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Uncertainty in land-use adaptation persists despite
crop model projections showing lower impacts
under high warming
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Climate change is expected to impact crop yields and alter resource availability. However, the

understanding of the potential of agricultural land-use adaptation and its costs under climate

warming is limited. Here, we use a global land system model to assess land-use-based

adaptation and its cost under a set of crop model projections, including CO2 fertilization,

based on climate model outputs. In our simulations of a low-emissions scenario, the land

system responds through slight changes in cropland area in 2100, with costs close to zero.

For a high emissions scenario and impacts uncertainty, the response tends toward cropland

area changes and investments in technology, with average adaptation costs between −1.5

and +19 US$05 per ton of dry matter per year. Land-use adaptation can reduce adverse

climate effects and use favorable changes, like local gains in crop yields. However, variance

among high-emissions impact projections creates challenges for effective adaptation

planning.
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The land system undergoes continuous adjustments due to
the strong dependence of agricultural production on the
long and short-term variability of climatic and socio-

economic conditions. However, the increasing greenhouse gas
(GHG) concentrations are expected to generate unprecedented
changes in average local temperatures, precipitation, and recur-
rence of extreme weather events1, impacting biophysical factors
relevant to crop production2–4. Effective adaptation measures, in
the form of adjustments to changing ecological and socio-
economic conditions, are therefore key to capitalize on possible
opportunities effectively and minimize negative impacts5–10.

Different measures at different system levels can ratchet up
agricultural adaptation to climate change. On the farm scale,
incremental adjustments in irrigation11,12, the use of climate-
resilient cultivars13, modifications in planting dates14, Nitrogen
Input12, and changes in other management practices can improve
the resilience of the agroecosystem15. To further maximize the
benefits of adaptation, a change of production patterns can be
introduced at the land-use system scale in the form of transfor-
mations between land-use types (e.g., expansion of irrigated and
rainfed cropland16) or a shift in crop types and cultivation zones
within existing crop areas, investments in technological
enhancements10,17, and changes in trade flows18, among others.
Due to the uneven spatial distribution of climate change impacts,
a location-specific combination of these measures is required.
Additionally, socioeconomic dynamics (e.g., capital allocation)
play an essential role in decision-making since they determine
relationships between the different levels of adaptation and could
slow down the rate at which adjustments are adopted19.

Most global land system models intrinsically consider various
autonomous adaptation measures and their overall effect on food
prices, economic welfare, and costs. However, agroeconomic cli-
mate change adaptation studies have mainly focused on the
analysis of particular adaptation measures (e.g., trade20–23,
cropland expansion24–26, and investments in research and
development (R&D)27). Although Iizumi et al.28 used the
CYGMA1p74 crop model and an empirical production function
to estimate global adaptation costs at the farm level (maintaining
current crop production systems), including CO2 fertilization,
their analysis did not consider transformative changes in land use
or regional dynamics. Therefore, there is still a limited under-
standing of land-use level agricultural adaptation’s full potential
and associated costs under different scenarios of global change.

Here, we assess the dynamic adaptation of the agricultural
production system and its effects under future global change and
uncertainty. Our study distinguishes from previous agroeconomic

studies on adaptation to climate change in several ways. Firstly,
we use the latest multi-model crop yield impact data, including
the improvements in crop models since the last Inter-Sectoral
Impact Model Intercomparison Project (ISIMIP) round in
201629. Secondly, different from the previous agro-economic lit-
erature, we include CO2 fertilization effects. Prior work only
considered limited sources of impact data and simulations that
excluded CO2 fertilization, leading to mostly pessimistic projec-
tions of the impacts of the increasing CO2 concentrations on crop
yields and the land-use system. Thirdly, we go beyond existing
studies by considering the combined and individual effects of
multiple adaptation strategies, such as crop mixes, irrigation
investments, and R&D, which go beyond the usual focus on
cropland expansion and production relocation. We also account
for uncertainty in the response to the impacts and costs of
adaptation. Due to its ability to combine spatial biophysical
information with the socioeconomic dimension, we use the global
land system Model of Agricultural Production and its Impact on
the Environment (MAgPIE)30,31 to evaluate different system-level
adaptation measures, their relative importance in the supply-
demand balance process, and related costs. The main adaptation
measures considered in this study are the relocation of cropping
areas (based on socioeconomic and biogeophysical constraints)
intra- and internationally (among major world regions), irriga-
tion, cropland expansion, agricultural technological intensifica-
tion, and shifts in crop mixes grown. We focus on two scenarios.
Firstly, a scenario with relatively low emissions and adaptation
challenges (SSP1-RCP2.6), and secondly, a high emissions sce-
nario with high challenges (SSP5-RCP8.5). To isolate adaptation
effects and measures due to climate change from socioeconomic
change, SSP1-RCP2.6 and SSP5-RCP8.5 are compared with SSP1-
NoCC and SSP5-NoCC scenarios (baseline scenarios), respec-
tively. In SSPx-NoCC scenarios, MAgPIE calculates land-use
adjustments for the specific development (SSPx) trajectories
assuming no climate impacts (crop yields and other biogeophy-
sical conditions are kept at 2015 values). Additional details can be
found in Table 1 and the Scenarios description subsection of the
Methodology. The uncertainty of climate impacts is accounted for
by evaluating harmonized and calibrated crop yield data from
nine different Global Gridded Crop Models (GGCM)
(CYGMA1p7432, EPIC-IIASA33, LPJmL34,35, CROVER36,
ISAM12, LandscapeDNDC37, PEPIC38, pDSSAT33, and
PROMET39–41) using five different Climate models (GCM)
(GFDL-ESM4, MRI-ESM2-0, UKESM1-0-LL, MPI-ESM1-2-HR,
IPSL-CM6A-LR). We use state-of-the-art crop model projections
from the phase 3 ensemble of the Agricultural Model

Table 1 Assumptions made in MAgPIE for Shared Socioeconomic Pathways SSP1 (Sustainability) and SSP5 (Fossil-Fueled
development).

