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Abstract
Wood density is a fundamental property related to tree biomechanics and hydraulic 
function while playing a crucial role in assessing vegetation carbon stocks by linking 
volumetric	retrieval	and	a	mass	estimate.	This	study	provides	a	high-	resolution	map	
of	the	global	distribution	of	tree	wood	density	at	the	0.01°	(~1 km)	spatial	resolution,	
derived from four decision trees machine learning models using a global database of 
28,822	tree-	level	wood	density	measurements.	An	ensemble	of	four	top-	performing	
models	combined	with	eight	cross-	validation	strategies	shows	great	consistency,	pro-
viding wood density patterns with pronounced spatial heterogeneity. The global pat-
tern	shows	lower	wood	density	values	in	northern	and	northwestern	Europe,	Canadian	
forest regions and slightly higher values in Siberia forests, western United States, and 
southern	China.	In	contrast,	tropical	regions,	especially	wet	tropical	areas,	exhibit	high	
wood	density.	Climatic	predictors	explain	49%–63%	of	spatial	variations,	followed	by	
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1  |  INTRODUC TION

Forests,	occupying	one-	third	of	the	global	land	areas,	play	an	import-
ant	 role	 in	absorbing	 (through	photosynthesis)	 approximately	15.6	
billion metric tons of carbon dioxide from the atmosphere each year 
(Harris	et	al.,	2021).	About	half	of	this	assimilated	carbon	is	used	for	
forest	growth	and	subsequently	stored	in	terrestrial	ecosystems	for	
a	long	period	(Pan	et	al.,	2011),	a	process	known	as	carbon	seques-
tration.	 However,	 our	 understanding	 of	 the	 magnitude	 of	 carbon	
sequestration	within	terrestrial	ecosystems,	along	with	its	inherent	
variability,	remains	inadequately	characterized,	despite	the	availabil-
ity of remote sensing products that have recently provided exten-
sive	information	related	to	forest	coverage	(Song	et	al.,	2018),	forest	
structure	(Burt	et	al.,	2021)	and	canopy	height	(Potapov	et	al.,	2021).	
This is because remote sensing mainly provides volumetric proxies, 
which necessitate the incorporation of a density estimate to obtain 
the mass of carbon stocks. One major source of uncertainty con-
cerning the spatial distribution of carbon stocks within forests lies in 
wood	density	(Chave	et	al.,	2019),	which	is	defined	as	the	ratio	of	dry	
mass of wood to its green volume and cannot be directly observable 
from space.

Beyond	its	role	in	computing	carbon	sequestration,	wood	density	
has obtained growing attention as a plant functional trait, particu-
larly for its links to the biomechanical support of trees and hydrau-
lic	safety	(Serra-	Maluquer	et	al.,	2022).	Wood	density	has	direct	or	
indirect influence on a range of ecological processes, including tree 
growth, tree resistance, resilience and recovery to disturbances, and 
tree	mortality	primarily	through	two	mechanisms	(King	et	al.,	2005; 
O'Brien et al., 2017; Roderick & Berry, 2001).	 First,	 studies	 have	
reported a tight relationship between wood density and tree mor-
tality rate or ecosystem carbon turnover, representing the overall 
carbon	 loss	rate	over	several	years	or	even	decades.	For	example,	
the distinct variations in tree mortality rates observed in eastern 
and	western	Amazon	forests	have	been	attributed	to	differences	in	

wood density, where lower density is associated with higher mortal-
ity	rates	(Chao	et	al.,	2008).	Additionally,	plot-	level	synthetic	studies	
have	revealed	the	predictive	capacity	of	wood	density	in	characteriz-
ing forest dynamics in response to abrupt natural and anthropogenic 
disturbances such as extreme weather conditions, fires, and biotic 
attacks.	 Anderegg	 et	 al.	 (2016)	 demonstrated	 that	 wood	 density	
helped explain the observed variability in tree mortality rates across 
angiosperms.	Nevertheless,	 the	role	of	wood	density	 in	explaining	
the response of trees to water stress remains a topic of ongoing de-
bate.	 Liang	et	 al.	 (2021)	 and	Greenwood	et	 al.	 (2017),	 drawing	on	
global synthesis of seedlings and adult trees' measurements, re-
ported positive relationship between wood density and the drought 
resistance.	However,	this	relationship	may	take	a	opposite	direction	
in	certain	regional	studies,	such	as	Hoffmann	et	al.	(2011)	reported	in	
temperate forest that the species with high wood density, owing to 
their insensitivity to water stress, exhibit limited capacity to regulate 
plant water potential. Thus, high wood density species show lower 
resistance and higher mortality rate under extremely severe drought 
conditions.

