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Effectively tackling climate change requires sound knowledge about greenhouse gas emissions and
their sources. Currently, there is a lack of comprehensive, sectorally disaggregated, yet comparable
projections for greenhouse gas emissions. Here, we project sectoral emissions until 2050 under a
business-as-usual scenario for a global sample of countries and five main sectors, using a unified
framework and Bayesian methods. We show that, without concerted policy efforts, global emissions
increase strongly, and highlight a number of important differences across countries and sectors.
Increases in emerging economies are driven by strong output and population growth, with emissions
related to the energy sector accounting for most of the projected change. Advanced economies are
expected to reduce emissions over the coming decades, although transport emissions often still show
upward trends. We compare our results to emission projections published by selected national
authorities as well as results from Integrated Assessment Models and highlight some important
discrepancies.

The Sixth Assessment Report of the Intergovernmental Panel on Climate
Change (IPCC)paints a grimpicturewith regards to achieving the goals that
were agreed on in the 2015 Paris agreement1. Limiting global warming to an
acceptable degree requires swift and decisive action at all scales to reduce
greenhouse gas (GHG) emissions in a sustainable and efficient manner.
Specific policies to do so are often designed, decided and implemented on a
national level and target particular sectors. It appears therefore pertinent for
policy-makers to have sound evidence about current and future trends of
emissions on a sectoral level. In combination with detailed knowledge of
country characteristics, these are crucial to inform the design of targeted
policies aimed at reducing GHG emissions in specific sectors. However,
comprehensive andglobally consistentprojectionsof sectoral emissions that
would allow for benchmarking are lacking.

Scenario-based projections of future GHG emissions are typically
derived from Integrated AssessmentModels (IAMs) by various institutions
and are assessed in reports by the IPCC. These models explicitly take
anticipated future policy changes into account and derive scenario trajec-
tories for GHG emissions on a global, regional or national level. They are
crucial, inter alia, for the assessment ofmitigation technologies, policies and
international cooperation needed to achieve goals regarding the climate and
sustainable development2,3. However, the quantification of uncertainty for

IAMs is conceptually difficult due to their complexity and rich model
structure4–6. Advances have been made to approach the quantitative
assessment of uncertainty, e.g. by using ensembles of models, thereby
recognizing that robust findings require a diversity of scenarios and mod-
elling approaches3,7,8. In this regard, a newly established database collecting
outcomes of various IAMs allows for an eased assessment across them (see
Supplementary Note A). Downscaling methods to derive nationally and
sectorally resolved scenarios exist9–11, andprojections at thesemore granular
levels are recognized to constitute an important contribution to anevidence-
based climate policy discussion12,13. However, the added (assumption-
based) layers required for this breakdown also amplify complexities with
respect to uncertaintyquantification alreadypresent at the regional or global
scale14. Despite the advances of the IAMcommunity, further improvements
in these aspects are crucial3.

The number of studies presenting models aimed at forecasting carbon
or GHG emissions for individual countries and sectors has substantially
increased in recent years15–18, with an emphasis on the highest emitting
countries3. The models employed for this purpose span a wide range of
methodologies, geographical and sectoral resolutions, underlying data
sources, and temporal coverage in terms of observation and projection
periods3. These efforts include estimation frameworks for national

1Department of Economics, ViennaUniversity of Economics andBusiness (WU), Vienna, Austria. 2WorldData Lab (WDL), Vienna, Austria. 3International Institute for
Applied Systems Analysis (IIASA), Laxenburg, Austria. 4Wittgenstein Centre for Demography and Global Human Capital (WIC), Vienna, Austria.

e-mail: lukas.vashold@wu.ac.at

Communications Earth & Environment |           (2024) 5:139 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-024-01288-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-024-01288-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-024-01288-9&domain=pdf
http://orcid.org/0000-0002-3562-3414
http://orcid.org/0000-0002-3562-3414
http://orcid.org/0000-0002-3562-3414
http://orcid.org/0000-0002-3562-3414
http://orcid.org/0000-0002-3562-3414
http://orcid.org/0000-0003-3244-6560
http://orcid.org/0000-0003-3244-6560
http://orcid.org/0000-0003-3244-6560
http://orcid.org/0000-0003-3244-6560
http://orcid.org/0000-0003-3244-6560
mailto:lukas.vashold@wu.ac.at


emissions reported in official communications of countries to the United
Nations FrameworkConvention onClimate Change (UNFCCC) regarding
their Nationally Determined Contributions (NDCs). The diversity in terms
of coverage and methodological approaches of country-specific modelling
frameworks hinders cross-study comparisons, thereby also impeding the
drawing of coherent conclusions on a regional or global level. Furthermore,
the leeway in the creation of projections is prone to be used by countries to
inflate benchmark projections against which they formulate their pledged
reductions as part of their NDCs, making them in turn less stringent19.

Responding to these issues, the climate science community has taken
measures to enhance the understanding of quantitative differences across
country-level studies, but also in comparison to globalmodels. This notably
includes the establishment of a database that collects country-level mitiga-
tion scenarios (see Supplementary Note A). These efforts are crucial, given
the importance of considering country-specific determinants of GHG
emissions for the formulation and design of specific mitigation policies at a
national level20. Partly to address the lack of cross-country comparable
projections, recent contributions have developed fully probabilistic models
to jointly model dynamics of carbon emission intensity, gross domestic
product (GDP) per capita and population21,22. Thesemodelling frameworks
derive nationally resolved, comparable projections of CO2 emissions for a
global sample of countries. However, the focus of these contributions on
aggregate carbon emissions abstracts from important differences across
sectors and precludes other GHGs that would need to be addressed in the
design of efficient policies to combat climate change. Furthermore,while the
approach used has the advantage of explicitly accounting for uncertainty in
future population and income dynamics, this also introduces a certain lack
of comparability to projections based on established socioeconomic tra-
jectories commonly used in climate research, the Shared Socioeconomic
Pathways (SSPs)23.

