costs from the National Household Travel Survey (NHTS) of 2017; 
on dwelling characteristics and vulnerabilities from the American Housing Survey (AHS) of 2019; and expendi-
tures on various household goods and services from the Consumer Expenditure Survey - Interview (CEI) of 
2015–2019, to the corresponding years of the American Community Survey (ACS) (Fig. 1a). These synthetic 
data offer a new spatially granular characterization of American households’ multidimensional well-being and 
their living conditions. Specifically, the large sample size of the ACS allows for better spatial resolution than 
any other survey, resulting in a de facto estimation of the imputed variables at the level of individual Public Use 
Microdata Areas (2,300 nationwide), a significant spatial gain compared, e.g., to the US Census Division level 
information of the RECS of 2015 (Fig. 1b). These data have the potential to advance research on multidimen-
sional poverty and improve justice-oriented policy design.

Fig. 1 fusionACS: Output Data Schematic: (a) Input Surveys and Actual vs Simulated Outputs; (b) Representation 
of the Simulated Responses of fusionACS in New York City at the PUMA level.
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Overall, the principal aim of the fusionACS project is to maximize the amount of information that can be 
extracted from the existing array of U.S. social surveys. This is accomplished through statistical “fusion” of 
disparate surveys in an attempt to simulate a more comprehensive survey. The technique uses the American 
Community Survey (ACS) – the largest U.S. household survey – as the “data backbone” of this process. Variables 
in “donor” surveys are fused onto ACS Public Use Microdata Sample (PUMS) microdata to produce simulated 
values for variables unique to the donor. This results in probabilistic estimates of how ACS respondents might 
have answered the donor survey questionnaire. Respondent characteristics that are common to both the donor 
and the ACS (e.g. income) – as well as spatial information that can be merged to both (e.g. characteristics of 
the local built environment) – are used to model donor variable outcomes using machine learning techniques.

Methods
In the context of fusionACS, we are interested in the following problem:

We have microdata from two independent surveys, A and B, that sample the same underlying population and time 
period (e.g. occupied U.S. households nationwide in 2018). We specify that A is the “recipient” dataset and B is the 
“donor”. Survey A is the American Community Survey and invariably has a larger sample size than B (Na > Nb). 
The goal is to generate a new dataset, C, that has the original survey responses of A plus a realistic representation 
of how each respondent in A might have answered the questionnaire of B. To do this, we identify a set of “harmo-
nized” variables, X, that are common to both surveys; in practice, these are often things like household size, income, 
respondent age, race, etc. We then fuse a set of variables unique to B – call them Z, the “fusion variables” – onto the 
original microdata of A, conditional on X.

This has generally been posed as a “statistical matching” problem9 whereby records from the donor micro-
data (B) are matched to a statistically-similar record in the recipient (A). Variables common to both datasets (X) 
are used to calculate similarity between records. For each record in A, a set of similar records are identified in B; 
e.g. using a k-nearest neighbor algorithm. A single record in B is selected from this set and the variables unique 
to the donor (Z) are added (fused) to the matched record in A. A “mixed method” variant of this approach (see, 
e.g., Section 3.1.3 in Lewaa et al.10) fits statistical models to B to estimate the conditional expectation of Z|X. 
The models are used to predict Z|X for both A and B (Z×a and Z×b, respectively), possibly adding a random 
residual. The similarity of donor and recipient records is then calculated using Z×a and Z×a (rather than X) and 
the ultimate fusion of Z proceeds as in the statistical matching case. The mixed method is effectively an imple-
mentation of predictive mean matching (PMM) first developed by Rubin11 in the context of statistical matching 
and then extended to missing data imputation by Little12. Mixed, PMM-based techniques offer a number of 
advantages, including some protection against model misspecification (in the stochastic case) and a more defen-
sible (and fast) calculation of record similarity, since it avoids calculating similarity across X variables of possibly 
mixed types and varying levels of relevance in explaining Z.

Statistical matching techniques – mixed or otherwise – generally fuse complete records from the donor. This 
is a practical advantage, since it ensures that multivariate relationships among the fused variables are not obvi-
ously erroneous. But complete matching also introduces the possibility that donor observations will be repeated 
– possibly many times – in the fused dataset, increasing the risk that real-world variance is under-represented 
in the fused dataset. Intuitively, matching of complete records is most sensible when the donor’s sample size is 
at least as large as the recipient’s (Nb ≥ Na) and the number of variables to be fused is small. Neither condition 
holds for fusionACS use cases. A useful variant comes from the imputation literature13, where the insertion of 
complete records is impossible due to the typical sparsity of missing data. Imputation techniques usually proceed 
sequentially, filling in missing values one variable at a time or, alternatively, by sequential “blocks” of variables 
that are imputed jointly (e.g. see the popular mice imputation package14). A related literature in the area of data 
synthesis for statistical disclosure control15 also relies on sequential (“chained”) generation of synthetic variables. 
For example, Reiter16 introduced the use of machine learning decision trees17 to create wholly synthetic versions 
of survey microdata that do not rely on record matching18,19. However, the goal in these cases is the synthesis of 
a single dataset for purposes of disclosure control, not the fusion of separate datasets.