Up to now, despite several forest inventory data have been used 
for shaping regional wood density distribution, as demonstrated by 
Chave	et	al.	(2009),	Poyatos	et	al.	(2018),	and	Oliveira	et	al.	(2021),	
a	 reliable	global-	scale	 spatially	 explicit	 product	of	 tree	wood	den-
sity	 is	 lacking.	Here,	we	 conducted	 a	 comprehensive	 collection	of	
tree-	level	wood	density	measurements	 spanning	 all	 global	 climate	
biomes.	Our	primary	objective	is	to	generate	a	global	high-	resolution	
map of tree wood density and thoroughly assess its robustness. To 
achieve	this,	we	developed	a	comprehensive	global	dataset	of	geo-	
referenced	species-	based	wood	density	observations	together	with	
basic leaf attributes of the respective species. We then trained four 
distinct machine learning models using forest inventory data, com-
bined with data for climate, edaphic, and vegetation characteristics 
derived	from	global	observation	products	(Figure S1).	We	then	used	
eight	cross-	validation	methods	to	assess	the	predictive	capacity	of	
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vegetation	 characteristics	 (25%–31%)	 and	 edaphic	 properties	 (11%–16%).	 Notably,	
leaf	type	(evergreen	vs.	deciduous)	and	leaf	habit	type	(broadleaved	vs.	needleleaved)	
are the most dominant individual features among all selected predictive covariates. 
Wood density tends to be higher for angiosperm broadleaf trees compared to gymno-
sperm needleleaf trees, particularly for evergreen species. The distributions of wood 
density	categorized	by	leaf	types	and	leaf	habit	types	have	good	agreement	with	the	
features	observed	in	wood	density	measurements.	This	global	map	quantifying	wood	
density distribution can help improve accurate predictions of forest carbon stocks, 
providing deeper insights into ecosystem functioning and carbon cycling such as for-
est vulnerability to hydraulic and thermal stresses in the context of future climate 
change.
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these	models	 in	 estimating	 variations	 in	wood	density.	 Finally,	we	
provided an exposition of both the global and regional patterns of 
the wood density product, including an analysis of the associated 
uncertainties, and investigated the predictive factors influencing the 
observed spatial variations in wood density.

2  |  MATERIAL S AND METHODS

2.1  |  Wood density measurements

We	requested	tree-	level	measurements	for	“wood	density”	(Trait	ID	
4	and	3064)	from	the	TRY	v6	database	(Kattge	et	al.,	2020; https:// 
www.	try-		db.	org/	TryWeb/	Home.	php).	 These	 measurements	 are	
mainly	sourced	from	the	Biomass	And	Allometry	Database	(BAAD),	
RAINFOR	trait	database,	Neotropical	trait	database,	Tropical	plant	
trait	 database,	 Netherland	 trait	 database,	 Chinese	 trait	 database,	
Panama	 trait	 database,	 and	 Spanish	 trait	 database	 (detailed	 infor-
mation see Table S1).	 It	 is	 important	 to	 note	 that	 we	 retain	 only	
those entries pertaining to trees with precise coordinate informa-
tion and documented tree species. In total, 26,709 measurements 
obtained	from	the	TRY	database	are	used	in	our	analysis.	Moreover,	
we	incorporate	8743	tree-	level	wood	density	measurements	in	the	
Eurasia	region	from	Schepaschenko	et	al.	(2017).	This	dataset	is	de-
rived from a compilation of experiments undertaken by the authors, 
along	with	data	extracted	from	scientific	publications.	Additionally,	
we	include	two	unpublished	databases,	one	from	the	Poland	Forest	
Research	Institute	and	the	other	from	the	UMR	AMAP	wood	density	
database. The former comprises over 48,000 wood density samples, 
which were measured in the year 2018 for 2971 trees within Poland. 
The latter includes a total of 2967 wood density measurements per 
tree	originating	from	New	Caledonia,	an	archipelago	situated	in	the	
southwest	 Pacific	Ocean.	 To	 reduce	 the	 disparities	 in	 sample	 size	
among regions and achieve a more balanced spatial distribution of 
measurements, we perform a random selection process, retaining 

only	10%	of	 the	data	 from	the	Poland	and	UMR	AMAP	databases	
for our analysis. In summary, we construct a global database con-
sisting	of	36,046	tree-	level	wood	density	measurements	spanning	
every	continent	where	forests	are	present	(Figure 1a).	This	dataset	
covers a wide range of climate space, although it has only a few data 
in the desert and tundra regions due to their low forest coverage 
(Figure 1b).

2.2  |  Covariates variables

For	 each	 species	 for	 which	 we	 gathered	 wood	 density	 measure-
ment,	we	identify	its	specific	leaf	type	(broadleaf	or	needleleaf)	and	
leaf	habit	type	(evergreen	or	deciduous)	from	TRY	database	(Kattge	
et al., 2020).	The	attributes	of	 leaf	 type	and	 leaf	habit	 type	 serve	
as predictive variables in our wood density prediction model. We 
decided to use leaf type and leaf habit type instead of tree species, 
because a global map of tree species abundance is currently unavail-
able. Besides, to enhance our capacity to predict global wood den-
sity variations, based on the coordinate information, we extract a 
range of proxies for vegetation characteristics, including land cover 
type, tree cover fraction, vegetation carbon productivity, canopy 
greenness, and vegetation water content, which also act as predic-
tive	variables	(details	on	Table S2).	Furthermore,	we	extract	all	the	
climatic	 variables	 from	 the	high-	resolution	database	of	WorldClim	
version	 2	 (Fick	 &	 Hijmans,	 2017),	 and	 extracted	 all	 relevant	 soil-	
related variables from the global gridded soil information, SoilGrids 
database	(https:// soilg rids. org/ ; Batjes et al., 2020).