Scenario Setting SSP1 (Sustainability) SSP5 (Fossil-Fueled development)

Population71 Global population grows slowly and peaks in 2050 Global population grows slowly and peaks in
2050

GDP72 Rather rapid income growth Fast income growth and development
Food Scenario26 Healthy and low meat diets, reduced food waste Unhealthy and high meat consumption diets, high

shares of food waste
Trade liberalization (% freely
located in more competitive
regions)

Reaches 20% for livestock and secondary products, and 30%
for all other traded commodities in 2050, until 2100

Reaches 20% for livestock and secondary
products, and 30% for all other traded
commodities in 2050, until 2100

Land protection and afforestation
policies

Compatible with the Paris Agreement and the Nationally
Determined Contributions (NDCs)

Current National Policies Implemented (NPIs)

Depreciation rate for capital 5% 5%
Bioenergy demand, emissions
budget and carbon price73

GHG emissions tax emissions and bioenergy demand
consistent with an SSP1-RCP2.6 scenario and an emissions
budget of 1300 GtCO2 (below 2.0∘C) in 2100

Slow incorporation of a uniform carbon price
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Intercomparison and Improvement Project (AgMIP)’s Global
Gridded Crop Model Intercomparison (GGCMI)4. These pro-
jections account for CO2 fertilization effects and the latest climate
change data from the Coupled Model Intercomparison Project
phase 6 (CMIP6). Detailed information regarding climate change
impacts on GCM-GGCM crop yield projections and blue water
availability (surface and groundwater reservoirs used for agri-
culture) can be found in Supplementary Discussion 1 and Sup-
plementary Figs. 1–4.

Results and Discussion
Global land use adaptation and the crop demand-supply bal-
ance. For RCP8.5, harmonized and bias-adjusted crop models’
projections display large disagreement on the global and regional
magnitude and direction of climate change impacts on crop yields
(Fig. 1 and Supplementary Figs. 1, 2). This uncertainty increases with
GHG concentrations and towards the end of the century. However,
in 2100, the median value for the relative change of average

aggregated yields (for maize, soybean, rice, and temperate cereals) for
RCP8.5, as compared to 2015, is estimated to be around only−3.8%,
being maize and soybean the crop types more sensitive to climate
change impacts. Specifically in 2100, taking as reference 2100 SSP5-
NoCC’s patterns, adaptation for SSP5-RCP8.5 in MAgPIE’s GCM-
GGCM-based simulations showed (Fig. 2b) a global growth of
rainfed cropland area (median= 4.2%, range= [−4.5%,+24%]), a
decrease of irrigated area (median=−4.6%, range= [−20%,
+33%]), and a slight change of the factor of technological change
(TC) (median=+0.23%, range= [−4.2%,+6.6%]). This factor
produces a proportional increase in crop yields based on investments
in management and R&D42. Negative values in adaptation-related
changes indicate that projections where yields grow due to CO2

fertilization (among other phenomena associated with climate
change2) lead to reduced input requirements compared with SSP5-
NoCC.Moreover, our findings display even a lower average cropland
expansion required to adjust to climate change in 2100 than pre-
viously reported25 under an SSP5-RCP8.5 emissions and

Fig. 1 Global climate change impacts on crop yields under two different emission scenarios. a, b Display climate change impacts (relative change of
yields compared to 2015 values) on global aggregated crop yields based on harmonized and calibrated crop model projections. Impacts are shown for two
different greenhouse gas concentration trajectories, RCP2.6 (low) and RCP8.5 (high-emissions). The yields were aggregated using the cropland patterns
and area of 1995. The black line represents the GCM-GGCM ensemble’s median value. c, d Display box plots of the relative change in global average
rainfed and irrigated crop yields in 2100 compared to 2015 for the four staple crops (maize, soybean, rice, wheat) and for the GCM-GGCM ensemble of
projections. The horizontal solid line represents the median, the box the interquartile range, and the vertical lines extend from the lowest to the largest
values of the GGCM-GGCM ensemble.
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socioeconomic scenario for the year 2050. However, uncertainty
remains high. Regarding climate change adaptation for the ensemble
of GCM-GGCM-based MAgPIE simulations in 2050, differences
between SSP5-RCP8.5 and SSP5-NoCC outputs (TC and cropland
patterns) are almost negligible and have a low uncertainty (Supple-
mentary Fig. 5b), compared to 2100.

In a post-processing step, we estimated the impacts of not
adapting the land use system to climate change by calculating
production using SSP5-NoCC outputs (cropland patterns and
TC) and RCP8.5 GCM-GGCM crop yield impact projections for
the same year (see the Post-processing calculation of climate
impacts on crop production subsection in Methods). This
information was then used to estimate the relative difference
between the impacted production and the demand. In 2100, not
adapting would generate a modest positive overproduction
(median=+1%, range= [−15%,+14%]) compared with
demand (Fig. 2d). Although overproduction, seen for some
GCM-GGCMs simulations, would likely help reduce the risk of
food insecurity, it could also impose unnecessary pressure on soils
and ecosystems and decrease commodity prices. On the contrary,

in 2050, not adapting displays a slight underproduction
(median=−1%, range= [−11%,4%]) (Supplementary Fig. 5d).
To better understand the effects of adjusting cropland patterns
and TC on balancing supply and demand on the global scale, we
calculated, also in a post-processing step, the impact of not
adapting these variables (i.e., we used the variables’ SSP5-
NoCC values) individually while keeping the others at SSP5-
RCP8.5 values. Our results display that rainfed cropland patterns
exhibit the widest range of effects ([−8%,+8%]) when compared
to TC (which ranges from −5% to +4%) and irrigated cropland
(which ranges from −4% to +2%) (as shown in Fig. 2d). These
results indicate that the climate change impacts on crop yield
projections are primarily buffered through adjustments in
cropland area and crop mix patterns. However, cropland
expansion would induce a self-reinforcing dynamic due to the
additional emissions generated by deforestation43.

Under SSP1-RCP2.6, impacts suggest smaller adaptation
challenges than in SSP5-RCP8.5. In 2100, global adaptation
would entail a slight increase in irrigated cropland and a slight
decrease in rainfed cropland compared with SSP1-NoCC values.

Fig. 2 Global land-use adaptation responses in the MAgPIE model under SSP1-RCP2.6 (low emissions) and SSP5-RCP8.5 (high emissions) scenarios.
a, b Show the relative difference of (TC)* and rainfed and irrigated cropland areas values for SSP1-RCP2.6 and SSP5-RCP8.5 scenarios with respect to the
socioeconomic scenarios without climate impacts, i.e., SSP1-NoCC and SSP5-NoCC in the year 2100. c, d Depict the individual and combined effects of not
adapting cropland patterns and TC to climate change. These effects are calculated in a post-processing step as the relative difference between impacted
production (calculated using SSPx-NoCC’s TC and/or cropland patterns with harmonized and calibrated GCM-GGCM impacted crop yield projections) and
SSPx-RCPy demand. *The TC factor produces a proportional increase in crop yields based on investments in management and R&D.

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00941-z

4 COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:284 | https://doi.org/10.1038/s43247-023-00941-z | www.nature.com/commsenv

www.nature.com/commsenv


Changes for TC are also lower than for the SSP1-NoCC scenario.
Not adapting cropland patterns and TC would result in a slightly
higher over-production globally (median=+2%, range=
[−2%,+5%]) than SSP5-RCP8.5, which implies that adaptation
can also take advantage of positive gains in yields for a more cost-
efficient and less intensified production system. 2050’s relative
change of adaptation strategies, compared with SSP1-NoCC in
the same year, is similar to 2100 values but with lower
uncertainty.