The fusion strategy implemented in the fusionModel package borrows and expands upon ideas from the 
statistical matching9, imputation13, and data synthesis15 literature to create a flexible data fusion tool. It employs 
variable-k, conditional expectation matching that leverages high-performance gradient boosting algorithms. 
The methodology and code is tailored for intended fusionACS applications, allowing fusion of many variables, 
individually or in blocks, and efficient computation when the recipient (the ACS in the case of fusionACS) is 
large relative to the donor. Specifically, the goal was to create a data fusion tool that meets the following require-
ments: [noitemsep]

•	 Accommodate donor and recipient datasets with divergent sample sizes
•	 Handle continuous, categorical, and semi-continuous (zero-inflated) variable types
•	 Ensure realistic values for fused variables
•	 Scale efficiently for larger datasets
•	 Fuse variables “one-by-one” or in “blocks”
•	 Employ a data modeling approach that: [noitemsep]

•	 Makes no distributional assumptions (i.e. non-parametric)
•	 Automatically detects non-linear and interaction effects
•	 Automatically selects predictor variables from a potentially large set
•	 Ability to prevent overfitting (e.g. cross-validation)
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There are practical limits to this process, generally reflected in declining confidence in results as more is 
asked of the underlying data. For this reason, uncertainty estimation (via multiple implicates and associated 
analytical tools) is an important part of fusionACS’s development. Ideally, researchers are able to ask any ques-
tion of fusion output and then decide if the answer’s associated uncertainty is suitable for the intended analysis.

General strategy. Consider the simple case where we fuse a single, categorical variable Z consisting of v 
classes. Using the notation from above, we fit a model to the donor data, =G f Z X( )b

. G is used to predict condi-
tional expectations for each recipient observation, =D G X( )a a

. In this case, Da is a Na × v matrix of conditional 
probabilities from which Na simulated class outcomes (Za) are probabilistically drawn. The statistical model, G, 
consists of a LightGBM20 gradient boosting model that minimizes the cross-validated log-loss. The categorical 
case is comparatively straightforward and easily implemented.

Now consider fusing a single, positive continuous variable Z. In this case, we use multiple models to estimate 
the conditional distribution of Z|X. Let G f Z X( )u u b=  estimate the conditional mean and G f Z X( )q q b=  esti-
mate conditional quantiles (q) associated with p equally-spaced percentiles. This yields p + 1 cross-validated 
LightGBM models. Gu minimizes the cross-validated squared error (L2) loss; Gq minimizes the cross-validated 
quantile (pinball) loss. Training models for large p is expensive; by default, we use p = 3 with percentiles 
{0.166,0.5,0.833}. The conditional expectations of the recipient observations, Da, consists of a Na × (p + 1) 
matrix of conditional mean and quantiles.

Unlike in the categorical case, there is no obvious way to simulate Za from Da. Common parametric assump-
tions are not ideal, since the conditional expectations imply unknown and (quite often) decidedly non-normal 
distributions. One option is to extend PMM to the current context, resulting in generalized “conditional expec-
tation matching”. In this case, we derive Db by predicting Gu and Gq back onto the original training data, then 
find the k nearest neighbors (kNN) in Db associated with each observation in Da. This is analogous to conven-
tional PMM, except that we use Euclidean distance based on p + 1 conditional expectations to find the nearest 
neighbors. Each Za is then sampled randomly from the k nearest neighbors in the donor.

There are drawbacks to this approach. First, it fundamentally differs from that used for a single categorical 
variable. In the categorical case, Da provides a complete description of the conditional distribution. Ideally, we’d 
have something analogous in the continuous case; i.e. non-parametric, conditional distributions consistent with 
the conditional expectations from which to draw simulated values. Second, as with any PMM approach, the 
appropriate value of k is not clear. The literature on preferred k (see Van Buuren21, Section 3.4.3) is based on sim-
ulation studies and general recommendations. Third, the expense of the kNN operation increases with Na, Nb, 
p, and k. The fusionACS context assumes (at a minimum) large Na, leading to concerns about computation time 
(in practice, the fusion operation works with MNa rows of recipient data, where M is the number of implicates. 
So, the effective row size passed to the kNN operation is >50 million for a single year of ACS households given 
typical M = 40).

To address these issues, we modify the approach outlined above. First, we find the K nearest neighbors in 
Db associated with each observation of Db (not Da). Since the fusionACS context implies Nb≪Na, the kNN step 
using Db is not usually a problem (later we introduce an option for handling even large Nb). This yields a Nb × 
K matrix (call it S) of observed Z values, where each row contains values sourced from donor observations with 
the most-similar conditional expectations.

Note that the conditional expectations can exhibit widely-varying magnitudes. To ensure that the kNN step 
gives approximately equal weight to each expectation, we scale the columns of the input matrices. If x is column 
j of input matrix D, the transformed values are:
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where med(x) and mad(x) are the median and median absolute deviation, respectively, and ε = 0.001. This 
results in robust scaled values such that med(Dj) = 0.5 with range approximately {0,1}.

Next, for each row in S, we find the unique integer value k*(k* ≤ K) that yields the best empirical approxi-
mation of the conditional distribution of Z|Xb. That is, for each row in S, we find k* such that the first k* values 
result in mean and quantile values most similar to those in Db. This is done by minimizing an objective function 
for each row in S.

Let x contain the first k values from row i of matrix S. We calculate measures of divergence between x and 
the conditional mean and quantiles (u and Q1:p) from row i of Db. The divergence from the conditional mean is:
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We then calculate a measure of divergence for each of Q1:p conditional quantiles:
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where τ = Pp when Pp > 0.5 and τ = 1 − Pp otherwise.

The overall divergence:
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The deltas are calculated for each value of k in 1:K, and the optimal k *i  is that which minimizes Δ. The use of 
φ (normal PDF) and Φ (normal CDF) do not imply any parametric assumptions about the shape of the condi-
tional distribution itself. The derivation of σ from the conditional quantiles assumes a normal distribution22, but 
this is done only to plausibly scale the mean divergence to {0,1}. Note that both of the deltas are bounded {0,1} 
and equal zero when there is perfect agreement between x and the conditional expectations, allowing them to be 
summed. Critically, k *i  can be determined using maximally-efficient matrix operations, even when S is large.

This operation produces a list (L) of Nb variable-length (i.e. variable-k*) vectors of observed Z values that give 
an empirical approximation of each donor observation’s conditional distribution for Z|Xb. For each row of Da, we 
find the row index ∈ +i N b{1, } of the single nearest neighbor in Db. A simulated value is then randomly 
drawn from the observed Z values in Li. Finding the single nearest neighbor is fast.