When confronted with missing values in the training dataset, 
we addressed them by approximating average values based on the 
spatial proximity of data collection sites. The proportion of missing 
data	 for	 climate-		 and	 soil-	related	 covariates	 is	 less	 than	1%;	 how-
ever,	several	satellite-	based	vegetation	covariates	have	a	high	frac-
tion	of	missing	data	(Figure S5a).	Specifically,	we	utilized	data	from	
the five nearest sites within a geospatial radius of 500 kilometers 

F I G U R E  1 (a)	Spatial	distribution	of	the	forest	plots	originating	from	four	datasets	used	for	the	wood	density	maps.	The	background	
colors	indicate	the	fraction	of	forest	cover	from	Climate	Change	Initiative	land	cover	maps.	(b)	Distribution	of	the	forest	plots	in	a	climate	
space defined by annual temperature and total annual precipitation. Red dots represent training data, blue dots testing data.
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to estimate missing values for each data point. In instances where 
the search radius encompassed fewer than five available sites, the 
number of sites used for averaging was determined by the actual 
count of data available points, if the available sites numbered more 
than three, otherwise we opted to compute the average using the 
data from the three closest sites, with the weights inversely propor-
tional to their geographical distance. The coefficients of variation 
of some vegetation covariate values from the nearest sites exhibit 
a notable degree of variability, which has the potential to result in 
biases; however, these vegetation covariates in our machine learning 
models	have	low	importance	(Figure S5b; Figure 4).	In	addition,	the	
target	value	is	the	pixel-	level	averaged	wood	density,	calculated	as	
the	average	of	all	 tree-	level	wood	density	measurements	 for	each	
leaf type and leaf habit type within the identical geographic grid cell 
(0.01° × 0.01°),	since	their	predictive	variables	are	identical.	This	cal-
culation is based on the assumption that sample distributions are 
consistent with population distributions. It is important to acknowl-
edge	 that	 the	 pixel-	level	 wood	 density	 estimations	 derived	 from	
tree-	level	measurements	may	be	subject	to	bias	when	the	selection	
of sampling distribution is skewed, particularly in regions with high 
species richness.

2.2.1  | Machine	learning	models

Our machine learning models are based on decision trees, which 
are inherently interpretable and have been shown to be superior 
compared	 to	 neural	 networks	 in	 handling	 tabular	 data	 (Grinsztajn	
et al., 2022).	 Specifically,	we	 utilize	 two	popular	 training	 schemes	
for	decision	tree	ensembles:	Bagging	(Random	Forest)	and	Boosting	
(Gradient	 Boosting).	 Furthermore,	 for	 each	 of	 these	 schemes,	 we	
leverage	two	current	state-	of-	the-	art	software	package	implemen-
tations	 (Table 1).	 First,	 regarding	 random	 forest	 schemes,	 we	 use	
two models that differ in the treatment of categorical variables: the 
Scikit-	Learn	Random	Forest	(Pedregosa	et	al.,	2011)	cannot	handle	
categorical data explicitly, but instead treats them as continuous 
or	using	one-	hot	encoding.	 In	contrast,	 the	LightGBM	Regularized	
Random	 Forest	 uses	 categorical	 information	 for	 leaf	 splitting	 and	
uses	 a	 training	 routine	 optimized	 for	 speed.	 Second,	 we	 use	 two	
models based on the gradient boosting schemes with different 
training	 routines.	Extreme	gradient	boosting	 tree	 (XGBoost,	Chen	
& Guestrin, 2016),	which	is	known	for	maximum	predictive	perfor-
mance,	adopts	a	level-	wise	tree	growth	strategy,	navigating	through	
gradient	values	and	partially	aggregating	them	to	assess	the	quality	
of all possible splits. To mitigate overfitting issues associated with 
increasing	tree	depth,	XGBoost	introduces	complexity	as	a	regulari-
zation	term,	seamlessly	incorporated	into	its	cost	functions.	Unlike	
XGBoost's	level-	wise	tree	growth	strategy,	LightGBM	adopts	a	leaf-	
wise strategy, efficiently increasing the complexity of the tree struc-
ture	to	determine	branch	points	through	histogram-	based	methods	
(Ke	 et	 al.,	2017).	 LightGBM	 is	 centered	 around	parallelization	 and	
is	characterized	by	two	innovative	techniques:	gradient-	based	one-	
side	 sampling,	which	 reduces	 the	 use	 of	 low-	gradient	 data	 during	 TA
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the training process, and exclusive feature bundling, which groups 
features	together.	These	techniques	provide	advantages,	 including	
the acceleration of the training process with high accuracy and re-
duction of memory usage. In this analysis, we randomly partition our 
wood density database into training and testing subsets, allocating 
80%	of	the	measurements	to	the	training	set	and	reserving	the	re-
maining	20%	for	testing.	Both	the	training	and	testing	datasets	cover	
the	identical	climate	space	(Figure 1b).

