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ABSTRACT 

China currently has the highest acid deposition globally, yet research on its status, impacts, causes and 
controls is lacking. Here, we compiled data and calculated critical loads regarding acid deposition. The 
results showed that the abatement measures in China have achieved a sharp decline in the emissions of 
acidifying pollutants and a continuous recovery of precipitation pH, despite the drastic growth in the 
economy and energy consumption. However, the risk of ecological acidification and eutrophication showed 
no significant decrease. With similar emission reductions, the decline in areas at risk of acidification in China 
(7.0%) lags behind those in Europe (20%) or the USA (15%). This was because, unlike Europe and the 
USA, China’s abatement strategies primarily target air quality improvement rather than mitigating ecological 
impacts. Given that the area with the risk of eutrophication induced by nitrogen deposition remained at 13% 

of the country even under the scenario of achieving the dual targets of air quality and carbon dioxide 
mitigation in 2035, we explored an enhanced ammonia abatement pathway. With a further 27% reduction in 
ammonia by 2035, China could largely eliminate the impacts of acid deposition. This research serves as a 
valuable reference for China’s future acid deposition control and for other nations facing similar challenges. 
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sition and its environmental impacts, aiming to eval- 
uate the efficacy of these policies and inform future 
legislative initiatives [7 ]. 

One of the foremost scientific frameworks for 
evaluating ecological impacts associated with atmo- 
spheric emissions and subsequent deposition is the 
concept of critical loads (CLs), reflecting the strong 
interactions of science and policy. The CL is defined 
as a quantitative estimate of exposure to deposition, 
below which significant harmful effects on sensitive 
elements of the environment do not occur according 
to current knowledge [8 ]. The risk is thereby ex- 
pressed through CL exceedance, i.e. representing the 
extent to which deposition surpasses the established 
critical load. The CL approach has been applied 
in negotiating several protocols for the CLRTAP 

(e.g. the Second Sulphur Protocol and the Gothen- 
burg Protocol) to develop advanced strategies for 
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NTRODUCTION 

cid deposition, encompassing sulfur (S) and nitro-
en (N) deposition, emerged as a most pressing en-
ironmental concern in Europe and North America
uring the late twentieth century [1 –4 ]. This issue
ed to the widespread acidification and eutrophica-
ion of terrestrial and aquatic ecosystems, causing
amage to biological diversity and health [1 ,3 ,5 ,6 ].
ith the slowdown in economic growth and the im-
lementation of policy actions for decades, e.g. the
0-year Convention on Long-range Transboundary
ir Pollution (CLRTAP) in Europe and the 40-year
lean Air Act Amendments in the USA, emissions
f the key acidifying pollutants, namely sulfur diox-
de (SO2 ) and nitrogen oxides (NOX ), have been re-
uced by > 90% and > 60% since 1980, respectively
Fig. 1 ). This success has spurred renewed research

nterest in assessing the current status of acid depo- 
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Figure 1. Trends of acid rain development and related variables in China compared with Europe (EU-28) and the USA. 
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mission abatement [8 ]. Analogous to public health
tandards, the CL is considered a long-term objec-
ive for emission control policies from the view of
cological health. 
Driven by rapid economic growth and increased

ossil fuel combustion, China’s emissions of SO2 
nd NOX surged by over three and seven times,
espectively, within a 30-year span from 1980
9 –11 ] (Fig. 1 , and Fig. S1 in the Supplementary
ata online). Consequently, the peak emissions of
O2 ( ∼33 Mt yr−1 in 2006) and NOX ( ∼29 Mt
r−1 in 2012) in China surpassed those in Europe
nd the USA, leading to heavier acid deposition
9 –11 ] (Fig. 1 ). Similarly, China has made great
fforts to control air pollutant emissions. Gradu-
lly stricter policies for emission abatement of the
cidifying precursors have been launched in China
ver the past 20 years, including the designation
f the SO2 Pollution Control Zone and Acid Rain
ontrol Zone (Two Control Zones) in 1998, the
otal Emission Control of SO2 and NOX (setting
Page 2 of 9
compulsory targets to achieve the national goal of 
10% reduction in the SO2 emission from 2005 to 
2010, and further reduce SO2 and NOX emissions by 
8% and 10% by 2015, respectively), the Action Plan 
of Air Pollution Prevention and Control (Air Action 
Plan, setting 15% reduction of national SO2 and 
NOX emissions by 2020) and the Three-Year Action 
Plan to Fight Air Pollution (Fig. 1 and Fig. S1). By 
far, however, China lacks efficiency assessments for 
control strategies acting on acid deposition and its 
ecological impacts [12 –14 ]. To elucidate the status, 
causes and controls of acid deposition, we compiled 
data spanning 1980–2020 on China’s national econ- 
omy, energy consumption, emissions, deposition, 
precipitation pH and control policies. Furthermore, 
we evaluated the efficiency of these control strate- 
gies on ecological health improvement using the CL 