To recapitulate: For each donor observation, we construct an empirical approximation of the conditional 
distribution, Z|Xb, using observed Z values. Conditional expectations are modeled for each recipient observa-
tion. Each recipient is matched to the donor observation with the most similar conditional expectations. Finally, 
simulated Z values are drawn from the empirical conditional distribution of the matched donor observation. 
Figure 3 shows schematic diagrams of the process for categorical and continuous variables.

This “variable-k” approach has desirable properties: it does not require a fixed k; it explicitly uses the condi-
tional expectations to approximate a non-parametric conditional distribution; computation time is not unduly 
influenced by Na; and the simulated values are drawn from observed Z, ensuring valid outcomes.

In principle, it is preferable to use Da in the initial K nearest neighbors step, resulting in S being a Na × K 
matrix containing observed Z values. However, we find that k* is typically much larger than the k = 5 or k = 10 
used in conventional PMM. With k* regularly on the order of 100 to 300, K needs to be large enough to ensure 
we capture a good approximation of the conditional distribution (K = 500 by default in fusionModel). If both Na 
and K are comparatively large, the required kNN operation may be unduly slow when using Da directly (as is the 
case for fusionACS applications).

fusionModel includes an additional option to speed up calculations in the event that Nb is large. In this case, 
we can first perform k-means clustering on Db to reduce it to some smaller number (r) of cluster centers. With Db 
reduced to an r × (p + 1) matrix, the calculations proceed as above but significantly faster when r ≪ Nb.

Semi-continuous Z that is inflated at zero is common in social surveys, especially variables related to dollar 
amounts. We use a two-stage modeling approach in this special case. A categorical (binary) model is first used 
to simulate zero vs. non-zero outcomes. Then p + 1 mean and quantiles models and the variable-k approach 
described above are used to simulate outcomes, conditional on Z ≠ 0.

If there are multiple fusion variables, Z1:n, they are fused sequentially such that = −G f Z X Z( , )i i i1: 1 . Fusion 
variables earlier in the fusion sequence become available as predictors. This allows within-observation depend-
ence among the fusion variables to be modeled explicitly (at least for Z that occur later in the sequence), as well 
as being mediated through X.

Sometimes it is useful to fuse variables in “blocks”. This is most relevant when there are fusion variables 
that are structurally linked. For example, if a set of continuous variables need to sum to one at the household 
level, they must be fused in a block to ensure this identity is preserved in the output. Variable blocks can con-
tain any variable type (categorical, continuous, semi-continuous). For computational convenience, fusion of 
blocks employs the fixed-k conditional expectation matching approach first described. That is, k is fixed to some 
user-specified integer (k = 10 by default). In this case, Db and Da include the conditional expectations of all var-
iables in the block. If all Z are in a single block, then the fusion process equates to sampling complete records of 
Z from the donor using fixed k.

Modeling details. Successful fusion hinges on the amount of information that can be extracted from X. The 
Data Preparation section describes how we maximize the amount of potentially useful data in X. Our ability to 
then extract useful information depends critically on the modeling strategy used to estimate f(Z|X).

The fusionACS project uses LightGBM gradient boosting models (GBM)20, because they are flexible and 
efficient – functionally, computationally, and in terms of predictive ability. By changing the loss function, we can 
use a single modeling framework for prediction of conditional probabilities, means, and quantiles. GBM’s do 
not require a specified functional form and make no parametric assumptions. They can handle many predictor 
variables and automatically detect important predictors, interaction effects, and non-linear relationships. Tuning 
and cross-validation during training results in models that exhibit state-of-the-art predictive ability. And since 
LightGBM was designed for large-scale machine learning applications, even comparatively large fusionACS 
exercises compute efficiently.

Gradient boosting is (largely) a “black box” machine learning strategy ideal for contexts that demand high 
predictive ability but care little about inference. That is not generally the case in academic settings, but it is a 
good description of the fusionACS context. Since the platform seeks to accommodate and convincingly model 
any variable from any donor survey, GBM’s ability to perform well under what we might call “hands off, kitchen 
sink” conditions is an advantage.

The primary danger here is that a model could “overfit” to the training data, learning spurious patterns 
that are a result of random noise instead of legitimate signal. This issue receives little attention in the larger 
synthetic data literature, because it is largely focused on creating synthetic versions of the donor survey itself; 
i.e. replication of noise in the donor is not necessarily a problem. In the fusionACS case, the overarching goal is 
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to estimate how ACS respondents might have answered the donor survey questionnaire. This implies learning 
generalizable patterns in the donor data (i.e. avoidance of overfitting). Or, to put it differently, overfit models 
will underestimate the amount of variance that we would reasonably expect ACS respondents to exhibit if they 
actually completed the questionnaire.

To protect against overfitting, we train each LightGBM model using 5-fold cross-validation to find the num-
ber of iterations (i.e. number of tree learners) that minimizes the out-of-sample loss metric. The final model is 
fit to the complete data set using this optimal number of iterations. In addition, we test three different tree sizes 
(number of leaves: 16, 32, 64), subsample 80% of predictors in each iteration, and set the minimum number of 
node observations to 0.1% of Nb (minimum 20). All of these settings are designed to reduce the risk of overfitting 
during training. In addition, we employ a “prescreen” step that selects a unique subset of the predictor variables 
in X to use with each fusion variable in Z. This helps reduce both the risk of overfitting and computation time. 
While there is no penalty to making X as data-rich as possible (in general), we don’t ask the GBM modeling 
process itself to handle potentially hundreds of predictors. Doing so would unnecessarily increase the chance of 
a model learning a spurious pattern.

The prescreen step fits LASSO models23 using the complete X and choosing the model that explains 95% of 
deviance, relative to a “full” model that includes all potential predictors. Since the LASSO shrinks coefficients 
towards zero, the selected model utilizes only a subset of X, and it is a useful screening strategy in the presence 
of highly-correlated predictors – as is often the case for fusionACS applications given the large number of cor-
related spatial attributes present in X.