In general, the positive effects of climate change on yields
displayed in some of the simulations of the ensemble of GCM-
GGCMs impact data, primarily due to CO2 fertilization and
improved blue water availability, drive reductions in cropland and
intensification. This trend aligns with studies considering CO2

fertilization20, and differs from studies that ignore it24. Under
high emissions, if CO2 fertilization is overlooked, the impacts on
yields are primarily negative due to only considering higher
temperatures and changes in precipitation during the growing
season, which could lead to overestimating the negative average
impacts of climate change for certain crops and regions. However,
the uncertainty of the impacts of high CO2 concentrations on
crop yields remains high and, consequently, that of adaptation
measures. This uncertainty can increase the risk of faulty
adaptation planning, also known as maladaptation, which could
ultimately exacerbate the situation and leave people and
ecosystems more vulnerable to the effects of climate change44.
Our findings also suggest that the land-use and food systems will
need to evolve and increase their flexibility if CO2 emissions are
not reduced.

Regional adaptation to climate change impacts of a high-
emission scenario. The global and regional model uncertainty of
climate change impacts among the GCM-GGCM ensemble of
crop yield projections for the RCP 8.5 scenario increases towards
the end of the century. The impacts’ range leads to very different
intra- and inter-regional adaptation dynamics within the GCM-
GGCM-based MAgPIE simulations. To exemplify the disparity of
land-use adaptation that could take place for an SSP5-RCP8.5
future, we evaluate the relative difference between three MAgPIE
GGCM-GCM-based simulations and SSP5-NoCC in the year
2100 for TC, rainfed and irrigated cropland, crop mixes and
production allocation (absolute global and regional time series
can be found in Supplementary Figs. 6–9). Specifically, we
describe the regional adaptation strategies for the LPJmL-MRI-
ESM2-0 combination, given that this GCM-GGCM contains all
the crop types used in MAgPIE. Additionally, regional adaptation
strategies simulated by MAgPIE are also described for the GCM-
GGCM combinations located at the extremes of the range of the
global average crop yield projections in 2100 (Fig. 1b)
(CYGMA1p74-UKESM1-0-LL as the most pessimistic, and
PROMET-MRI-ESM2-0 the most positive).

The global adaptation response under the LPJmL-MRI-ESM2-
0 projection includes smaller irrigated (−10%) and slightly larger
rainfed (+0.3%) cropland areas in 2100 compared to SSP5-
NoCC. In this case, moderately lower TC (−1.1%) is also seen
(Fig. 3). A likely cause is the water-saving effect of CO2

fertilization leading to higher rainfed yields, reducing the relative
benefits of irrigation compared to rainfed production.

Regionally, under this GCM-GGCM simulation, the reforming
economies (REF) experience the highest relative change in
domestic livestock (+26%) and crop (+12%) production
compared with SSP5-NoCC, which in consequence, increases its
self-sufficiency ratio (SSR) (from 0.98 to 1.06) under climate
change (Fig. 4). The SSR represents, in value terms, the fraction of
demand for traded agricultural commodities that are produced

domestically (see the Self-sufficiency ratio (SSR) subsection in
Methods). Increased livestock exports explain this growth which
is backed by an increase in crop yields (yields including
adaptation) (rainfed +11%, irrigated +3.3%) and water avail-
ability for agriculture (Supplementary Fig. 4). Associated with the
comparative advantages of producing livestock products in REF,
we see a lower livestock production in large producing regions
such as the countries of the European Union (EUR) (−3.2%) and
the United States of America (USA) (−5.6%). Compared with
SSP5-NoCC, EUR experiences a decrease in irrigated yields
(yields including adaptation as TC and crop mixes changes)
(−17%), which increases the need for cropland (rainfed=+3.4%,
irrigated=+4.5%), reducing the area available for pastures.
Regarding the largest producers, Latin America (LAM) and Other
Asia (OAS) experience a slightly lower overall crop production
(LAM=−3.2%, OAS=−1.3%) due to gains in competitiveness
in other regions in 2100 (Supplementary Fig. 10). This causes
slight negative relative differences in irrigated (LAM=−14%,
OAS=−1%) and rainfed cropland (LAM=−5%, OAS=−3%)
and in the self-sufficiency ratio (LAM=−2, OAS=−1 percen-
tage points) compared with SSP5-NoCC. As for the differences in
cropping patterns, the largest shifts in the relative crop mixes
grown (Fig. 5b) are seen in the Sahel region (85%) and Equatorial
Africa (64%), changes occur due to a reduction of maize
production (relocation to more competitive regions) that turns
in higher shares of other crops; in parts of Afghanistan and
Pakistan (70%) also due to the relocation of production of maize
and a subsequent higher share of temperate cereals; and in the
Mediterranean Region (65% of the mix is different from SSP5-
NoCC), mostly due to the relocation of temperate cereals to
higher latitudes and a higher share of maize. Although LPJmL-
MRI-ESM2-0 does not show large global average impacts on
yields, these changes in crop mixes highlight how climate impacts
on agriculture are predominantly experienced at the local level
and indicate that the affected communities would need to
undergo considerable adjustments to stay competitive. More
details about how the shift in crop mixes was calculated can be
found in the Methods’ subsection Shifts in crop mixes grown.

On the negative end of average climate change impacts,
MAgPIE’s simulation based on CYGMA1p74-UKESM1-0-LL
crop yield projections, contrarily to LPJmL-MRI-ESM2-0, dis-
plays a positive relative difference in the factor of technological
change (TC=+6%) and cropland (irrigated=+32%, rainfed=
+21%) to meet future crop demand compared to SSP5-NoCC in
2100.