concept, both retrospectively and in future scenar- 
ios. Through a comprehensive comparative analysis 
with Europe and the USA, we explored a pathway to 
mitigate the ecological impacts of acid deposition. 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae007#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae007#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae007#supplementary-data
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ESULTS AND DISCUSSION 

cid-rain-mitigation benefit of emission 

batements 
t should be affirmed that the abatement measures
ad success in acid rain mitigation in China. By
020, national emissions of SO2 and NOX had seen
ubstantial reductions of 77% and 32%, respectively,
ompared with their peak values in 2006 and 2012
Fig. 1 ). Consequently, the national average pH of
recipitation has continually increased since 2007
nd exceeded 5.6 after 2014. Notably, the proportion
f acid rain areas (i.e. the area with precipitation
H < 5.6) dwindled from > 40% around the peak of
cid deposition in 2005 to ∼12% in 2020 (data from
hina Meteorological Administration 1992–2020,
ttp://s.cma.gov.cn/zfxxgk/gknr/qxbg/). Further-
ore, only 4.8% of the country experienced acid
ain in China in 2020 according to the Bulletin on
he State of China’s Ecological Environment in 2020
 https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/). 
lthough different networks may have varying
eports on the proportion of acid rain areas due to
ifferent distributions of monitoring sites, overall,
here has been a significant decrease in acid rain ar-
as in China. Compared with Europe and the USA,
hina has achieved a more rapid decline in SO2 
missions and a sharper increase in precipitation pH
ince 2005 (Fig. 1 ). Remarkably, the trajectories of
cidifying pollutant emissions and social-economic
evelopment have become progressively decoupled.
espite significant growth in the gross domestic
roduct (GDP) (by 5.4 times), energy consump-
ion (by 64%) and vehicle volume (by 7.7 times)
ince 2005, when SO2 began to decline ( Fig. S1),
he trends in emissions have notably diverged. 
Compared with Europe and the USA, China

ave had much larger emissions of SO2 and NO2 
ince 2005 (Fig. 1 ). However, China always has a
uch higher annual average precipitation pH and a

ower incidence of acid rain areas (4.8% in China vs.
7% in the USA, Table S1). This divergence is likely
ttributed to the robust acid-neutralizing capacity
rovided by larger anthropogenic emissions of base
ations (Bc, i.e. Ca2 + , Mg2 + and K+ ; ∼2.1 times
hat of the USA, Fig. S1) and ammonia (NH3 , ∼2.6
imes that of the USA, Fig. 1 ) [10 ,11 ,15 ,16 ]. With
he control of fine particle matter (PM2.5 ) in China,
he deposition of Bc has declined [17 ], but less than
he reductions in SO2 and NOX . Concurrently, NH3 
missions have remained stable without control
olicies. The dissolution of NH3 in rainwater forms
mmonium (NH4 

+ ) and buffers acidity, thus in-
reasing the precipitation pH. However, NH4 

+ is
nother important acidifying compound due to the
ntense proton (H+ ) release during assimilation and
Page 3 of 9
nitrification once NH4 
+ deposits into ecosystems 

[16 ]. Thus, the increase in precipitation pH does not 
adequately reflect the mitigation of acid deposition 
and its ecological impacts. The current national aver- 
age S and N depositions in China are sti l l much larger
than the peak values in Europe and America and have 
shown a limited decline in recent years ( Fig. S1) [18 –
21 ]. This result implies the continuing potential risk 
of acidification and eutrophication of ecosystems. In 
addition to precipitation pH, more evidence should 
be provided to show that control measures lead to the 
intended improvements in terrestrial and freshwater 
ecosystems. 