Implementation details. The fusionACS pipeline produces ACS PUMS microdata with donor survey var-
iables fused (simulated) for each respondent household (~1.3 million per year). This output can be used to per-
form any kind of analysis typically applied to microdata, with the added benefit that analyses can use variables 
from both the ACS and donor survey questionnaires. The output microdata can be used to produce estimates for 
specific locales at the level of individual Public Use Microdata Areas (PUMA’s, ~2,300 nationwide), a higher level 
of spatial resolution than available in most donor surveys. By passing the microdata through an additional spatial 
downscaling step24, estimates can be produced for areas as small as individual block groups.

The fusionACS “platform” consists of two packages written in the R programming language. The fusion-
Model package provides an open-source interface for general data fusion (i.e. modeling and analytical tools).  
A separate, data processing package (fusionData) is used to generate the data inputs needed to fuse variables 
from a range of U.S. social surveys onto ACS microdata. For a given candidate donor survey, the data processing 
and analytical “pipeline” consists of the following steps (see Fig. 2):

 1. Ingest raw survey data to produce standardized microdata and documentation.
 2. Harmonize variables in the donor survey with conceptually-similar variables in the ACS.
 3. Prepare clean, structured, and consistent donor and ACS microdata.
 4. Train machine learning models on the donor microdata.
 5. Fuse the donor’s unique variables to ACS microdata.
 6. Validate the fused microdata to gauge the quality of the fusion process.
 7. Analyze the fused microdata to calculate estimates and margins of error.

Fig. 2 fusionACS: Flow of data.
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Steps 1–3 are part of the fusionData package. Steps 4–7 are carried out using the fusionModel package.
The methodology described above is implemented in the open-source fusionModel R package as two pri-

mary functions: train() and fuse(). The former encompasses a LightGBM model fitting to a donor dataset and 
the variable-k calculations, while the latter makes conditional expectation predictions for a recipient dataset and 
then draws simulated outcomes.

The train() function was written to enable maximum speed and memory efficiency via forking on Unix-like 
systems (e.g. Linux servers). On Windows machines, OpenMP-enabled multithreading is used within the 
LightGBM model training step only (forking is not possible on Windows). We have found forking to be faster 
for typical donor microdata, and this is what we use for production runs on Linux servers.

The fuse() function takes advantage of LightGBM’s native multithreading regardless of platform, since the 
expensive step is prediction of the numerous GBM’s for the ACS recipient microdata. To accommodate intended 
fusionACS applications, fuse() intelligently “chunks” operations depending on available system memory and 
writes output to disk “on the fly”. This makes large-scale fusion tasks possible (even if they cannot fit in physical 
RAM) and allows the multithreading to operate near peak efficiency.

Both train() and fuse() include an approximate nearest neighbor search, for which they use the ANN library 
(http://www.cs.umd.edu/ mount/ANN/) implemented via the RANN package (https://github.com/jefferislab/
RANN). LASSO models are fit using the glmnet package23,25. More generally, fusionModel relies on the data.
table (https://Rdatatable.gitlab.io/data.table; https://github.com/Rdatatable/data.table) and matrixStats (https://
github.com/HenrikBengtsson/matrixStats) packages for the key data manipulation steps. All of these packages 
– as well as LightGBM – are maximized for efficiency and written in low-level C code. So even though fusion-
Model itself is written in R, the vast bulk of the computation is optimized for speed and memory usage.

Data preparation. A significant amount of effort is required to prepare raw survey microdata so they can 
be used within the fusionACS pipeline. The production of standardized microdata, harmonized variables, spatial 
datasets, and associated documentation across multiple surveys is a major contribution of the fusionACS project. 
Here, the fusionACS outputs generated combine openly available data from the Residential Energy Consumption 
Survey (RECS) of 2015 (https://www.eia.gov/consumption/residential/data/2015/index.php), the National 
Household Travel Survey (NHTS) of 2017 (https://nhts.ornl.gov/downloads), the American Housing Survey 
(AHS) of 2019 (https://www.census.gov/programs-surveys/ahs/data/2019/ahs-2019-public-use-file-puf-.html),  
and the Consumer Expenditure Survey - Interview (CEI) (https://www.bls.gov/cex/pumd_data.htm), with 
data from the American Community Survey for the years 2015, 2017, and 2019 (https://www.census.gov/

Fig. 3 fusionACS: Schematic of the fusion process: (a) Fusion of a single categorical variable; (b) Fusion of a 
single continuous variable; (c) Chained fusion; (d) Generation of multiple implicates.
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programs-surveys/acs/news/data-releases.html). None of these datasets, nor the fused variable outputs, contain 
any sensitive or identifying human-derived data. The code used to prepare the raw data inputs is housed in the 
fusionData github repository (https://github.com/ummel/fusionData).

In principle, any survey of U.S. households or individuals circa 2005 or later is a candidate for fusion. Ideal 
donor surveys are those with larger sample sizes, respondent characteristics that overlap with ACS variables, and 
more detailed information on respondent location. Absence of these factors does not preclude usage but will 
affect the associated uncertainty.

Ingestion. “Ingestion” of a survey requires transforming raw survey data into standardized microdata that meet 
certain requirements. This entails writing custom code for every donor survey, vintage, and respondent type 
(household and/or person), often involving tedious “pre-processing” tasks like (among others things): replace-
ment of integer codes with descriptive variable levels; replacement of “valid blanks” and “skips” with plausible 
values; imputation of missing observations; appropriate “classing” of variables (e.g. defining ordered factors); 
and documentation of variables. This process sometimes identifies errors or irregularities in the raw survey data, 
which suggests that we are thoroughly interrogating the data during the ingestion step.