Regionally, the USA, despite adaptation responses (TC=+4%,
rainfed cropland=+15%, and irrigated cropland=+103%),
experiences the largest drop in crop production (−34%)
(Supplementary Fig. 10a) of all regions compared with SSP5-
NoCC in 2100. Consequently, its self-sufficiency ratio gets
reduced due to fewer crop and livestock exports. Similarly,
negative relative differences in crop production occur in India
(IND) (−17%), Canada (CAN) (−12%), and China (CHA)
(−5%) despite higher investments in technology (CAN’s TC=
+24%, IND’s TC=+7.6% and CHA=+6.9%), and higher
rainfed (CAN=+14%, IND=+17%, CHA= 21%) and irrigated
(CAN=+357%, IND=+1.7%, and CHA=+132%) cropland
area. Some regions with a resulting large decrease in estimated
yields, such as Latin America (LAM) (irrigated=−48%,
rainfed=−23%) and Sub-Saharan Africa (SSA) (irrigated=
−65%, rainfed=−10%), increase their domestic crop produc-
tion (LAM=+6.3%, SSA=+5.6%) through larger cropland area
in contrast to SSP5-NoCC. The extended crop yields decline in all
regions and LAM’s and SSA’s low land conversion and
production costs (compared with other regions) could explain
this counter-intuitive behavior. Regarding crop mixes (Fig. 5a),
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Fig. 3 Regional relative difference of adaptation-related variables estimated by MAgPIE in the year 2100 for three different GCM-GGCM
combinations, compared to the SSP5-NoCC scenario (without climate impacts). The color of the tiles represents the relative difference between the
SSP5-RCP8.5 simulations and the SSP5-NoCC scenario (red for lower than zero and blue for larger than zero values) for the year 2100. The numbers
represent the exact values. Production, (crop) areas (irrigated and rainfed), and (crop) yields refer not only to the four staple crops (maize, soybean, rice,
and temperate cereals) but to the 19 types considered in MAgPIE. TC corresponds to the technological change factor that produces a proportional increase
in crop yields based on investments in management and R&D. Yields reported here include the effects of adaptation. Specifically, three GCM-GGCM
combinations are presented, CYGMA1p74-UKESM1-0-LL (most negative average global impacts), LPJmL-MRI-ESM2-0 (MAgPIE’s default GCM-GGCM
combination), and PROMET-MRI-ESM2-0 (most positive average global impacts).

Fig. 4 Aggregated self-sufficiency ratio of traded agricultural products and their relative percentual change compared with the SSP5-NoCC scenario.
Values are plotted by world region for the year 2100 under the most divergent scenarios in SSP5-RCP8.5, and LPJmL-MRI-ESM2-0. a SSP5-NoCC self-
sufficiency ratio, b LPJmL-MRI-ESM2-0, c CYGMA1p74-UKESM1-0-LL, d PROMET-MRI-ESM2-0 represent the difference in percentage points of the self-
sufficiency ratio between the SSP5-RCP8.5 simulations and SSP5-NoCC.
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shifts are driven primarily by losses in maize yields in the USA
and CHA, resulting in up to 90% changes in crop shares in these
regions compared to SSP5-NoCC in 2100. LAM, particularly in
Brazil and Chile, displays higher shares of maize and soybean at
the expense of temperate cereals and rice. In SSA, the Sahel region
displays a larger share of maize production, while Equatorial
Africa experiences a decrease, indicating internal regional
relocation of production. OAS (specifically, insular South East

Asia) and EUR (Mediterranean Region) also shift towards higher
shares of maize by relocating other crops like temperate cereals.

Finally, on the positive end of impacts, the PROMET-MRI-
ESM2-0 simulation is characterized by large increases or slight
decreases in crop yields in most regions. Accordingly, this
simulation exhibits a lower global need for cropland (irrigated=
−19%, rainfed=−2.6%) and investments in R&D (TC=−4%)
in 2100. Smaller TC and cropland are also seen in almost all
regions compared with SSP5-NoCC. Regarding domestic produc-
tion of crops and livestock, most of the regions only experience
minor differences. Australia and New Zealand (ANZ), REF, and
European countries not in the EU (NEU) are the only ones that
stand out due to their relative crop (ANZ=−6%, REF=+11%,
NEU=+4%) and livestock (ANZ=−17%, REF=+25%,
NEU=+14%) production changes. Regarding crop mixes, the
gains in crop yields, particularly in soybean, temperate cereals,
and maize, result in changes in the proportion of crops grown in
different regions, once again, most notably in the Sahel (85%
shifted) Region and Equatorial Africa (76%), the Mediterranean
region (70%), as well as specific areas in Brazil (up to 70%) and
Chile (up to 70%).

Although there is a large disparity in the projected distribution
of impacts on the regional scale among the ensemble, our results
indicate that while high-latitude regions like NEU and REF may
experience an increase in crop production in a high-emissions
scenario, they would remain small producers compared to LAM,
OAS, or EUR (as illustrated in Supplementary Fig. 10). Even in
scenarios where most regions face a decline in crop yields, LAM,
SSA, or OAS still increase their production by expanding
cropland. These regions contain biodiversity hotspots, so crop-
land expansion driven by climate change could threaten these
already fragile ecosystems39. Our findings also show the critical
role that local and regional adaptation plays in facing (or taking
advantage of) climate change impacts. Particularly, the cropland
allocation among crop types in the Sahel, Equatorial Africa, and
the Mediterranean regions is notably sensitive to variations in
crop yields due to climate change.

Costs of adaptation to climate change. Global average adapta-
tion costs (see Costs related with adaptation in Methods) for crop
production and their uncertainty concerning crop model pro-
jections differ greatly between the SSP1-RCP2.6 and SSP5-
RCP8.5 scenarios (Fig. 6) in 2100 for the GCM-GGCM ensemble.
SSP5-RCP8.5 displays yearly positive average global adaptation
costs (average=+4.8 US$05 per ton of dry matter, range= [+19,
−1.5] US$05 per ton of dry matter). Positive (negative) adapta-
tion costs indicate increased (decreased) production costs under
SSP1-RCP2.6 and SSP5-RCP8.5 relative to the non-climate
change scenarios, SSP1-NoCC and SSP5-NoCC in each year,
respectively. For the estimated global crop production in 2100
under an SSP5-RCP8.5 developing trajectory, this uncertainty
translates into absolute production adaptation costs ranging
between −17 and 209 billion US$05 per year. Although the values
cannot be directly compared due to methodological differences,
previous farm-level studies such as that of Iizumi et al.28 pro-
jected only positive adaptation costs between 91 and 94 billion US
$05 per year for the 2091–2100 decade under high emissions and
impacts on four staple crops (maize, soybean, rice, and wheat).

In an SSP1-RCP2.6 world, global average climate change
adaptation costs are almost zero (average=+0.31 US$05 per ton
of dry matter, range= [−0.62, +1.4 US$05 per ton of dry
matter]) in 2100. However, uncertainty in yearly adaptation costs
for SSP1-RCP2.6 is highest in the year 2050 (average=−4 US$05
per ton of dry matter, range= [−10,2.5] US$05 per ton of dry

Fig. 5 Shift (in percentage points) of allocation of cropland among
different crop types for the SSP5-RCP8.5 scenario, three different GCM-
GGCM combinations and compared to the baseline sceneario SSP5-NoCC
(no climate impacts) in 2100. Specifically, for (a) CYGMA1p74-UKESM1-
0-LL (most negative average global impacts), (b) LPJmL-MRI-ESM2-
0 (MAgPIE’s default GCM-GGCM), and (c) PROMET-MRI-ESM2-0 (most
positive average global impacts). Yellow areas (0 percentage points) show
that the distribution (in %) of cropland among crop types is the same
between the GCM-GGCM MAgPIE simulation and SSP5-NoCC. Dark blue
(100 percentage points) indicates that cropland was distributed among a
completely different crop mix compared to SSP5-NoCC.
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matter). The higher uncertainty projected in 2050 can be
attributed to the adaptation driven by a peak in population in
2050. This results in a higher demand for agricultural
commodities in 2050 compared to the second half of the century.
For the socioeconomic scenarios SSP1 and SSP5, a decrease in
population in the second half of the century also suggests that
after 2050 the food system will primarily need to address the
impacts of climate change and dietary choices rather than an
increase in demand, implying that after 2050 the food system will
rather have already established infrastructure to produce more
than what will be demanded in the second half of the century,
mitigating part of the uncertainty in costs associated with crop
yield projections.