2.3  |  Cross- validation strategies

To evaluate the performance of these machine learning models, 
we	use	a	leave-	one-	cluster-	out	cross-	validation	method.	The	clus-
ters	 for	 cross-	validation	 are	 defined	using	 eight	 different	meth-
ods,	 that	 is,	 random	fivefold,	 spatial	blocked	10-	fold	 (where	 the	
global domain was divided into spatial blocks of 5° and randomly 
assigned	to	one	of	10	folds),	and	classifications	based	on	two	sets	
of	Köppen	climate	maps,	European	Space	Agency	Climate	Change	
Initiative	(ESA	CCI)	land	cover	types,	FAO	ecozones,	and	latitudi-
nal	and	longitude	binning.	These	cross-	validation	methods	(except	
for	random	5-	fold	method)	are	chosen	to	mitigate	potential	spatial	
auto-	correlation	and	to	avoid	optimistically	evaluating	model	per-
formance	(Ludwig	et	al.,	2023; Ploton et al., 2020).	For	the	assess-
ment of predictive capabilities concerning wood density, we used 
two	metrics,	namely	the	root-	mean-	square	error	(RMSE)	and	the	
goodness	of	fit	(R2).

2.4  |  Upscaling and generating global maps

A	total	of	79	selected	vegetation,	climatic,	and	edaphic	variables	
(listed	 in	 Table	 S2)	 are	 used	 to	 train	 the	 four	 machine	 learning	
models,	 to	 conduct	 cross-	validation	 analysis,	 and	 to	 upscale	 the	
global maps. To upscale wood density, we prepare global maps of 
all predictive vegetation, climatic, and edaphic variables. The ini-
tial	spatial	resolution	of	climatic,	edaphic,	and	some	satellite-	based	
vegetation	covariates	 is	higher	than	the	target	resolution	of	1 km	
for the resulting product. These input drivers were subjected to 
spatial aggregation, through the computation of spatial averages 
within	1-	km	spatial	windows.	The	upscaling	procedure	 is	done	 in	
two	 steps.	 First,	we	use	our	 trained	machine	 learning	models	 to	
predict wood density for distinct leaf type and leaf habit types. 
Then, we use a global map of the fractions of plant function type 
from	 the	 ESA	 CCI	 as	 weighting	 factors	 for	 calculating	 average	
wood	density	values	at	the	1 km	pixel	 level.	 In	total,	we	generate	
an ensemble of 32 gridded tree wood density maps, all character-
ized	by	a	spatial	resolution	of	1 km.	These	maps	are	obtained	using	
the four different machine learning models, generated as the aver-
age	of	maps	derived	from	eight	cross-	validation	methods	(shown	in	
Figure 2).	Furthermore,	the	overall	ensemble	average	of	these	four	
maps	is	calculated	(shown	in	Figure 3).

3  |  RESULTS AND DISCUSSION

3.1  |  Machine learning model evaluation

Overall model performance is high with an R2	 value	of	0.55 ± 0.03	
(mean ± SD	 across	 machine	 learning	 models	 and	 cross-	validation	
splits)	 and	 an	 RMSE	 of	 0.11 ± 0.01 g/cm3	 (Figure S2a)	 on	 the	 test	
data.	 Between	 machine	 learning	 models	 as	 well	 as	 across	 cross-	
validation	splits,	there	is	little	variability.	The	cross-	validation	analy-
ses are performed to assess the extrapolation capability of machine 
learning models and provide a more comprehensive understanding 
of	the	driving	factors	 (Sweet	et	al.,	2023).	When	using	the	random	
fivefold	 cross-	validation	 method,	 the	 cross-	validation	 predictions	
from the four machine learning models show high R2 and low RMSE 
(R2 = .50– .56,	RMSE = 0.05–0.12 g/cm3),	while	 the	predictive	capac-
ity	exhibits	a	reduction	when	using	the	other	cross-	validation	meth-
ods	to	reduce	the	influence	of	spatial	auto-	correlation,	indicating	the	
limited	extrapolation	capability	(Figure S2b).	Such	reduction	could	be	
due	to	 the	unique	features	 inherent	 to	particular	climatic	biome	or	
ecology	zone,	so	excluding	one	cluster	from	a	specific	climatic	biome	
or	ecology	zone	during	 the	 training	process	may	 result	 in	biases	 in	
cross-	validation	predictions,	ultimately	 leading	 to	a	decrease	 in	 the	
model predictive performance. Thus, it highlights the importance of 
using the data covering all the climatic biomes during the training pro-
cess to mitigate extrapolation when generating a global map.