Ingestion results in processed microdata observations that meet the following conditions:

Harmonization. Once a donor survey has been successfully ingested, it can then be “harmonized” with the 
ACS in preparation for fusion. The harmonization step identifies variables common to both the donor survey 
and the ACS and is the statistical linchpin of the fusion process. It consists of matching conceptually similar vari-
ables across surveys and determining how they can be modified to measure similar concepts. The harmonization 
process should be as exhaustive as possible, since the predictive power of subsequent LightGBM models depends 
on the amount of information in the shared/harmonized predictor variables.

In general, harmonization is time-consuming and error-prone. To address these concerns, we built a cus-
tom “Survey Harmonization Tool” – a web app within the fusionData package – to make the harmonization 
process faster and more robust. The harmonization tool can define complex harmonies, including “one-to-one”, 
“many-to-one”, and “many-to-many” linkages, as well as “binning” (discretization) of continuous variables in 
one survey to create alignment with a categorical variable in another. Importantly, the harmonization process 
makes use of both household- and person-level variables, when available. This is true even if fusion occurs only 
at the household level. For example, it is common for donor surveys that solicit person-level information to 
ask for the age of each household member. This variable can be harmonized with an analogous variable in the 
ACS person-level microdata. Even if the eventual fusion step models and simulates household-level variables 
for each ACS respondent household (as is typical), the person-level harmonies are still utilized. In this case, the 
underlying code automatically constructs a household-level variable reporting the age of the householder/refer-
ence person (constructed from the person-level microdata and associated harmonies). In this way, we leverage 
maximum information that is common to both the donor and ACS.

Spatial predictors. Part of the data processing involves adding spatial variables to the donor and ACS microdata 
to expand the number of predictor variables available for the modeling step. Spatial variables help to charac-
terize a household’s location/environment, as opposed to the respondent-specific characteristics used in the 
harmonization process. For example, knowing something about the population density of a household’s general 
location can help explain patterns in the variables being fused that might not be “picked up” by a model using 
only respondent characteristics.

In principle, there is no limit to the amount, nature, or resolution of third-party spatial information that can 
be utilized by the fusionACS platform. The only requirement is that a spatial dataset must have national cover-
age. To date, we have focused on readily-available datasets likely to be useful in explaining the kind of socioeco-
nomic phenomena measured by the donor surveys ingested so far (see Table 1).

Spatial variables are merged to the donor and ACS microdata at the level of individual PUMA’s. This is 
because the ACS PUMS only discloses respondent location for PUMA’s, so this is as precise as we can be with 
the spatial variables. For example, the EPA-SLD dataset provides variables describing features of the built envi-
ronment for individual block groups. These variables are summarized at the PUMA-level prior to merging to 
the donor and ACS microdata. They are then available as LightGBM predictor variables in both the training (on 
donor microdata) and prediction (on ACS microdata) steps.

Due to confidentiality constraints, the donor surveys utilized here do not disclose the PUMA of respond-
ents. Consequently, we impute each donor respondent’s PUMA given observable information. We make use 
of disclosed location information (e.g. respondent’s state of residence) as well as the suite of harmonized 
respondent-level variables. The latter are used to perform a probabilistic imputation, using Gower’s distance26 as 
a similarity measure between donor and ACS respondents. That is, we assign a PUMA to each donor respondent 
by matching to an ACS respondent (using its observed PUMA) within the same disclosed location (e.g. state), 
where the probability of selection is proportional to the similarity of the donor and respondent on observa-
ble (harmonized) characteristics. This allows us to leverage all available information in the PUMA imputation 
process.

Uncertainty estimation. The fusion process attempts to produce a realistic representation of how each 
ACS respondent household (or individual) might have answered the questionnaire of the donor survey. The fused 
values are inherently probabilistic, reflecting uncertainty in the underlying statistical models.

In order to fully capture this uncertainty, fusionACS output consists of M multiple “implicates”. A single 
implicate contains a simulated response for each fused variable and ACS-PUMS respondent. Each implicate 
provides a unique, plausible set of simulated outcomes. Multiple implicates are needed to calculate unbiased 
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point estimates and associated uncertainty (margin of error) for any particular analysis of the data, making it the 
standard approach in the literature27.

The use of multiple implicates is conceptually akin to that of replicate weights in conventional survey anal-
ysis. Replicate weights quantify uncertainty (variance) by keeping the response values fixed but varying the 
weight (frequency) associated with each respondent. Conversely, when imputing (or fusing) data, the primary 
sample weights are typically fixed while the simulated values vary across implicates.

Since proper analysis of multiple implicates can be rather cumbersome – both from a coding and mathemat-
ical standpoint – the fusionModel package provides a convenient analyze() function to perform common anal-
yses on fused data and report point estimates and associated uncertainty. Potential analyses currently include 
variable means, proportions, sums, counts, and medians, (optionally) calculated for population subgroups.

Point estimates for any particular analysis are simply the mean of the M individual estimates across the 
implicates. In general, higher M is preferable but requires more computation and larger output file size. For 
fusionACS production runs, we currently use M = 40 as a reasonable compromise.

Uncertainty for a given estimate reflects standard errors “pooled” across the implicates. A number of pool-
ing rules for implicates have been introduced in the imputation and synthesis literatures, beginning with that 
of Rubin28 for multiple imputation contexts. The closest analog to the fusionACS context is that considered in 
Reiter29. The pooling formulae in Reiter29 assume a two-stage simulation strategy with parametric models that is 
not straightforward to apply to fusionACS output. However, that paper shows that the original Rubin28 pooling 
formulae result in somewhat positively biased variance compared to the “correct” formulae. Consequently, the 
fusionModel analyze() function uses the Rubin28 method to conservatively estimate uncertainty and associated 
margin of error (MOE). The MOE returned by analyze() reflects a 90% confidence level, consistent with how the 
Census Bureau reports MOE for native ACS-based estimates.

