Scenarios of Energy and Air quality in Northeast Asia: data linkage and harmonization

Younha KIM

Pollution Management (PM)
Energy, Climate, and Environment (ECE)
International Institute for Applied Systems Analysis (IIASA)
A process of converting energy IAM data to GAINS and further

- **Activity projections**
 - IAMs
 - Energy
 - Transport
 - Industry
 - Agriculture
 - Waste

- **Emission scenarios**
- **GAINS**
 - EmisFactors
 - CostFactors
 - Controls
 - Policies
 - 0.1° x 0.1°
 - Urban vs. rural
 - Low vs. high

- **Spatial distribution & Transfer-coefficients**
 - GAINS
 - IERs (GBD)
 - Demography

- **Concentrations & Health impacts**
 - GAINS
AQNEA: A set of scenarios by countries and the source IAM

<table>
<thead>
<tr>
<th>Country</th>
<th>IAM; Integrated Assessment Model Framework</th>
<th>Scenario group</th>
<th>Scenario in IAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korea</td>
<td>GUIDE-METER</td>
<td>Baseline</td>
<td>BAU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Middle scenario</td>
<td>Stated Policies (Outdated NDC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Net-Zero</td>
<td>Net Zero</td>
</tr>
<tr>
<td>Japan</td>
<td>AIM/Hub-Japan 2.4</td>
<td>Baseline</td>
<td>Baseline</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Middle scenario</td>
<td>26% by 30 + 80% by 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Net-Zero</td>
<td>46% by 30 + 100% by 50</td>
</tr>
<tr>
<td>China</td>
<td>MESSAGEix-GLOBIOM 1.1-M-R12</td>
<td>Baseline</td>
<td>Baseline</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Middle scenario</td>
<td>2-degree</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Net-Zero</td>
<td>Carbon neutrality</td>
</tr>
<tr>
<td>Rest of NE Asia</td>
<td>IIASA GAINS</td>
<td>Baseline</td>
<td>Baseline+Stated Policies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Middle scenario</td>
<td>Proposed Pledges</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Net-Zero</td>
<td>Net Zero</td>
</tr>
</tbody>
</table>
Matrix system to set-up GAINS scenarios

<table>
<thead>
<tr>
<th></th>
<th>SSP1-1.9</th>
<th>SSP1-2.6</th>
<th>SSP2-4.5</th>
<th>SSP3-7.0</th>
<th>SSP3-LowNTCF</th>
<th>SSP3-LowNTCF-CH4</th>
<th>SSP5-8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air pollution strategy</td>
<td>MFR</td>
<td>MFR</td>
<td>CLE</td>
<td>CLE</td>
<td>MFR</td>
<td>MFR</td>
<td>CLE</td>
</tr>
<tr>
<td>VOC pathway</td>
<td>Baseline</td>
<td>Baseline</td>
<td>Baseline</td>
<td>Baseline</td>
<td>Baseline</td>
<td>Baseline</td>
<td>Baseline</td>
</tr>
<tr>
<td>Agriculture pathway</td>
<td>Healthy diet</td>
<td>Efficient N-use</td>
<td>Baseline</td>
<td>Baseline</td>
<td>Baseline</td>
<td>Mitigation</td>
<td>Baseline</td>
</tr>
<tr>
<td>Forest fires</td>
<td>Mitigation</td>
<td>Mitigation</td>
<td>Baseline</td>
<td>Baseline</td>
<td>Mitigation</td>
<td>Mitigation</td>
<td>Baseline</td>
</tr>
<tr>
<td>Shipping pathway/controls</td>
<td>MFR</td>
<td>MFR</td>
<td>CLE</td>
<td>CLE</td>
<td>MFR</td>
<td>MFR</td>
<td>CLE</td>
</tr>
<tr>
<td>Emission factors</td>
<td>LowN</td>
<td>LowN</td>
<td>Base</td>
<td>Base</td>
<td>Low</td>
<td>Low</td>
<td>Base</td>
</tr>
</tbody>
</table>
GAINS Explorer

: Infrastructure to process global, regional, and national scenarios for further analysis and intercomparison in the GAINS model

Data Sources
- KOREA
 - GUIDE_METER
- JAPAN
 - AIM_Japan
- CHINA
 - MESSAGEix_China
 - GCAM

ETL
- Extracted Data

GAINS
- Pollutant Management
 - Multi sectoral pathway data
 - Emission factors
 - Control Strategies
 - Costs
 - Impacts
 - Geotiff Map services

Web App. And Services
- DATA EXPORT API

Extracted Data
- Activity
- Emissions
- Costs
- Impacts

ETL Scenario definition metadata and importing scripts

ETL
- Extract, Transform, Load
Processing of scenario data into the GAINS model structure for China, Japan, and S. Korea

- **IAMs**
 IAM_Japan (national)
 MESSAGE_China (national)
 GUIDE_Korea (17 subregions)