Our	models	suffer	 from	a	small	generalization	gap,	mainly	visi-
ble in the decrease in R2 value from training data to testing dataset. 
Performance on the training set displays an R2	value	of	0.68 ± 0.15	
and	an	RMSE	of	0.10 ± 0.15	(g/cm3)	 (Figure S2a).	More	specifically,	
however, the drop in R2	value	is	strong	for	the	Random	Forest	and	
particularly	within	the	tropical	region	(30° S–15° N),	as	well	as	mid-	
latitude	areas	 (45° N–60° N)	 (Figure S2c,d).	This	discrepancy	 in	 the	
tropical region may be due to high species richness and the limited 
number of wood density measurements in this region, which result 
in the biases found in wood density predictions. In highly diverse 
tropical forests, high phylogenetic endemism among tree species 
is not only affected by current environmental conditions but also 
characterized	by	 long-	term	climate	stability	 (Guo	et	al.,	2023).	For	
instance, even within the same location and forest type, several spe-
cies exhibit varying wood densities. Ideally, incorporating species as 
a categorical variable to refine the analysis would be valuable, but a 
comprehensive global species distribution map is unavailable, pre-
cluding the inclusion of species as a predictor in our machine learn-
ing models.

3.2  |  Global and regional patterns

The global maps of wood density generated by the four machine 
learning	 models	 show	 consistent	 patterns	 (Figure 2),	 character-
ized	by	pronounced	spatial	heterogeneity	across	latitudes	and	from	
dry	to	wet	regions	(notably	shown	in	the	zoomed	regional	maps	in	
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6 of 13  |     YANG et al.

Figure 3; Figure S6).	The	main	features	are	as	follows:	In	the	north-
ern high latitudes, wood density values are notably lower in northern 
and	northwestern	Europe,	as	well	as	in	the	Canadian	forest	regions,	
where evergreen needleleaf trees predominate. In contrast, Siberia 
exhibits	 higher	 wood	 density	 values	 (~0.55 g/cm3),	 particularly	
in its eastern regions. This disparity can be attributed to the pre-
dominance of deciduous needleleaf trees, primarily the Larix genus, 
within	the	arid	landscapes	of	eastern	Siberia	(Sato	et	al.,	2016).	Then,	
a slightly higher wood density is observed in temperate regions such 
as	western	United	States	and	southern	China.	Moreover,	wood	den-
sity in the tropical regions generally holds higher values compared to 
the	extra-	tropical	regions.	Within	the	tropics,	wood	density	in	wet	
tropical areas tends to be relatively higher than that in dry tropical 
regions.

We further compare our spatial patterns of wood density maps 
with	 other	 independent	 regional	 wood	 density	 products	 (Chave	
et al., 2009; Oliveira et al., 2021).	 Chave	 et	 al.	 (2009)	 used	 the	
16,468 wood density entries from Dryad data repository, which 
have not been used in our analysis due to the unavailability of geo-
graphic coordinate information, to generate a wood density map 
for	North	and	South	America	(hereafter	JC09).	Overall,	JC09	prod-
uct and our product both exhibit consistent spatial distributions, 
that	 is,	 lower	 wood	 density	 in	 high	 latitudes	 of	 North	 America	
and	areas	near	the	Andes	Mountain	while	higher	wood	density	is	
primarily observed in the wet and transitional tropical regions of 

South	America.	But	our	wood	density	product	depicts	 relatively	
lower absolute values of wood density in the wet tropical region 
compared	to	the	JC09	product.	Furthermore,	differences	are	also	
apparent	in	the	dry	tropics	and	semiarid	areas	of	South	America.	
The	 JC09	 product	 shows	 higher	wood	 density	 in	 these	 regions,	
compared to the wet tropical areas, while our dataset shows the 
opposite,	 particularly	 in	 eastern	 Brazil	 and	 around	 Paraguay	 re-
gion. These discrepancies could be explained either by the lack of 
measurements used in our product or the simplicity of the mul-
tiple	 regression	method	utilized	 in	 JC09	product.	Additionally,	 a	
recent	analysis	by	Oliveira	et	al.	(2021),	which	generated	a	wood	
density	pattern	for	eastern	Brazil	through	data	collection	and	krig-
ing extrapolation approach, exhibits a consistent range of wood 
density values and similar spatial distributions when compared to 
our maps.

3.3  |  Uncertainty analysis

We explore the uncertainty stemming from the selection of machine 
learning	models	and	the	application	of	various	cross-	validation	meth-
ods	 (Figure S3).	 First	 of	 all,	 when	 using	 the	 same	machine	 learning	
model,	the	utilization	of	different	cross-	validation	methods	for	model	
training tends to generate relatively consistent global wood density 
maps. That is, the standard deviation in wood density across eight 

F I G U R E  2 Global	1 km	mean	wood	density	maps	from	four	distinct	machine	learning	models:	LightGBM	(a),	LightGBM-	RF	(b),	Random	
Forest	(c),	and	XGBoost	(d).	Patterns	represent	the	average	wood	density	values	derived	from	models	using	eight	distinct	cross-	validation	
strategies.	These	wood	density	values	are	presented	exclusively	within	regions	where	the	forest	fraction	exceeds	10%.	The	R2 values 
for	each	machine	learning	model's	prediction	of	test	data	are	written	on	the	maps.	The	inset	on	the	right-	hand	side	shows	the	latitudinal	
averages	(black	line)	and	standard	deviations	(grey	shading)	of	wood	density.