The unpooled standard errors (SE’s) that are used within the pooling formulae are calculated using the vari-
ance within each implicate. For means (and sums), the ratio variance approximation of Cochran30 is used, as this 
is known to be a good approximation of bootstrapped SE’s for weighted means31. For proportions, a generaliza-
tion of the unweighted SE formula is used. For medians, a large-N approximation is used when appropriate32 and 
bootstrapped SE’s computed otherwise.

The analyze() function can also (optionally) include uncertainty due to variance in the ACS PUMS replicate 
weights. This is generally preferable, since it captures uncertainty in both the fused (simulated) values and the 
sampling weight of ACS households within the population. We introduce replicate weight uncertainty by assign-
ing a different set of replicate weights to each of the M implicates (there are 80 PUMS replicate weights, so we 
use half of the replicate weights when M = 40). We then estimate the additional across-implicate variance when 
using replicate weights (compared to the primary weights), and add this to Rubin’s pooled variance.

Data Records
The fusionACS dataset, available in figshare8 include:

•	 Fusion of 12 select donor variables from RECS 2015 to ACS 2015.
•	 Fusion of 6 select donor variables from AHS 2019 to ACS 2019.
•	 Fusion of 5 select donor variables from NHTS 2017 to ACS 2017.
•	 Fusion of 5 select donor variables from NHTS 2017 to ACS 2015.
•	 Fusion of 44 household consumption-expenditure and tax variables from CEI 2015–2019 (pooled) to ACS 

2019.

The fused RECS 2015, AHS 2019, and NHTS 2017 microdata consists of both a single .fst and a single 
gzipped.csv file per survey, each containing 40 implicates. The RECS energy expenditure variables were fused 
in a second step using only the consumption and location variables as predictors to attain local consistency in 
energy prices.

The fused CEI 2015–2019 microdata consists of a .fst file containing 30 implicates. The data include a single 
“tax” variable derived from the CEI’s native before- and after-tax income variables.

The fused variables were selected to provide examples of socially-relevant variables of differing data types. 
The list of fused variables and their description can be found in Table 2. Graphical examples of some of the capa-
bilities of fusion outputs can be seen in Fig. 4. Figure 4a presents an example of the higher spatial granularity that 
is possible, allowing estimates to be generated for each of the 2,351 PUMAs available in the ACS as compared to 
just 10 large US Census divisions in the original RECS. Figure 4b illustrates how fusionACS outputs can be used 
for multidimensional analyses of variables from multiple surveys.

Dataset Resolution Description

ACS-PUMS PUMA PUMA-level summary values of ACS-PUMS variables.

ACS-SF block Additional sociodemographic variables solicited by ACS.

EIA-SEDS state Residential fuel prices and average consumption.

EPA-SLD block group Variables describing the built environment, transit, walkability, etc.

IRS-SOI zip code Summary of information reported on 1040 personal tax returns.

NREL-URDB zip code Residential average electricity prices.

Table 1. Spatial Datasets Used.
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Technical Validation
Prospective users of fusionACS require information about the quality of fused data outputs. This necessitates 
validation exercises to demonstrate the expected “utility” of fusion-based analyses. In the data synthesis litera-
ture, a distinction is drawn between “general” (global) and “specific” (narrow) utility of synthetic datasets33. The 
former provides an overall statistical measure of the similarity of synthetic and observed data, while the latter 
refers to specific comparisons of synthetic and observed data for realistic analyses. General utility is a rather low 
bar to clear and (more importantly) it does not provide the kind of intuitive and familiar “proof ” of data quality 
that can inspire confidence in prospective users. Consequently, we focus on validation exercises using measures 
of specific utility.

Internal validation. Internal validation consists of analyzing synthetic data produced by fusing variables 
“back” onto the original donor microdata. It is analogous to assessing model skill by comparing predictions to the 
observed training data.

The fusionModel package includes a validate() function to perform specific (non-general) internal validation 
tests on synthetic variables. For fusionACS production runs, the fusion models are simulated back onto the 
donor data and the result passed to validate(). All of the fusion datasets described in the Data Records section 
undergo the same internal validation process. The results are used to confirm that the fusion output behaves as 
expected and to characterize how data utility/quality changes across prospective analyses.

Utility in this case is based on comparison of analytical results derived using the multiple-implicate fusion 
output with those derived using the original donor microdata. By performing analyses on population subsets of 
varying size, validate() estimates how the synthetic variables perform for analyses of varying difficulty/complex-
ity. It computes fusion variable means and proportions for subsets of the full sample – separately for both the 
observed and fused data – and then compares the results.

The plots in Fig. 5 show validate() output for a sample of five household expenditure variables fused from the 
CEI 2015–2019 donor survey. The population subsets are constructed using the six predictor variables that pro-
vide the closest analogs for income; race/ethnicity; education; household size; housing tenure; and respondent 
location. The internal validation trends presented in Fig. 5 are illustrative of results obtained for the other donor 
surveys as well.

Smaller population subsets are more susceptible to outliers in the observed data, causing the discrepancy 
between observed and simulated estimates to generally increase as subset size declines. For validation purposes 
we want to know what the general trend looks like, ignoring noise/outliers in the observed data. The validate() 
function plots results using a robust median smoother, in order to convey the expected typical (median) perfor-
mance at a given subset size. It reports results for three different performance metrics, explained below.

Figure 5a shows how the observed and simulated point estimates compare, using median absolute percent 
error as the performance metric. We consider this the easiest-to-interpret error metric for practical purposes. 
Note that the x-axis is not linear; it is scaled to reveal more detail for small population subsets. The y-axis gives 
the (smoothed) median absolute percent error at each subset size.

The discrepancy (error) between the observed and simulated point estimates exhibits the typical pattern, 
increasing as subset size declines, but there is considerable variation. The variables “eathome”, “elec”, and “gas” 
exhibit quite low percent error, even for small subsets, implying that the explanatory patterns driving these 
variables are strongly identified by the underlying, cross-validated LightGBM models. The variables “cloftw” 
(clothing and footwear) and “airshp” (air and ship travel) exhibit higher error, especially for smaller subsets. 
These results suggest caution might be warranted if using “airshp” (and possibly “cloftw”) in high-resolution or 
complex analyses.