The results for SSP5-RCP8.5 suggest no large reductions in
production costs for those GCM-GGCM with gains in crop yields
in 2100. They also suggest that the growth in costs and their
uncertainty are associated with differences in investments in
intensification (average=+1.3 US$05 per ton of dry matter,
range= [0,+5.5 US$05 per ton of dry matter]) and land
conversion to cropland (average=+2.4 US$05 per ton of dry
matter, range= [−1 US$05, +13 US$05 per ton of dry matter]).
Although the changes and uncertainty in land conversion costs
were expected, the behavior of investments in intensification
implies high marginal costs for this adaptation mechanism
compared with the others.

For the SSP5-RCP8.5’s GCM-GGCM combinations at the
extremes of the range of average projected climate impacts on
yields, a reduction in production costs (−1.3 US$05 per ton of
dry matter) was calculated for PROMET-MRI-ESM2-0 (largest
gains in projected yields) due to lower conversion, trade &
transport, and intensification costs compared to SSP5-NoCC. In
contrast, an increase of +9.8 US$05 per ton of dry matter in cost
is seen for CYGMA-UKESM1-0-LL (Figs. 6, 7). Although
CYGMA-UKESM1-0-LL displays the largest losses in global
average yields projections of the GCM-GGCM ensemble in 2100,
pDSSAT-IPSL-CM6A-LR shows the highest average costs of
adaptation (+19 US$05 per ton of dry matter), specifically due to
larger land conversion in the USA compared to SSP5-NoCC. Our
findings indicate that regional climate change impacts dynamics,
the rate of change, and previous land-use adjustments have a
larger effect on costs than the global averaged impacts in one
specific year. More information about regional adaptation costs
can be found in Supplementary Fig. 11.

Limitations. Our study explores how the land-use system might
adapt to climate change’s impacts without radical transformations
to the economic and food production systems (e.g., degrowth,
and cultivated meat, among other exciting developments still not
introduced at large scale or not yet conceived). Given that there is
still much uncertainty around the impacts of climate change on
crop yields (additional information about the sources of variance,
including a sensitivity analysis for MAgPIE’s assumptions, can be
found in Supplementary Discussions 2 and 3) and the increase in
atmospheric CO2 concentrations, our goal is to analyze the range
of potential futures that the land-use system could face under
different emissions scenarios, using the most up-to-date impact
data available. However, it is important to note that the average
values presented in our study should not be misinterpreted as the
most probable future. Consequently, our work is not intended to
provide fixed adaptation mechanisms or advise policymakers. We
aim to contribute to a better understanding of the system’s
boundaries regarding adaptation mechanisms and capacities
considering the interaction between global and regional scales.

Regarding additional limitations, the impact data generated by
the GCM-GGCM model only considers four staple crops, which
account for two-thirds of human caloric intake45.

Although LPJmL impact data was used for the remaining crop
types and no inconsistencies are expected (the four modeled
crops are independently modeled from other crops and were not
grouped with other crop categories in MAgPIE), this impact data
only shows variance across GCMs. Given the high variance of
impacts from crop models, our output parameters, which depend
on the aggregate impacts of all crops (such as land expansion),
only capture some of the cross-model differences. Moreover,
LPJmL is one of the GGCMs with a relatively optimistic outlook
regarding crop yield projections. This suggests that, for additional
crops, projections may be less pessimistic than those produced by
other GGCMs. Previous impact studies have mainly focused on
the impacts of climate change on wheat, maize, soybean, and rice,
which means that there may be even greater uncertainty around
the impacts of climate change on other crop types. More
information about this and possible future actions to address the
issue can be found in Müller et al.46.

In the specific GCM-GGCM impacts data set here, farm-level
management decisions (e.g., changes in growing dates, and
nitrogen input, among others) are underrepresented, which could
lead to underestimating adaptation potentials for the overall

Fig. 6 Global climate change-driven adaptation costs for crop production for SSP1-RCP2.6 and SSP5-RCP8.5 and for the ensemble of GCM-GGCM.
a, b Show climate change-driven adaptation costs for the multi-model ensemble of runs for SSP1-RCP2.6 (low emissions) and SSP5-RCP8.5 (high
emissions) scenarios, respectively. The black line represents average values, while the shaded area is the standard deviation).
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agricultural system. For this reason, future analyses could include
parallel farm- and land-use level adaptation to estimate the full
potential of the agricultural sector. Another limitation is that we
focus on autonomous land system-level adaptation, i.e., on those
system measures at local and global scales that emerge as market
responses to climate change-driven disturbances in crop yields
and resource availability. Although we include bioenergy,
afforestation, and protection policies associated with the socio-
economic trajectories of the scenarios SSP1 and SSP5 (see
Table 1), future work should also consider strategies under
planned adaptation. For example, more stringent policies could
be included to evaluate additional pressures to the system like
preservation and expansion of protected areas, ensuring calorie
availability for consumers (via subsidies)21, or stimulating rural
development47. Considering more drastic policies such as land
protection schemes could constrain adaptation potentials and
favor environmental benefits at the expense of, most likely, higher
costs due to the need for higher investments in capital and
technology, irrigation, or relocation to expensive production
areas. Since we focus on global and long-term impacts, other
dynamics missing in our analysis include extreme weather effects,
the uncertainty of the impacts that geopolitical instabilities48 or
other socioeconomic scenarios could have on commodity prices
and trade flows. Finally, we did not consider other scarcely
reported effects on crop production, such as the impact of heat
stress on labor and animal productivity.

To conclude, our main findings indicate that considering the
effects of CO2 on crop yields could result in a lower required

global expansion of cropland (based on median values) and
cropland intensification and, consequently, lower adaptation costs
than previously reported to adjust to climate change. However,
there remains a high level of uncertainty regarding land-use
adaptation measures at the global and regional scales. We also
found that adaptation costs, towards the end of the century,
would not depend on the average global impacts but rather on the
regional distribution of effects, the rate of change, and previous
adjustments made to the system based on socioeconomic drivers
of change. That is to say that the large range of possible impacts
and, in consequence, adaptation mechanisms as GHG emissions
increase highlight the need for a more flexible food system on
both the supply and demand sides. This could involve introdu-
cing new technologies, creating more liberalized markets20, and
implementing more profound transformations to the economic
system49, among other measures.