 13652486, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17224 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [11/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  7 of 13YANG et al.

distinct	 cross-	validation	 strategies	 is	 consistently	 below	 0.01 g/cm3, 
albeit some tropical savannas show a relatively high standard devia-
tion	 (~0.03 g/cm3)	 (Figure S3a,c).	Conversely,	 the	uncertainty	associ-
ated with the choice of machine learning models is relatively higher, 
but	the	standard	deviation	in	wood	density	remains	below	0.05 g/cm3, 
which	is	less	than	8%	of	the	mean	values	(Figure S3b,d).	Regions	with	
high uncertainty across machine learning models include northern 
Canada,	 northern	 Europe,	 southern	 Siberia,	 southwestern	 China	 as	
well	as	part	of	tropical	savanna	regions.	Furthermore,	we	implement	
an analysis of the number of wood density measurements collected for 
44	subregions	based	on	the	IPCC	subregion	reference	map	(Iturbide	
et al., 2020).	Our	analysis	reveals	a	significant	negative	relationship	be-
tween the standard deviation in wood density predictions across ma-
chine	learning	models	and	the	number	of	observations	(Figure S3e,f)	
This suggests that the regions with limited wood density measure-
ments	exhibit	higher	uncertainty	in	the	areas	due	to	the	well-	known	
low	generalizability	of	machine	 learning	models	 for	small	and	unbal-
anced	sample	classes	(Jung	et	al.,	2020).

3.4  |  Factors influencing spatial variations

We further assess the feature importance of the four machine 
learning models, aiming to elucidate which and how the factors 
influence	 spatial	 variations	 in	wood	density	 (Figure 4).	 First	 of	 all,	
the category of climatic condition plays a critical role, accounting 
for a substantial proportion of spatial variations, with contributions 

ranging	from	49%	to	63%.	Following	in	significance	is	the	category	
of	vegetation	characteristics,	explaining	25%–31%	of	the	variations,	
while edaphic properties have a discernible and relatively smaller in-
fluence,	contributing	to	11%–16%	of	the	variations.	More	precisely,	
the importance of vegetation characteristics category mainly arises 
from attributes associated with leaf type and leaf habit type, which 
is also the most dominant individual feature among all 79 selected 
ones. In contrast, within the category of climatic condition, several 
factors such as temperature seasonality, total annual precipitation, 
and cloud cover have high importance in explaining wood density 
variation.

The importance of species in shaping wood density has been 
highlighted	 in	 various	 prior	 studies	 (e.g.,	Nabais	 et	 al.,	2018; Ogle 
et al., 2014; Thurner et al., 2014).	 In	our	 study,	 leaf	 type	 and	 leaf	
habit types, which are identified based on the species, also serve 
as key dominants in predicting wood density across all four ma-
chine learning models. It is worth noting that forest age and plant 
leaf	traits	(with	the	exception	of	leaf	type	and	leaf	habit	type)	have	
not been incorporated as predictive variables in our analysis, despite 
their potential relevance in explaining wood density, as reported by 
previous	studies	 (Bouriaud	et	al.,	2004, 2005;	Chave	et	al.,	2009).	
The primary rationale for the omission is the lack of accurate, 
high-	resolution,	 independent,	and	global	maps	 for	 these	variables.	
However,	we	recognize	the	potential	advancements	offered	by	re-
cently published global maps of forest age and plant traits, generated 
through	machine	 learning	techniques	 (Besnard	et	al.,	2021;	Huang	
et al., 2021;	Moreno-	Martínez	et	al.,	2018).	First,	we	acknowledge	

F I G U R E  3 Zoomed-	In	1 km	wood	density	map	over:	North	America	(a),	Europe	(b),	Siberia	(c),	South	America	(d),	Africa	(e),	Southeast	Asia	
(f),	and	Australia	(g).	Shown	is	the	average	wood	density	prediction	from	four	machine	learning	models	for	grid	cells	with	a	forest	fraction	
above	10%.
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8 of 13  |     YANG et al.

that	the	forest	age	map	from	Besnard	et	al.	 (2021)	 is	 incompatible	
with our analysis due to the interdependence with forest biomass 
from GlobBiomass—a critical covariate in predicting forest age. The 
algorithm for biomass in GlobBiomass relies on estimated wood 
density, creating a circular dependency that precludes the use of 
Besnard et al.'s map in our framework. Second, we conducted addi-
tional assessments of model performance, comparing models with 
and without plant leaf traits and forest age as predictive variable. 
The results show no discernible differences in model performance 
(Figure S7).	This	suggests	that	the	role	of	plant	leaf	traits	and	forest	
age may be effectively replaced by other vegetation and/or climate 
factors with similar spatial distributions in our predictive models. 
Another	possible	explanation	for	 the	 lack	of	new	 information	pro-
vided by leaf traits is that their maps were generated using the same 
machine learning approaches and shared many covariates, such 

as	 climate	 data	 from	WorldClim	 and	 vegetation	 indexes	 (Moreno-	
Martínez	et	al.,	2018).