- **Sectoral mapping**
 - IAMs variables to the GAINS sectors & fuels
 - limited to energy projections
 - one mapping matrix for all models

- **Regional mapping**
 - IAMs (sub)regions / provinces to the GAINS regions
 - model-specific regional matrixes

- **Proportional downscaling**
 - based on existing patterns in GAINS
 - missing projections derived from macroeconomic parameters
 - or defaults are used (non-energy sectors)

- **Data exchange**
 - a common format for all models
 - compatible with the AR6/IAMC reporting protocol (template)
 - completeness check
Mapping of IAMC format to the GAINS structure

<table>
<thead>
<tr>
<th>IAM_SOURCE_VARIABLE</th>
<th>SOURCE_UNIT</th>
<th>GAINS_SECTOR</th>
<th>GAINS_ACTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Energy</td>
<td>Gas</td>
<td>Electricity</td>
<td>w/ CCS</td>
</tr>
<tr>
<td>Primary Energy</td>
<td>Gas</td>
<td>Electricity</td>
<td>w/o CCS</td>
</tr>
<tr>
<td>Primary Energy</td>
<td>Oil</td>
<td>Electricity</td>
<td>w/ CCS</td>
</tr>
<tr>
<td>Primary Energy</td>
<td>Oil</td>
<td>Electricity</td>
<td>w/o CCS</td>
</tr>
<tr>
<td>Primary Energy</td>
<td>Biomass</td>
<td>Electricity</td>
<td>w/ CCS</td>
</tr>
<tr>
<td>Primary Energy</td>
<td>Biomass</td>
<td>Electricity</td>
<td>w/o CCS</td>
</tr>
<tr>
<td>Primary Energy</td>
<td>Coal</td>
<td>Electricity</td>
<td>w/ CCS</td>
</tr>
<tr>
<td>Primary Energy</td>
<td>Coal</td>
<td>Electricity</td>
<td>w/o CCS</td>
</tr>
<tr>
<td>Primary Energy</td>
<td>Nuclear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary Energy</td>
<td>Geothermal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary Energy</td>
<td>Hydro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary Energy</td>
<td>Solar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary Energy</td>
<td>Wind</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Power sector

Final Energy	Industry	Gases	EJ/yr	IN_ISTE, IN_CHEM, IN_NMMI, IN_PAP, IN_OTH	GAS	
Final Energy	Industry	Liquids	EJ/yr	IN_ISTE, IN_CHEM, IN_NMMI, IN_PAP, IN_OTH	MD, HF, LPG, GSL	
Final Energy	Industry	Solids	Biomass	EJ/yr	IN_ISTE, IN_CHEM, IN_NMMI, IN_PAP, IN_OTH	FWD, ARD, CHCO, WST
Final Energy	Industry	Solids	Coal	EJ/yr	IN_ISTE, IN_CHEM, IN_NMMI, IN_PAP, IN_OTH	ELE
Final Energy	Industry	Heat	EJ/yr	IN_ISTE, IN_CHEM, IN_NMMI, IN_PAP, IN_OTH	HT	
Final Energy	Industry	Hydrogen	EJ/yr	IN_ISTE, IN_CHEM, IN_NMMI, IN_PAP, IN_OTH	H2	
Final Energy	Industry	Other	EJ/yr	IN_ISTE, IN_CHEM, IN_NMMI, IN_PAP, IN_OTH	GTH, SPV, STH	

Domestic

Final Energy	Residential and Commercial	Gases	EJ/yr	DOM_URB, DOM_RUR, DOM_COM, DOM_OTH	GAS	
Final Energy	Residential and Commercial	Liquids	EJ/yr	DOM_URB, DOM_RUR, DOM_COM, DOM_OTH	MD, HF, LPG, GSL	
Final Energy	Residential and Commercial	Solids	Biomass	EJ/yr	DOM_URB, DOM_RUR, DOM_COM, DOM_OTH	FWD, ARD, CHCO, WST
Final Energy	Residential and Commercial	Solids	Coal	EJ/yr	DOM_URB, DOM_RUR, DOM_COM, DOM_OTH	ELE
Final Energy	Residential and Commercial	Electricity	EJ/yr	DOM_URB, DOM_RUR, DOM_COM, DOM_OTH	HT	
Final Energy	Residential and Commercial	Heat	EJ/yr	DOM_URB, DOM_RUR, DOM_COM, DOM_OTH	H2	
Final Energy	Residential and Commercial	Hydrogen	EJ/yr	DOM_URB, DOM_RUR, DOM_COM, DOM_OTH	GTH, SPV, STH	