Ecological impacts alleviation from past 
to future 

We updated CLs for soil acidification and eu- 
trophication ( Fig. S2) as well as CLs for surface 
water acidification ( Fig. S3), and subsequently 
computed the historical CL exceedances with the 
simulations of acid deposition in 2005, 2010, 2015 
and 2022 (Fig. 2 ). Specifically, we selected the 
depositions in 2005 and 2010, corresponding to 
the commencement of the national Total Emission 
Control of SO2 and NOX , as historical depositions, 
respectively. The depositions of 2015 and 2022 was 
considered representative of the current deposition. 
Overall, environmental risk assessments based 
on CL exceedances indicated that the emission 
reductions from 2005 to 2015 caused a limited or 
non-significant decline in the degree and extent 
of ecosystem acidification (Fig. 2 ). For instance, 
although the accumulated exceedance for soil acidi- 
fication decreased from 158 Geq yr−1 in 2005 to 119 
Geq yr−1 in 2015, the total area with CL exceedance 
for soil acidification showed no significant changes 
from 2005 to 2015 (accounting for 15.9% and 16.1% 

of the country in 2005 and 2015, respectively). 
Additionally, there were no significant changes in 
the percentage of streams that CLs exceeded, and 
nearly 40% of the headwaters in China faced the 
risk of acidification during the 2005–15 periods. 
Meanwhile, instead of decreasing, the areas in which 
the CL of nutrient N was exceeded and accumulated 
exceedance for eutrophication increased gradually 
from 2005 to 2015, i l lustrating the increased risk
of ecological eutrophication in China. In 2015, the 
total area with CL exceedance for eutrophication 
accounted for > 20% of the country. In contrast, 
from 2015 to 2022, there was significant allevia- 
tion in the ecological impacts of acid deposition, 
particularly in soil acidification and eutrophication. 
Nevertheless, the total area with CL exceedances sti l l
accounted for ∼14% and 15% of the country for soil

http://s.cma.gov.cn/zfxxgk/gknr/qxbg/
https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae007#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae007#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae007#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae007#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae007#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae007#supplementary-data
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Figure 2. Critical loads (CLs) exceedance with the changes in acid deposition. (a) Distributions of CL exceedances in 2005, 2015, 2022 and 2035- 
CBE scenarios for soil acidification and ecosystem eutrophication. (b) Distributions of CL exceedances for surface water acidification. (c) Accumulated 
amounts of CL exceedances. 
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cidification and eutrophication, respectively, under
he deposition in 2022. This underscores the current
igh risk of ecological impacts from acid deposition
n China. 
Page 4 of 9
At present, the Chinese government is devoting 
great efforts to simultaneously improving air quality 
and mitigating climate change, adopting the ‘Beauti- 
ful China’ and ‘Carbon Peak and Neutral’ strategies 
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n 2020. These strategies aim to achieve ambient
M2.5 concentrations of ≤35 μg m−3 for all cities
y 2035 and attain carbon dioxide (CO2 ) emis-
ion peaks before 2030, respectively. Pathways to
eeting these dual targets have been extensively ex-
lored [22 –24 ], including the 2035-NDC scenario,
ligning with nationally determined contributions
utlined in the Paris Agreement, and the 2035-CBE
cenario, incorporating co-benefit energy policies
nd end-of-pipe controls with maximum feasible
eductions in 2035 [24 ]. Under the 2035-NDC sce-
ario, national emissions of SO2 , NOX and NH3 are
rojected to decrease by 62%, 51% and 18%, respec-
ively, compared with those in 2015. The 2035-CBE
cenario envisions even more substantial reductions,
ith emissions of SO2 , NOX and NH3 dropping
y 78%, 70% and 18%, respectively ( Fig. S4) [24 ].
onsequently, S deposition is expected to decline
y > 50% in most regions, except in areas with
ow deposition, such as northwest China and the
ibet Plateau ( Fig. S4). Although the decrease in
 deposition is less pronounced due to the chal-

enges in controlling ammonia emissions, there is a
harp national decline, particularly in the north and
ar ts of nor thwest China ( Fig. S4). Under the acid
eposition in the 2035-CBE scenario, the area and
mount of CL exceedance for soil acidification de-
reased significantly to only 8.9% of the country and
3.4 Geq yr−1 , respectively (Fig. 2 ). Concurrently,
ompared with 2015, the percentage of surface water
ith CL exceedance for acidification decreased by
6% and the proportion of area with CL exceedance
or eutrophication decreased by 7.4%. Nevertheless,
Page 5 of 9
nearly a quarter of the headwaters and 13% of the
area in China wi l l remain at risk of acidification and
eutrophication, even under the 2035-CBE scenario. 
This result shows that China cannot mostly elimi- 
nate (i.e. the area with CL exceedances being < 10%
of the country) the ecological impacts of acid depo- 
sition in the future, even with the achievement of the 
dual targets of both air quality and CO2 mitigation. 