The variation in wood density derived from the four ma-
chine	learning	models,	categorized	by	leaf	types,	leaf	habit	types,	
as well as climatic biomes, aligns with the features observed in 
wood	 density	 measurements	 (Figure 5a).	 Nonetheless,	 our	 ma-
chine learning models have limited capability in predicting the 
variations	 of	wood	density	within	 leaf	 (habit)	 types	 and	 climatic	
biomes. This limitation arises from the fact that wood density 
measurements	 are	 tree-	level	 estimations,	 which	 exhibit	 more	
significant	variations	within	 the	category	compared	to	 the	pixel-	
level	 predictions	 generated	 by	 the	models,	where	 the	 inter-	tree	
variations within a pixel are not considered. In the context of 
different leaf types and leaf habit types, wood density tends to 
be higher for broadleaf trees compared to needleleaf trees. The 

F I G U R E  4 Relative	feature	importances	across	machine	learning	models.	The	pie	plots	show	the	sum	of	importance	of	all	variables	
in	each	group	(vegetation,	climatic,	and	edaphic).	The	bar	plots	show	the	importance	of	each	predictor.	The	error	bars	denote	the	s.d.	of	
importance	across	cross-	validation	strategies.	The	details	of	predictor	covariates	are	listed	in	Table S2.
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    |  9 of 13YANG et al.

leaf	types	can	be	used	to	broadly	categorize	trees	into	hardwoods	
and softwoods, representing the difference in wood structure, 
specifically	characterized	by	the	presence	of	vessels	and	fibers	in	
hardwoods,	and	predominantly	tracheids	in	softwoods	(Barnett	&	

Jeronimidis, 2003; Pallardy, 2010).	Among	broadleaf	trees,	decid-
uous species exhibit slightly lower wood density than evergreen 
species.	Conversely,	 among	needleleaf	 trees,	 deciduous	 trees	of	
gymnosperm tend to have higher wood density than evergreen 

F I G U R E  5 (a)	The	boxplots	show	the	distribution	of	wood	density	for	different	categories	of	leaf	types	and	leaf	habit	types.	Both	wood	
density	measurement	(filled	boxes)	and	our	estimates	derived	from	four	machine	learning	models	(transparent	boxes)	are	shown.	In	the	
plots, the white dot represents the mean value, and the lines outside and inside the boxes represent, from top to bottom, 90th, 75th, 50th, 
25th,	and	10th	percentiles.	(b–e)	The	distributions	of	predicted	wood	density	by	machine	learning	models	with	the	climate,	hydrological,	and	
radiation	spaces	defined	by	temperature	seasonality,	total	annual	precipitation,	precipitation	of	coldest	quarter,	potential	evapotranspiration,	
and	cloud	coverage.	The	predicted	wood	density	map	at	1 km	pixels	used	here	corresponds	to	a	forest	fraction	threshold	of	10%.	The	insets	
in the corners show the values of wood density measurements over the corresponding climate spaces.
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10 of 13  |     YANG et al.

species.	 Regarding	 different	 climatic	 biomes	 (Figure S4),	 trees	
within tropical biomes exhibit higher wood density values com-
pared to those in temperate biomes. In turn, trees in temperate 
biomes generally have higher wood density than those in boreal 
and polar biomes. The high wood density in tropical regions re-
flects	 the	predominance	of	 shade-	tolerant	 species	characterized	
by	a	slow	growth	rate	replacing	the	fast-	growing,	gap-	dependent	
pioneer	 species	 (Finegan,	 1996;	 Martínez-	Cabrera	 et	 al.,	 2012; 
Poorter et al., 2008).

The influences of climate variables such as temperature season-
ality, annual precipitation, cloud cover, and potential evapotranspi-
ration	 (PET)	 on	wood	density	 in	 our	machine	 learning	models	 are	
further	 explored	 (Figure 5b,e).	 These	 climate	 variables	 hold	 high	
importance in our machine learning models and exhibit relatively 
low	collinearity	among	them.	First	of	all,	the	key	characteristics	of	
the relationship between wood density and these climate covari-
ates in the predicted map exhibit a good agreement with that in 
the observed wood density measurements. More specifically, we 
observed that temperature seasonality, defined as the coefficient 
of variation in monthly mean temperatures, serves to differentiate 
regions with low and high wood density, but has no monotonic re-
lationship	with	wood	density	(Figure 5b,c).	Furthermore,	we	found	
that wood density spatially varies with aridity degree, including total 
annual precipitation and PET. Specifically, we observed that under 
drier	 conditions,	 characterized	 by	 lower	 precipitation	 and	 higher	
PET, trees tend to have higher wood density values. This coincides 
with our previous results showing the prevalence of high wood den-
sity	in	forests	situated	within	tropical	dry	and	arid	zones	(Figure 3).	
Additionally,	 in	 the	 arid	 regions	 (annual	 precipitation	<1000 mm),	
the influence of cloud cover on wood density is pronounced, that 
is, lower cloud coverage fraction, which may represent higher short-
wave radiation availability, is associated with forests with higher 
wood	density	(Figures 3e and 5d).