Transport

Final Energy	Transportation	Hydrogen	EJ/yr	TRA_RD_LD, TRA_RD_HD	H2		
Final Energy	Transportation	Electricity	EJ/yr	TRA_RD_LD, TRA_RD_HD, TRA_OT	ELE		
Final Energy	Transportation	Gases	EJ/yr	TRA_RD_LD, TRA_RD_HD, TRA_OT	GAS		
Final Energy	Transportation	Liquids	Oil	EJ/yr	TRA_RD_LD, TRA_RD_HD, TRA_OT	MD, GSL, LPG, HF	
Final Energy	Transportation	Liquids	Oil	Shipping	EJ/yr	TRA_OTS	HF, MD

Others

Primary Energy	Gas	Convert	EJ/yr	CON_COMB, CON_BO, CON_LOSS	GAS
Primary Energy	Oil	Convert	EJ/yr	CON_COMB, CON_BO, CON_LOSS	MD, HF, LPG, GSL
Primary Energy	Biomass	Convert	EJ/yr	CON_COMB, CON_BO, CON_LOSS	FWD, ARD
Primary Energy	Coal	Convert	EJ/yr	CON_COMB, CON_BO, CON_LOSS	HC, BC
Final Energy	Non-Energy Use	Coal	EJ/yr	NONEN	GAS
Final Energy	Non-Energy Use	Oil	EJ/yr	NONEN	HC, MD, LPG
Final Energy	Non-Energy Use	Gas	EJ/yr	NONEN	GAS
Final Energy	Non-Energy Use	Biomass	EJ/yr	NONEN	FWD, WST
Primary Energy	Oil	Liquids	EJ/yr	PRI_REF	NOF
Resource	Extraction	Coal	EJ/yr	MINE_BC, MINE_HC	NOF
Resource	Extraction	Gas	EJ/yr	PROD	GAS
Resource	Extraction	Oil	EJ/yr	PROD	CRU
GDP	MER				MACRO
Population					ANY

| GDP | MER | | | | MACRO |
| Population | | | | | ANY |
From Energy IAM to GAINS
: Energy and AQ scenario pathways setup

Energy IAM data in GAINS format

Energy activity
1) Baseline
2) NDC(Old)
3) Net-Zero

Energy

2020
2050

Policy-Technology in GAINS

Control Strategy

2020
2050

1) Current Legislation (CLE)
2) Control (MFR)

Data in GAINS

Emission Factor

Future Scenario Pathways

6 Scenario Emissions

Base_CLE
Base_MFR
NDC_CLE
NDC_MFR
NetZero_CLE
NetZero_MFR

Energy activity
Policy-Technology
Data in GAINS
Future Scenario Pathways

Energy IAM data in GAINS format

Energy activity
1) Baseline
2) NDC(Old)
3) Net-Zero

Energy

2020
2050

Policy-Technology in GAINS

Control Strategy

2020
2050

1) Current Legislation (CLE)
2) Control (MFR)

Data in GAINS

Emission Factor

Future Scenario Pathways

6 Scenario Emissions

Base_CLE
Base_MFR
NDC_CLE
NDC_MFR
NetZero_CLE
NetZero_MFR
Result: AQNEA Future Energy Scenario Pathways and CO₂ emissions

China/S.Korea/Japan

Energy
Unit: PJ/yr

Emissions
Unit: Mt CO₂

A: Baseline B: NDC C: Net-Zero
Result: AQNEA Future Energy Scenario Pathways and CO₂ emissions

N.Korea / Mongolia / A.Russia

Energy
Unit: PJ/yr

Emissions
Unit: Mt CO₂

A: Baseline B: NDC C: Net-Zero
Result: Air Pollutant Abatement in AQNEA Countries

China_PM2.5

S.Korea_NOx

Japan_NOx

N.Korea_SO2

Mongolia_SO2

Unit: kton/yr
AQNEA: Ambient PM2.5 concentrations
 Calculations by the GAINS model

- CLE would not resolve the remaining air quality problems by 2050.
- The remaining elevated concentrations under Net-Zero + MFR (Maximum Feasible Reduction) are largely of natural origin.
AQNEA: Source Contribution of Ambient PM2.5 concentrations: Calculations by the GAINS model

Seoul (Republic of Korea)

Busan (Republic of Korea)

Timestamp: 20230125-140011
Scenario: AQNEA_NDC_CLE
Year: 2020
GAINS Region: KORS_SEOI
Ind road dust resusp (June2019)
Summary

- Energy IAM exported data were converted GAINS activity data format for AQNEA countries
- Integrated analysis in GAINS, such as emissions, air quality, health impact could be conducted
- Stringent air pollution control scenario, MFR, show significant reductions, especially in baseline scenario of a developing country
- Ambient air quality with source contribution analysis show a reasonable agreement with monitoring data and could give some insight of domestic vs transboundary contribution
- Continue to improve harmonization and linkage for AQNEA stage2
• GAINS model

Access to the model:
http://gains.iiasa.ac.at/models/index.html

Tutorial:

• Scenario Explorer

Access to the system:
https://data.ece.iiasa.ac.at/aqnea-internal/#/workspaces
Thank you for your time.