The validate() output plot in Fig. 5b presents an alternative way to gauge fusion quality, using a “value-added” 
metric that compares fusion output to that of a naive (null) model. Given simulated point estimate ys and 
observed estimate yo, we define the value-added (V) as:
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where E(y0) is the full-sample mean. That is, V measures the extent to which the simulated estimates out-perform 
the naive estimate of a null model. This is conceptually similar to the approach used to define the canonical coef-
ficient of determination (R2) (note that V uses absolute instead of squared error, hence, V is lower than R2, all else 
equal). V = 1 when ys = yo and V = 0 when ys is worse than the naive estimate. V is calculated for each individual 
analysis and then the median smoother applied.

We observe high value-added (>0.8) throughout most of the subset size range, though it is noisier for “air-
shp” and “cloftw”. Value-added helps to isolate the performance of the underlying fusion process, controlling for 
the degree of variance across population subsets. Some types of analyses may exhibit both high percent error 
(Fig. 5a) and high value-added. This is indicative of a fusion variable whose underlying modeling process is per-
forming close to optimal; i.e. this is probably “as good as it gets”, given the available survey data.

Finally, validate() outputs a comparison of simulated and observed relative uncertainty (MOE divided by the 
point estimate). This is useful for confirming that the simulated margin of errors exhibit plausible magnitudes. 
Figure 5c indicates that the fused data typically result in MOE about 20% higher than we observe in the training 
data, reflecting the additional uncertainty associated with the modeling process. The “airshp” MOE’s inflate for 
smaller subsets, reflecting the relative difficulty (also observed in the other plots) in modeling air and ship travel 
expenditures given the available predictor variables.
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External validation. External validation consists of comparing specific results produced using fused data 
with analogous results from an entirely independent data source. We further validated the RECS fusion out-
put with household natural gas and electricity consumption data at the county level available both publicly and 
from utility companies for the states of New York (NYSERDA, https://maps.nrel.gov/slope/data-viewer?layer 
= energy-consumption.net-electricity-and-natural-gas-consumption res = state year = 2017 filters = %5B%5D), 
California (California Energy Commission, http://www.ecdms.energy.ca.gov/elecbycounty.aspx), and 
Massachusetts (masssavedata, https://www.masssavedata.com/public/home) (Fig. 6a,b). In general, we observe a 
good correlation between the simulated metrics and metrics obtained externally for the total electricity and natu-
ral gas consumption metrics and that the ranked metrics for the 3 states are largely preserved. Also, the averaged 
metrics for natural gas and electricity consumption showed larger deviation (Fig. 6c,d), especially for the counties 
in New York, due to the lower sampling of RECS in these areas.

We also compared publicly available 311 distress call data made during 2014–2016 reporting heat and/or hot 
water complaints in New York City (Heat/Hot Water) obtained from NYC Open Data (311 Service Requests from 
2010 to Present, https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/

Dataset Variable Description Dataset Variable Variable Description

RECS 2015

btung Household natural gas usage, in btu

CEI 2015

happl Expenditure on household appliances

btulp Household propane usage, in btu
hhpcp Expenditure on household and personal care products

btufo Household oil/kerosene usage, in btu

btuel Household electricity usage, in btu

hhpcs Expenditure on household, personal, and child care servicesdollarng Household natural gas expenditure, in USD

dollarlp Household propane expenditure, in USD

dollarfo Household oil/kerosene expenditure, in USD
hmtimp Expenditure on home maintenance and improvement

dollarel Household electricity expenditure, in USD

cooltype Type of air conditioning equipment used morint_share Share of mortgage interest payments relative to total mortgage

insec Faced some form of energy insecurity in the last year mrtgps Mortgage principal payments, secondary

noac In last year, was the household ever unable to use A/C 
because it could not afford† electricity or equipment repair†?

ohouse Other housing expenses

rent Rent

noheat
In the last year, was the household ever unable to use 
heating equipment because it could‡ not afford energy or 
equipment repair‡?

chrty Charitable contributions

finpay Insurance, financial services, and other payments

ocash Other cash transfers

AHS 2019

cold Flag indicating unit was uncomfortably cold for 24 hours or 
more last winter othint Interest and finance charges on credit card and other debt

hmreneff Flag indicating home improvements done to make home 
more energy efficient in last two years tax_rate Net tax burden (before-tax income minus after-tax income) divided 

by before-tax income

ratinghs Rating of unit as a place to live
tax Net tax burden (before-tax income minus after-tax income)

fsstatus Rating of overall food security of the household

unitsize Unit size (square feet) airshp Expenditure on air and ship travel

NHTS 2017

place Travel is a financial burden gas Expenditure on gasoline and other motor fuel

price Price of gasoline affects travel pubtrn Expenditure on public transportation

ptrans Public transportation to reduce financial burden of travel
taxis Expenditure on taxi and ride sharing services

vehins Vehicle insurance

travel Walk/bike to reduce financial burden of travel§ vehusd Net purchases of used vehicles

gstotcst Annual fuel expenditures in US dollars vehint Vehicle loan interest payments

CEI 2015

cloftw Expenditure on clothing and footwear
vehmlr Expenditure on vehicle maintenance, leasing, and rental

jwlbg Expenditure on jewelry and handbags

educ Expenditure on education services vehnew Gross value of new vehicle purchases

stdint Student loan interest payments
vehprd Expenditure on vehicle parts, accessories, and supplies

eltrnp Expenditure on electronic products

hotel Expenditure on hotels and motels vehprn Vehicle loan principal payments

oeprd Expenditure on other entertainment products vehreg Vehicle licensing, registration, and inspection

oesrv Expenditure on other entertainment services vehval Value of owned vehicles

recrp Expenditure on recreational products elec Expenditure on electricity

eathome Expenditure on eating and drinking at home intphn Expenditure on internet and phone

eatout Expenditure on eating and drinking out ngas Expenditure on natural gas

furhwr Expenditure on furniture, housewares, and tools ofuel Expenditure on heating oil, LPG, and other fuels

health Expenditure on health care and insurance premiums watrsh Expenditure on water, sewer, and trash