Regarding the climate factors influencing wood density, pre-
vious studies have predominantly focused on the impacts of tem-
perature along with one of precipitation, soil moisture or PET. 
But the impact of cloud coverage or radiation on wood density, 
which plays an important role in our machine learning models, 
has	been	 largely	neglected	 in	earlier	 research.	Furthermore,	ear-
lier studies have reported the dominant climate factor influencing 
wood density changes over region, for example, Wiemann and 
Williamson	(2002)	suggested	that,	within	tropical	regions,	precip-
itation was the primary driver of wood density variations, while 
in	extratropical	regions,	temperature	played	a	key	role.	However,	
their investigations were limited to linear relationships between 
wood density and climate variables over very large regions such 
as	 the	whole	North	and	South	Americas,	or	mid	and	high	north-
ern	 latitudes	 (Chave	 et	 al.,	 2009; Ogle et al., 2014; Roderick & 
Berry, 2001).	 In	 contrast,	 in	 our	 results,	 the	 climate	 covariates	
and wood density show complex nonlinear relationships over 
the global scale. Our findings do not exhibit clear, monotonous 
linear relationships within the observed and predicted patterns. 
It	 is	 important	 to	 note	 that	 our	 analysis	 is	 based	 on	 pixel-	level	

wood density values in which the characteristics of both gymno-
sperms and angiosperms are combined. This differs from earlier 
studies that reported the significant climate role specifically for 
gymnosperms	(Clough	et	al.,	2017).	 In	summary,	our	study	sheds	
light on the multifaceted and nonlinear relationships between 
wood density and climate covariates, challenging previous linear 
assumptions.

4  |  CONCLUSIONS

We provide the first spatially continuous map of wood density 
at	 a	 global	 scale	 at	 the	 0.01°	 (~1 km)	 spatial	 resolution,	 using	 a	
wide set of climate, soils, topography, and vegetation proper-
ties applied to four machine learning models. The four machine 
learning models compared in our analyses all show good capac-
ity	to	predict	tree-	level	wood	density	estimates	(R2 = 0.55 ± 0.03	
and	 RMSE = 0.11 ± 0.01 g/cm3).	 Nevertheless,	 it	 is	 worth	 noting	
that variations and biases in model predictions tend to be more 
pronounced in regions where wood density measurements are 
scarce. To increase the reliability of our findings, we use eight 
cross-	validation	 strategies,	 which	 not	 only	 confirm	 the	 robust-
ness of our results but also underscore the limitations of machine 
learning models when it comes to extrapolation. This highlights 
the critical need for widespread wood density measurements and 
emphasizes	 the	 importance	 of	 leveraging	 measurements	 with	
global coverage. The spatial patterns of wood density generated 
by machine learning models exhibit a remarkable alignment with 
the leaf type and leaf habit types and climate conditions, which 
reflects the wood structure and growing rates of trees. In the 
northern high latitudes where deciduous and evergreen needle-
leaf trees dominate, wood density values are generally lower 
compared to the evergreen trees in tropical regions. Within the 
tropics, wood density in arid areas tends to be relatively lower 
than in wet regions. It is imperative to acknowledge the models' 
limited	capacity	 to	predict	 tree-	level	wood	density	variations	 in	
the wet tropical regions. Due to the absence of species maps, we 
used leaf types and leaf habit types as predictors, offering par-
tial insights into the wood density variations related to species. 
Nevertheless,	this	method	may	limit	the	models'	capacity	to	accu-
rately	predict	wood	density	variations	in	regions	characterized	by	
high biodiversity. To overcome this limitation, there is a compel-
ling	need	 for	 the	development	of	high-	resolution	global	 species	
abundance maps in the future, by taking advantage of available 
open-	data	 resources,	 including	 complex	 networks	 of	 plot	 data	
(e.g.,	sPlot	data;	Sabatini	et	al.,	2021),	national	forest	inventories	
data,	and	species	occurrences	dataset	(e.g.,	GBIF).	Nevertheless,	
our newly global spatial explicit dataset will allow us to provide 
more accurate estimations of vegetation carbon stocks and give 
valuable insights into how forests resist and recover from future 
environmental challenges. This provides a valuable opportunity 
to obtain a better understanding of ecosystem function and ser-
vices in the face of future climate change.
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