It is essential to highlight that the anticipated 
reduction in Bc deposition with PM2.5 pollution 
control would cause a decrease in the computed 
CLs for acidification ( Fig. S5). Consequently, the 
mitigation of CL exceedances for acidification may 
proceed at a slower pace, taking into account the 
projected reduction in Bc deposition in the future 
(Fig. 3 a). In contrast, the CL of N is less affected, pri-
marily due to its significant dependence on nutrient 
N rather than acidifying N ( Fig. S5). Furthermore, 
future climate change poses an additional challenge 
to the mitigation of ecological impacts from acid 
deposition. According to the prediction of future 
climate change [25 ], most regions in China are 
expected to experience increases in soil temperature 
and moisture. Although the rise in temperature 
marginally accelerates weathering rates ( < 10%), 
the concurrent increase in plant uptake is projected 
to significantly elevate Bc uptake (up to 40%) 
( Fig. S6). Consequently, substantial parts of China 
demonstrate decreasing CLs of acidification when 
considering climate change. Calculations indicate 
that the proportion of area with the CL exceedance 
for acidification wi l l be 55% larger than that without
considering future climate change (Fig. 3 a). 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae007#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae007#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae007#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae007#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae007#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae007#supplementary-data
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ifferences between China and Europe 

r the USA 

nder peak acid deposition, the proportion of
he area at risk of soil acidification in China in
005 ( ∼16%) was significantly smaller than that in
urope ( ∼26%) and the USA ( ∼29%) in approx-
mately 1990 (Fig. 3 a). This result indicates that
he degree of ecosystem acidification is relatively
ower in China, even under relatively higher acid
eposition ( Fig. S1). Moreover, the CL exceedance
f nutrient N in China has always been much lower
han that in Europe and the USA (Fig. 3 b), indicating
hat China faces a lower risk of ecological eutroph-
cation. The lower risks of ecological acidification
nd eutrophication are attributed to the much higher
Ls in China resulting from higher Bc deposition,
egetation uptake, sulfate retention and denitri-
cation ratios (see Supplementary Data online).
evertheless, the emission reductions had relatively
oorer efficiency in reducing the CL exceedances
or acidification and eutrophication in China. Under
he 2035-CBE scenario, China’s emission reduc-
ions of SO2 and NO2 since 2005 wi l l be simi lar to
hose in Europe and the USA from 1990 to 2020
Fig. 3 a). However, the decline in the area with CL
xceedances for acidification in China (decreased by
7.0%) was far less than that in Europe (decreased
y ∼20%) and the USA (decreased by ∼15%)
Fig. 3 a). Similarly, with a similar reduction in the
um of NO2 and NH3 emissions, the proportion
f area with CL exceedances for eutrophication
howed a lower decrease in China from 2010 to
he 2035-CBE scenario ( ∼7.4%) compared with
urope (14%) and the USA (13%). 
Reducing the area and amount of CL exceedances

uided the government policy on reducing emis-
ions of acidifying pollutants in Europe and North
merica [7 ]. In contrast, the emissions reduction
as aimed at the improvement of air quality in
hina, resulting in the region with the largest emis-
ion reductions being located in the more industrial
astern China, which has relatively high CLs due to
he already destroyed natural vegetation ( Fig. S2).
owever, the reduction in atmospheric deposition
as not sufficient in southern China with high CL
xceedances for acidification and in the northwest-
rn region with a large area of CL exceedance for
utrient N (Fig. 2 a and Fig. S6c). Regarding the spa-
ial distribution, the CL exceedance for acidification
ecreased in some parts of eastern China but in-
reased in some parts of western China from 2005 to
015 (Fig. 2 a). This is mainly because S deposition
eclined in most parts of eastern China but increased
n some parts of western China ( Fig. S4). Therefore,
batement strategies with the goal of improving air
Page 6 of 9
quality in China have relatively lower efficiency in 
the mitigation of environmental impacts induced by 
acid deposition. The CL-based policies for emission 
abatement in Europe have been shown to be most 
cost-effective in the three regions where emissions 
reductions have achieved significant success. This re- 
sult suggests that reducing CL exceedances (i.e. eco- 
logical sensibility) should be considered one of the 
main objectives for further emissions reduction in 
China. 