Methods
MAgPIE model. The MAgPIE land system modeling framework (Version 4.4.0) is
an open-source, recursive dynamic global partial equilibrium model30,31 for the
agricultural, forestry, and other landuse (AFOLU) sectors. The model minimizes
the overall AFOLU costs based on spatially-explicit agricultural productivity values,
the demand for agriculturally-based food, feed and material demand, and inter-
national trade30,50. The projections of socioeconomic drivers such as population,
development state, and demography are carried out in this study on the level of
13 socioeconomic regions (Supplementary Fig. 12). The scenario parametrization is
based on the Shared Socioeconomic Pathways database (SSPs)51. The demand for
food and its various components is projected by considering population growth,
demographic structure, and per-capita income. Factors such as household food
waste, body height, body weight, and physical activity levels are also considered

Fig. 7 Details of Climate change-driven adaptation costs for crop production. The figure displays, compared to SSP5-NoCC the details of the changes in
specific adaptation-related costs in dollars per tonne of dry matter (tDM), for crop production and for the most expensive and the most divergent, in terms
of biophysical impacts, GCM-GGCMs. Specifically, (a, b) show costs for the SSP5-RCP8.5 (high emissions) scenario for PROMET-MRI-ESM2-0 and
CYGMA1p74-UKESM1-0-LL, respectively, and (c) shows details for the GCM-GGCM with higher adaptation costs in 2100 (pDSSAT-IPSL-CM6A-LR).
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(more information can be found in Bodirsky et al.52). In this study, food demand is
assumed to be price inelastic. Bioenergy demand is estimated as the combination of
1st generation biofuel demand in the shorter term and a longer-term demand for
2nd generation biofuels (derived from previous studies through coupling with the
REMIND model)53. Livestock demand is estimated using exogenous region-specific
feed baskets and productivity, influencing crop demand for feed use. Then, the
distribution of livestock production is linked to subregional fodder, pasture, and
urban areas. Trade is calculated based on historical region-specific patterns and
comparative advantages in production costs among regions. Specifically, the model
allows for assessing climate effects on the AFOLU sector through simulated
changes in yields, water availability and crop irrigation requirements, and soil
carbon. The biophysical constraints used in MAgPIE for the evaluation of different
climate futures are usually derived from the Lund-Potsdam-Jena managed Land
(LPJmL) dynamic global vegetation model34,35,54 which simulates crop yields, and
other biophysical and biogeochemical processes for different major crops, pastures,
and rangelands under different climate scenarios at gridded resolution (0.5∘ × 0.5).
In this study, high-resolution crop yields are used from an ensemble of different
crop models (pDSSAT, EPIC-IIASA, CYGMA1p74, CROVER, PROMET, Land-
scapeDNDC, PEPIC, ISAM, and LPJmL) (see below for more information about
sources, harmonization, and calibration of MAgPIE’s biophysical inputs from the
crop models). Additional carbon stocks, water availability, irrigation water demand
for crops, and pasture climate impact data come from LPJmL simulations. The
gridded inputs regarding potential yields, water availability and requirements, and
terrestrial carbon content are then aggregated to 200 (default setting) clusters based
on the k-means clustering method and on yields, irrigation, and transport distance
similarity criteria30. Each cluster is assigned to one of MAgPIE’s socioeconomic
regions.

Regarding the optimization process, the minimization of production costs is
carried out for each time step under consideration. The current analysis was carried
out between 1995 and 2100 in time steps of 5 years until the first half of the 21st
century and ten years in the second. More details about MAgPIE’s parametrization
of processes related to adaptation, and a sensitivity analysis in which the impacts of
related assumptions are assessed, can be found in Supplementary Methods 1 and
Supplementary Discussion 3.

Costs related with adaptation. Concerning costs related to adaptation, we focus
on four cost categories in MAgPIE. Firstly, land conversion costs estimate the costs
of converting between different land cover types, specifically for expanding crop-
land, pasture, and forests. For cropland, a reward for reduction is also considered.
Given the lack of information regarding cropland reduction costs, MAgPIE counts
with a calibration routine to find the regional costs that best match historical land
cover trends. Secondly, we evaluate intensification costs, including input factors
(labor and capital requirements) and investments in management and technology.
The investments destined to improve technology and management practices are
translated into a landuse intensity factor (TC), which proportionally increases
MAgPIE’s calibrated yields42. Input factor costs in MAgPIE depict the require-
ments for capital and labor per crop and region. We assume that costs associated
with labor are fixed per tonne of crop type produced. For capital, we consider
investments to be dependent on previous capital stocks and their depreciation and
specific for each crop type produced. In consequence, input factor costs represent
shifts in the crop types produced within a cluster cell as an adaptation measure.
Fertilizer and chemicals costs are considered in other modules in MAgPIE. Thirdly,
the costs of equipping areas for irrigation account for the required investments
needed to expand and equip irrigated cropland. Finally, trade and transportation
costs are accounted for in our results. Transportation costs are based on the costs of
moving agricultural commodities intra-regionally between production sites and the
closest market center. Trade costs are based on the regional net exports (and their
specific trade margins and tariffs per region and commodity) for traded products
(crops, distilled products, fibers, livestock products, oil cakes, and molasses).

Adaptation costs are then calculated as the absolute differences of these costs
(aggregated) between the scenarios with climate impacts (SSP1-RCP2.6 and SSP5-
RCP8.5) and the corresponding costs for the scenarios without climate effects (SSP1-
NoCC and SSP5-NoCC). This ensures the isolation of the costs related to climate
change adaptation without the adjustments made due to socioeconomic development
pressures. Finally, we divide the adaptation costs by the aggregated crop production
(tDM) to determine the average adaptation costs per unit of crop produced.

Scenarios description. To comprehensively analyze climate change impacts and
adaptation strategies in agriculture, we evaluate two different climatic futures with
their corresponding socioeconomic trajectory and uncertainties. From the climate
perspective, RCP scenarios were constructed to evaluate possible futures con-
cerning concentrations of GHG (climate forcing agents)55. RCPs are named and
based on their target level of radiative forcing for the year 2100. They are often
paired with consistent socioeconomic trajectories stemming from the SSP
scenarios.

The SSP narratives entail a broad selection of baseline assumptions of
socioeconomic variables (demographic, economic, technological, social,
governance, and environmental) to account for the uncertainty of possible
development paths51,56.