Table 2. List of fused variables for the different datasets (continued from previous page). Constructed from 
“scalee”, “scaleg”, “scaleb”; †Constructed from “noacel” and “noacbroke”; ‡Constructed from “noheatbroke”, 
“noheatbulk”, “noheatel”, and “noheatng”; §Constructed from “bike2save” and “walk2save”.
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erm2-nwe9), Austin (Building A/C & Heating Issues), City of Austin (PARD 311 Data, https://data.austintexas.
gov/dataset/PARD-311-Data/t2t7-xusa), Philadelphia(Heat) obtained from OpenDataPhilly (311 Service and 
Information Requests, https://opendataphilly.org/datasets/311-service-and-information-requests/), and Boston 
(Heat - Excessive Insufficient or Heat/Fuel Assistance) obtained from Analyze Boston (311 Service Requests, 
https://data.boston.gov/dataset/311-service-requests) to the energy insecurity burden metric insec obtained 
from RECS-ACS fusion for 2015 at the PUMA-level (described in Table 2) (Fig. 6e). Here we find reasonable 
agreement (corr.coeff = 0.36–1.00) between the rank of insecurity and the number of 311 distress calls which 
further validates the strength of the fused energy insecurity indicator.

Fig. 4 fusionACS: examples of enhanced capabilities of the fused microdata: (a) Annual Electricity 
Consumption (MWh) in RECS vs RECS-ACS fusion; (b) Households experiencing both energy (RECS 2015-
ACS 2015) and travel insecurity (NHTS 2017-ACS 2015).

https://doi.org/10.1038/s41597-023-02788-7
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.austintexas.gov/dataset/PARD-311-Data/t2t7-xusa
https://data.austintexas.gov/dataset/PARD-311-Data/t2t7-xusa
https://opendataphilly.org/datasets/311-service-and-information-requests/
https://data.boston.gov/dataset/311-service-requests


13Scientific Data |          (2024) 11:142  | https://doi.org/10.1038/s41597-023-02788-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

Usage Notes
All generated fusion outputs are available as.fst files containing 40 implicates (30 implicates for CEI 2015-2019 
fusion) along with the household id from the corresponding ACS, which can be accessed using the fst R package 
(http://www.fstpackage.org). Instructions on how to use the various functions of the fusionModel package are 
available in the corresponding github repository (https://github.com/ummel/fusionModel).

The validation exercises confirm overall high data quality/utility while also revealing variance across varia-
bles and analyses. This is due to unavoidable variation in the predictive ability of the underlying models, given 
the nature of the phenomena being fused and the available (harmonized) predictor variables. The Uncertainty 
Estimation section describes how fusionModel propagates this variance (uncertainty) into multiple fusion 
implicates.

It is recommended that users of fusionACS data outputs make use of the multiple implicates to calculate 
uncertainty (margin of error) alongside point estimates of interest. The margin of error should be taken into 
consideration when deciding if the results of any particular analysis are “good enough” for the intended applica-
tion. For example, point estimate uncertainty may be acceptable when analyzing a particular fusion variable by 
income, but unacceptably high when analyzing by both income and race. There is no “shortcut” to this determi-
nation other than calculating uncertainty for the desired analysis. This is best practice for any analysis of survey 
microdata, fused or otherwise.

Fig. 5 Example internal validation plots for five household expenditure variables from CEI 2015–2019. The 
results illustrate how fused variables compare to the original donor variables across population subsets of 
varying size. The variables are: “airshp” (Air and ship travel), “cloftw” (Clothing and footwear), “eathome” (Food 
eaten at home), “elec” (Electricity), and “gas” (Gasoline). (a) Median absolute percent error of point estimates. 
Variables “eathome”, “elec” and “gas” exhibit relatively low error, implying that they are well-captured by the 
underlying models. Variables ‘‘cloftw’’ and “airshp” exhibit higher error, suggesting caution may be warranted 
when analyzing in detailed analyses; (b) Median “value-added” based on comparison of fusion point estimates 
to those of a naive (null) model. Value-added is generally strong (>0.8) across all five variables, though it is 
noisier for “airshp” and ‘‘cloftw’’; (c) Median ratio of fusion point estimate uncertainty to that of original donor. 
The fusion point estimates typically result in about 20% higher uncertainty, reflecting the additional uncertainty 
associated with the modeling process.
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The analyze() function in the fusionModel package was built for this purpose and enables users to correctly 
calculate means, proportions, sums, counts, and medians, (optionally) for population subsets (e.g. by race) along 
with associated uncertainty. There are always limits to how much one can ask of the available data, and uncer-
tainty estimation is the principal tool for detecting when an analysis has “gone too far” – the definition of which 
can only be specified by the analyst. If only point estimates are required, it is sufficient to simply derive the mean 
of the M estimates calculated for each of the independent implicates.

Code availability
The data preparation codes and the specific codes to generate the fused datasets presented in this study are on 
the fusionData github repository (https://github.com/ummel/fusionData). The generalized codes for the fusion, 
analysis, and validation of the datasets are available on the fusionModel github repository (https://github.com/
ummel/fusionModel).
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Fig. 6 External validation of fusionACS using ACS-RECS fused dataset: Comparison of total (a) simulated nat-
ural gas and (b) simulated electricity consumption metrics versus the actual total consumption metrics obtained 
from external sources; Comparison of average (c) simulated natural gas and (d) simulated electricity consump-
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