Pathway for acid deposition mitigation 

in the future 

Given the large areas at risk of eutrophication ( > 13% 

of the country) under the 2035-CBE scenario, N pol- 
lutants were regarded as the primary control objec- 
tive during the exploration of the pathways for long- 
term targets of further acid deposition alleviation in 
China. Under the 2035-CBE scenario, the emissions 
of NH3 wi l l only decrease by 18% compared with 
2015 because the NH3 emissions are very hard to 
control by currently available end-of-pipe control 
technologies [24 ]. However, according to the pre- 
diction of NH3 emissions in China, there is sti l l 
great potential for NH3 reduction (reduce by 30%–
50%) after the implementation of both end-of-pipe 
control technologies during industrial production 
and feasible abatement measures during agricultural 
activities [16 ]. Here, an enhanced ammonia abate- 
ment pathway (2035-EA scenario) was explored to 
drastically reduce acid deposition and its ecological 
impacts. Specifically, we set a 40% reduction in 
NH3 emissions from 2015 and the key control zone 
was identified by the CL exceedance for nutrient N 

(2035-EA scenario). It means a further reduction of 
NH3 emissions by ∼27% compared with the 2035- 
CBE scenario ( Fig. S7). The regions and degrees 
of potential risk for soil acidification and eutrophi- 
cation were identified based on the distribution of 
their CL exceedance under the 2035-CBE scenario. 

Under the 2035-EA scenario, the area where N 

deposition exceeds the CL of nutrient N wi l l sharply
decrease to only 8.0% of the country (Fig. 3 b). 
Additionally, the area with acidity CL exceedances 
for soil will decrease to only 7.1% of the country 
(Fig. 3 a) and the percentage of headwaters with 
CL exceedances for acidification wi l l decrease to 
near zero (Fig. 2 c). This means that > 92% of the
country could be protected from acidification and 
eutrophication, and almost all the headwaters could 
avoid acidification, with a further 27% reduction 
in NH3 . Meanwhile, the enhanced NH3 reduc- 
tion would contribute to the further mitigation of 
PM pollution. Under the 2035-EA scenario, the 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae007#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae007#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae007#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae007#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae007#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae007#supplementary-data


Natl Sci Rev, 2024, Vol. 11, nwae007

a  

e
 

e  

w  

a  

p  

l  

e  

S  

e  

p  

a  

v  

i  

t  

s  

N  

i  

r  

p

M
D
T  

1  

r  

(  

o  

p  

(  

t  

u  

M  

t  

7  

t  

h  

t  

v  

r  

(  

f  

t

C
W  

t  

i  

C

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/11/4/nw

ae007/7512209 by C
EU

 Library user on 20 M
arch 2024
verage PM2.5 concentrations wi l l decrease by an
xtra 12%. 
Our findings emphasize that the sensitivity of the

cosystem to acid deposition should be considered
hen formulating effective regional policies to
chieve multiple long-term targets of air quality im-
rovement, CO2 mitigation and acid deposition al-
eviation. This insight could serve as a valuable refer-
nce for other regions, such as India, Southeast Asia,
outh America and South Africa, which currently
xperience or wi l l face chronical ly elevated acid de-
osition and thus acidification and eutrophication as
 consequence of their industrial and economic de-
elopment [26 ,27 ]. Notably, these regions share sim-
larities with China, being located in tropical or sub-
ropical regions, and may experience relatively less
evere eutrophication compared with Europe and
orth America. Consequently, the explored pathway
n this study for China, focusing on NH3 emission
eductions guided by CL exceedances, can offer a
articularly important reference for these regions. 

ATERIALS AND METHODS 

ata compilation 

he emissions of SO2 , NOX and NH3 from
980 to 2020 were the result of the Multi-
e solution Emission Inventory for China
 http://www.meicmodel.org) [28 ,29 ]. Trends
f S and N deposition were summarized from the
ublished data and measurements across China
see Method in the Supplementary Data for de-
ails). The Bc deposition is the simulation value
sing a multi-layer Eulerian model (only Ca2 + and
g2 + ) [17 ]. Additionally, the trends of precipita-

ion pH and its distributions were derived from
4 monitoring sites across China of the China Me-
eorological Administration (CMA; 1992–2020;
ttp://s.cma.gov.cn/zfxxgk/gknr/qxbg/). Data on
he GDP, energy consumption, coal consumption,
ehicle volume and fertilizers application were de-
ived from the National Bureau of Statistics of China
 https://www.stats.gov.cn/). For details of the data
or emissions, depositions and CLs in Europe and
he USA, see Method in the Supplementary Data. 