From the modeling-chain perspective25, general circulation/earth system
models (GCM) take the information of the RCP trajectories (GHG concentrations)
to estimate their effects on climate variables (such as temperatures and
precipitations). The global gridded crop models (GGCMs) then use the data on
climate variables to evaluate their impact on biophysical variables (such as crop
yields, soil carbon, water demand, and availability). Finally, the outputs from the
crop models become inputs, together with the SSPs assumptions on population,
GDP, and food demand, among other economic constraints, for the economic
models (such as MAgPIE). A detailed flow diagram of the modeling chain can be
found in Supplementary Fig. 13.

In our study, we focus on two different climate-socioeconomic scenarios. A
sustainable low-emission scenario with low adaptation challenges (SSP1-RCP2.6)
and a resource-intensive high-emission (SSP5-RCP8.5) one to cover the overall
range of possible impacts.

The SSP1 scenario51, describes a relatively sustainable development pathway;
effective cooperation of organizations (local, national, and international) and
sectors (institutions, private, and civil society); lower population growth; modest
and greener economic growth with a rapid convergence of lower-income countries;
and reduction of resource-intensive lifestyles, and measures to improve the
efficiency of production. For land use and the food system26, SSP1 represents a
world where land and deforestation are highly regulated, with healthy and low-
meat consumption diets and low food waste rates. SSP1 is matched here to RCP2.6,
which represents a forcing level in line with a warming level below 2∘ Celcius at the
end of the century and compared with pre-industrial levels1. The SSP551 scenario
displays rapid growth of emerging and industrialized economies, integration of
global markets, innovative and participatory societies that invest in social and
human capital, and the removal of institutional barriers. This “highway” road is
characterized by exploiting fossil fuels, resource-intensive lifestyles, and local
solutions to environmental impacts through technological advancements. It also
assumes limited cooperative intention to solve global environmental concerns.
Population peaks and then slowly declines in the middle of the 21st century. In this
scenario, diets are unhealthy, with high animal consumption and high food waste
shares. SSP5 is paired to RCP8.5, which displays high radiative forcings due to a
steep growth of GHG emission and concentrations and a warming level of above 4∘

Celsius at the end of the century, compared with pre-industrial levels1.
To determine adaptation due to only climate change and not socioeconomic

adjustments, SSP1-NoCC and SSP5-NoCC runs were also made. In the SSPx-NoCC
runs, socioeconomic assumptions corresponding to the SSP1 and SSP5 trajectories were
used, but biophysical data were assumed to stay constant at 2015 values throughout the
century. Finally, although the response analysis primarily centers around 2100 values,
2050 values are also considered on the global scale. This is because, based on Müller
et al.46, during the first half of the century, differences in parametrization and modeling
assumptions of biophysical processes largely dominate the variance in crop yields
among the GGCMs. However, in the second half of the century, the climate signal
becomes larger, and its uncertainty plays a more prominent role.

Source of biophysical impacts data. To evaluate the uncertainty of climate
change adaptation measures and costs in agriculture, we use a set of GCM-GGCM
crop yield projections for the different climate-socioeconomic scenarios (SSPs-
RCPs). For this purpose, we use the data reported in phase 3b of the Inter-Sectoral
Impact Model Intercomparison Project (ISIMIP)57. ISMIP provides a consistent
framework to evaluate possible climate change impacts for diverse sectors and
scales under common climate and forcing data, scenarios set-up, terms of data, and
format. The results of each evaluation round are made available to be used by the
scientific community58. Within the ISIMIP3b simulation round, RCP2.6, RCP7.0
and RCP8.5 are assessed by different global gridded crop models for five different
GCM climate forcing datasets (GFDL-ESM4, MRI-ESM2-0, UKESM1-0-LL, MPI-
ESM1-2-HR and IPSL-CM6A-LR). The climate forcing datasets were bias-adjusted
and statistically downscaled based on the CMIP6 framework and methods for the
consistent intercomparison of climate models59–61. Within our study, we specifi-
cally focus on the RCP2.6 and RCP8.5, as they represent the full range of climatic
futures available within the available ISIMIP 3b sets.

We used LPJmL, EPIC-IIASA, pDSSAT, CYGMA1p74, PEPIC, PROMET,
CROVER, LandscapeDNDC, and ISAM crop yield projections. We selected these
models because they reported information for the four crops (maize, soybean, rice,
and wheat) and five climate models here considered. These sets are outputs of the
AgMIP’s Global Gridded Crop Model Intercomparison (GGCMI) framework4.
ISIMIP3b only provides yield projections for a limited number of staple crops
(maize, soybean, winter wheat, spring wheat, and two rice seasons). These crops
were mapped to MAgPIE’s maize, soybean, rice, and temperate cereals crop types.
Winter and spring wheat and the different rice types were merged and mapped to
temperate cereals and aggregated rice via a cultivated area mask, available via the
ISIMIP3b database. Wheat represents the bulk of temperate cereals, and rice,
soybean, and maize are part of MAgPIE’s 19 crop types. Given that these four
staple crops cover nearly two-thirds of global agricultural consumed calories62, we
assume that they can represent the bulk of climate change impacts on the global
food system. The data was also harvest-year corrected to make sure that the harvest
year reported by the GGCMs corresponded to calendar years. Specifically, when the
maturity day of a crop took place before the planting date, we assumed that the
reported crop yield value corresponded to the following year’s harvest.
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Since MAgPIE evaluates 15 additional crop types beyond the four major staples,
it was necessary to use LPJmL yields for the missing crop types. Additional climate
impacts data regarding carbon stocks (vegetation, litter, and soil) and water
availability were simulated for the different GCMs using LPJmL454, and yield and
irrigation water demand data for additional crops and pasture were simulated using
LPJmL5, which is the same version used for CMIP6.

In total, 45 combinations of GCM-GGCM projections were calibrated and
harmonized for each SSPx-RCPy scenario, as explained below. These combinations
are the result of using the nine crop models and five different General Circulation
Models (GCMs) (GFDL-ESM4, MRI-ESM2-0, UKESM1-0-LL, MPI-ESM1-2-HR,
IPSL-CM6A-LR). The analysis of impacts shown in Supplementary Discussion 1
corresponds to the aggregated potential yields of the four staple crops (maize,
soybean, temperate cereals, and rice). The global averages were aggregated using
constant 1995 cropland patterns as weight.

Climate trends extraction and historical harmonization of biophysical inputs.
Spatially explicit biophysical constraints in MAgPIE are usually derived from
simulated data by the dynamic global vegetation, crop, and hydrology model
LPJmL at a spatial resolution of 0.5 degrees (latitude/longitude) and driven by
historical climate data time series63. In this study, to assess uncertainty, crop yield
patterns from other global gridded crop models are also considered and processed.

We process and harmonize the simulated data from LPJmL and for the other
GGCMs in the same way and following two steps, (1) we smooth the data to isolate
long-term climatic trends from short-term weather variability, and (2) we
harmonize output for future climate scenario data (GCMs) to outputs from an
LPJmL simulation with historical climate data estimates (GSWP3-W5E5).