Ls 
e used the Simple Mass Balance model to update

he national CLs for soil acidification and eutroph-
cation with 1 × 1 km2 resolution. The maximum
L of sulfur (CLmax (S)) is derived as in [30 ]: 

CLmax (S) = B cdep + Bcw − Bcu − AN Cle ,crit 

(1)
Page 7 of 9
where the subscript dep stands for deposition, and 
subscripts w and u mean soil weathering and net 
uptake by vegetation, respectively. Bc stands for 
base cations except for Na. AN Cle , crit is the critical 
leaching of acid-neutralizing capacity, which can be 
calculated using the following equation: 

AN Cle ,crit = −1. 5 
(
Bcdep + B cw − B cu 

)
(Bc 
Al 

)
crit 

−Q
2 
3 ×

[ 

1. 5 
(
Bcdep + B cw − B cu 

)
(Bc 
Al 

)
crit × Kgibb 

] 

1 
3 

(2) 

where Q is the runoff flux leaving the root zone and 
Kgibb is the Gibbsite constant describing the balance 
between Al3 + and H+ . 

The minimum CL for nitrogen is derived as: 

CLmin (N) = Nu + Ni (3) 

where Nu and Ni stand for the net nitrogen uptake 
and immobilization, respectively. The maximum CL 

for nitrogen is derived as: 

CLmax (N) = C Lmin (N) + C Lmax (S) / (1 − fde ) 
(4) 

where fde is the fraction of nitrogen net input 
( = Ndep −CLmin (N)) that is denitrified. 

In addition to acidification, excess nitrogen can 
also lead to eutrophication. The CL of nutrient 
nitrogen (or CL of eutrophication) is derived as: 

CLeut (N) = Nu + Ni + Nle ,crit / (1 − fde ) (5) 

where Nle, crit is the accepted nitrogen leaching. 
The CL of nitrogen is defined as the minimum 

of CLmax (N) and CLeut (N) . The determination 
of the model parameters was based on the new 

knowledge of the effects induced by acid deposition 
on ecosystems and the subsequent biogeochem- 
ical processes in China [14 ,31 –33 ] (see Method
in the Supplementary Data). Simila rly, the CL of 
acidification for hundreds of headwater streams 
across China was updated using a modified Steady- 
State Water Chemistry model (see Method in the 
Supplementary Data). 

Critical load exceedance 

The atmospheric deposition of S and N onto China 
was modeled using the CMAQ/2D-VBS air qual- 
ity simulation system [24 ,34 ] (see Method in the
Supplementary Data). 

http://www.meicmodel.org
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae007#supplementary-data
http://s.cma.gov.cn/zfxxgk/gknr/qxbg/
https://www.stats.gov.cn/
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae007#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae007#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae007#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae007#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae007#supplementary-data
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The CL exceedances were calculated by subtract-
ng the CL from the corresponding acid deposition.
he exceedances of eutrophication CL were calcu-
ated as: 

Ex ( CLeut ) = Ndep − C Leut ( N) (6)

The exceedances of acidity CL were calculated as:

Ex ( CLaci ) = 

(
Ndep − CLmin ( N) 

)× ( 1 − fde ) 

+ Sdep − CLmax ( S) (7)

here the negative value indicates no exceedance
n Equations ( 6 ) and ( 7 ). 

ncertainty and sensitivity analysis 
he uncertainties of CL and CL exceedances were
ainly attributed to the errors or uncertainties of
odeled input parameters when the uncertainties
egarding the model structure and CL concept
ere not discussed. According to previous studies
n China, the CLs are highly dependent on the Bc
eposition [35 ] and soil weathering rates [36 ]. Here
he uncertainty of Bc deposition was assumed to
e 40%, according to the Normalized Mean Bias
etween the Bc modeling and monitoring. The
ncertainty of Bcw was assumed to be normally
istributed with an SE of 20%, according to previous
ncertainty analysis [35 ]. For further calculation
f CL exceedances, the uncertainty comes from
cid deposition modeling. The uncertainties for
et deposition of S and N were about –30% and
35%, respe ctiv ely. Base d on the error propagation,
he uncertainties of CL exceedances were ∼40%.
owever, it is difficult to determine the uncertainty
f the proportion of area with CL exceedances.
iven the important impacts of Bc deposition and
limate on CL computing [35 ], we investigate the
ensitivity of CL to decreasing Bc deposition and
limate changes (see Supplementary Data). 

ATA AVAILABILITY 

he data that support the findings of this study are
vailable from the corresponding authors upon rea-
onable request. 

UPPLEMENTARY DATA 
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