For (1), We use R’s cubic smooth spline interpolation64,65 over the simulated
data to extract long-term trends for all outputs (vegetation, litter, and soil carbon
stocks, yields, water availability, and irrigation water requirements). By taking a
spline with 4 degrees of freedom per 100 years, we obtain smoothed data
comparable to a 30-year running average. In (2), to be able to compare different
climate scenarios to one another, we harmonize biophysical inputs for future GCM
climate scenarios to an LPJmL simulation with climate input data based on
observed data. We, therefore, extract the future trends and locate them on top of
the baseline level for a given reference year. To avoid unrealistic amplifications of
trend signals in the case of a strong underestimated baseline by the climate scenario
data, we follow the method of66, which applies a gradual transition between relative
and absolute effects in the following form:

eX
scen
t;i ¼ Xbase

t;i 1þ
ΔXscen

t�t0 ;i

Xbase
t0 ;i

Xbase
t0 ;i

Xscen
t0 ;i

 !λt0 ;i
0

@

1

A ð1Þ

with

ΔXscen
t�t0 ;i

¼ Xscen
t;i � Xscen

t0 ;i
and λt0 ;i ¼

ffiffiffiffiffiffiffi

Xscen
t0 ;i

Xbase
t0 ;i

r

Xbase
t0 ;i

> Xscen
t0 ;i

1 else

8

<

:

ð2Þ

λ determines the degree to which the baseline is under- or overestimated and
therefore controls whether the trend is applied as an absolute or relative change.
For an overestimated baseline, λ is 1, which is equivalent to an entirely relative
factor. For underestimated baselines, λ converges to 0 and reduces the applied
relative change resulting in a mean change increasingly similar to an additive
term66. This concept is referred to as limited calibration, as it limits the calibration
to an additive term in case of a strongly underestimated baseline.

Due to data availability, the crop model projections are pre-processed using two
steps, leading to a conjunction of three intervals for the calculation of MAgPIE’s input
crop yields: First, we use the LPJmL results for the GSWP3-W5E5 historical climate
scenario as a baseline until the year 2010 (first interval). Then, harmonized results
(using the limited calibration method described above) between 2010 and 2020 for
LPJmL’s MRI-ESM2-0 (RCP7.0) are used for the missing part of the historical trend
(second interval). As it was previously described, the different GCM-GGCM
projections are then joined to the historical trend from the year 2020 (third interval).

Using this approach, input crop yields diverge for different GGCMs and climate
scenarios from the year 2020. This allows for comparability between data sources
and scenarios.

Calibration of cropland yields to regional FAO values. Before they are used in
MAgPIE, crop yields from the vegetation models are calibrated to FAO regional
yield levels at the initial time step t0. For most cases, the calibration is the ratio of

the historical yields YFAO
t0 ;i

reported by FAO, and regional mean yields Y
GGCM
t0 ;i

given

historic crop area patterns and 0.5-degree yield data YGGCM
t;j coming from the

GGCMs. In these cases, a purely relative calibration is performed that only depends
on the initial conditions of the starting year. However, when FAO yields are higher
than yield inputs coming from the GGCMs (a so-called underestimated baseline),
the relative calibration terms can lead to unrealistically large yields in the case of
future yield increases. To address this issue, we determine the degree to which the
baseline (FAO) is underestimated (by the parameter λ). This controls whether the
calibration factor is applied as a relative factor (default case with λ= 1), as an
absolute change (extreme case with λ= 0) or if it has a value in between (with

0 < λ < 1). This concept is referred to as limited calibration and follows a similar
logic as the climate scenario harmonization described in the section above:

eY
GGCM
t;j ¼ YGGCM

t;j 1þ
YFAO
t0 ;i

� Y
GGCM
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YFAO
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Post-processing calculation of climate impacts on crop production. In MAg-
PIE, the production of a specific crop (Q) in scenario S is calculated as the
summation of irrigated and rainfed production (Equation 5). Besides con-
sidering crop area (CA) (MAgPIE calculated) and yields (Y) (harmonized and
calibrated crop yields) for both irrigation mechanisms to calculate production,
we take into account the technological change factor (TC), which, as previously
described, translates R&D investments into a parameter that increases yields
proportionally.

Qs ¼ ðCAs
rain � Ys

rain þ CAs
irrig � Ys

irrig Þ � TCs ð5Þ
To isolate the impacts of different adaptation mechanisms (changes in cropland

patterns and TC specifically) on global crop production under different climate
scenarios, we use the corresponding CA (rainfed and irrigated) and TC of the SSPx-
NoCC scenario (no climate impacts, i.e., yields kept at 2015 values throughout the
century) together with the projected Y considering impacts. This allows us to
determine the effects of these suboptimal (SSPx-NoCC) conditions (together and
individually) on production if no adaptation due to climate change occurs.

Self-sufficiency ratio (SSR). The self-sufficiency ratio (SSR) compares the
domestic production of traded agricultural commodities of a region and its internal
demand. We calculate an aggregated regional SSR as follows:

SSRi ¼
∑kQk;i � Pk

∑kDk;i � Pk
ð6Þ

Here Qk,i represents the region (i) production of the traded commodity k, Pk the
2005’s world price of the commodity, which we use as aggregation weight, and Dk,i

the internal demand. We calculate the SSR in value terms to be able to compare the
aggregated production-demand fraction for multiple commodities simultaneously
in each region.

Shifts in crop mixes grown. The shift in crop mixes (SCM) shows which per-
centage of the crop mix (percentage of cropland used to produce a specific crop) is
different between MAgPIE’s SSP5-RCP8.5 GCM-GGCM simulations and SSP5-
NoCC in the different subregions. It was calculated as follows:

SCMj ¼ ∑
kcr

PAkcr
j;cc �min PAkcr

j;cc;PA
kcr
j;NoCC

� �

ð7Þ
Where PA represents the share of cropland assigned in sub-region j to crop kcr

in MAgPIE simulations with climate impacts (based on GCM-GGCM data sets)
(cc) or with only socioeconomic changes and without climatic effects (NoCC).

Data availability
The inputs used for MAgPIE runs, including the harmonized crop model projections67;
the outputs, in GDX format, of the MAgPIE simulations68; and the data used to create
the Figures (including those of the supplementary information)69 are located in Zenodo.

Code availability
MAgPIE (v4.4.0) is an open-source model available at https://github.com/magpiemodel/
magpie with the tag 4.4.0 (https://github.com/magpiemodel/magpie/releases/tag/v4.4.0).
The model documentation for this version (4.4.0) can be found at: https://rse.pik-
potsdam.de/doc/magpie/4.4.0/. Start scripts to generate the runs used in this paper,
together with the plotting scripts used to generate the figures, are saved in Zenodo70.
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