In this contribution, we present projections of sectoral emissions
derived fromaunified statistical framework.Wecompileprojections for 173
economies andfivemain sectors until the year 2050, capturing 99%of global
GHG emissions in 2018 (excluding those from land use, land use change
and forestry, LULUCF). Building upon sector-specific Kaya identities, we
characterize total emissions in a given sector as the product of their main
drivers: total population, average gross domestic product (GDP) per capita
as a measure of affluence, and sector-specific emission intensities, whose
change is related to technological and structural dynamics at the sectoral
level24. We augment these specifications with economy-wide information
on the demographic structure of the corresponding country and model
interdependencies between components explicitly using large panel vector
autoregressive models (see the “Methods” section). We employ a hier-
archical Bayesian prior setup which pools information across countries
within sectors, while simultaneously allowing for country heterogeneity
where historical evidence deems it necessary. The proposed model setup is
used to obtain projections of sectoral emissions, conditioning on trajectories
of socioeconomic and demographic variables given by the SSPs23,25. With
this unified framework that relies on a limited set of assumptions, we aim to
bridge the gap between IAMs and country-specific modelling exercises,
providing an addition to the toolkit usable for evidence-based climate
policy-making.

For our projections, we focus on the SSP2 scenario, which describes a
“Middle of the Road” trajectory. The nature of our setting implies that the
model projects sector-specific trends for emission intensities assuming no
major abrupt technological shifts or unprecedented policy responses in the
future, beyond the narrative embodied in the assumptions of the
SSP2 scenario23. The resulting sectoral emissions, retrieved from the sector-
specific Kaya identities, can thus best be thought of as a “business-as-usual”
(BAU) case for futureGHGemissions. Theminimal set of assumptions and
straightforward uncertainty quantification embodied in our modelling
strategy facilitates the assessment of projections as computed by other
models. However, the accompanying credible bands serve as a lower bound
for uncertainty surrounding them, given that we abstract from uncertainty
regarding future socioeconomic and demographic dynamics by relying on

economy-wide trends for them that characterize the narrative of the
SPP2 scenario. The proposed vector autoregressive specification would be
able to incorporate additional uncertainty regarding the drivers of emissions
intensity but would thereby sacrifice consistency with the established SSP
narratives. Keeping this inmind, our results can serve as benchmarking and
validation tools for estimates of GHG emissions under BAU scenarios
derived by national authorities19 or for reference scenarios derived
from IAMs.

Having detailed projections for future GHG emissions at hand can
effectively inform policymakers regarding the sectors that necessitate action
most urgently. In conjunction with recent approaches to identify policy
mixes that have proved to be effective in reducing GHG emissions in the
past26, this information can guide policymakers in their quest to formulate
effective mitigation strategies. As is the case for projections based on IAM
scenarios27, our results should not be viewed as representing the most likely
outcome in the future and they have no likelihood of actually realizing
attached to them. By conditioning on exogenously given paths for some of
the socioeconomic drivers of emissions, the associated uncertainty sur-
rounding the projections should be understood as a lower bound to the
variability of GHG emissions and interpreted within the narrative given by
the SSP2 scenario. As such, our projected emission paths depict a potential
future in which technological advancements, their roll-out and other cli-
mate policies do not deviate strongly from those expected using past trends.
Whether or not these pathways are to be realised is conditional on tech-
nological advancements and their dispersion, aswell as policy-makingbeing
geared towards reducing GHG emissions more strongly than in the
past or not.

Results
Our main contribution is the establishment of comprehensive projections
that allow for the assessment of sectoral emission trends within individual
countries while retaining global consistency across them. Given the vast
amount of country-sector results available, we only present a subset of them
in the next subsection before describing more aggregated results on a
regional and sectoral scale in the subsequent subsection. The results of the
analysis can be further explored on the World Emissions Clock (https://
worldemissions.io/), an interactive data visualization tool that includes
comparisons to emission trajectories derived from IAMs. These alternative
projection paths correspond to a scenario where countries fully implement
their (unconditional) NDCs and one that is compatible with limiting global
warming to 1.5 °C by the end of the century.

Sector- and country-resolved GHG emissions projections
Figure 1 displays projections of sectoral emission intensities and resulting
sectoral emissions for a selected set of some of the highest emitting countries
and sectors. The top-left panel of Fig. 1 shows that the emission intensity of
the Chinese energy sector, the largest GHG emitter globally, is predicted to
continue its strong downward path, reducing by about two-thirds in the
projection period. The corresponding GHG emission trajectory in the
bottom-left panel shows that, despite the decrease in emission intensity,
emissions related to the energy sector are set to increase further before the
median forecast peaks at around 7.6 GT in 2036 and reduces slightly until
2050.As inmanyother emerging anddeveloping countries, industrialGHG
emissions are expected to rise strongly in India, in spite of notable
improvements in sectoral emission intensity (middle panels of Fig. 1).
Technological advancements are outweighed by strong population and
GDP increases projected under the SSP2 scenario. More generally, emis-
sions stemming from energy production and industrial activities increase in
the group of developing and emerging economies, particularly in African
andAsian countries suchas Indonesia, Bangladesh or thePhilippines. In the
US, currently the second-largest emitter globally, practically all sectors
(except agriculture) are predicted to continue their downward path in total
GHG emissions, resulting from strong reductions in emission intensities.
However, only slow expected progress in the emission intensity for the
transport sector translates into comparatively slow decreases in GHG
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emissions, a pattern also observable in other advanced economies that show
otherwise faster-declining emissions. According to our projections, trans-
port will overtake the energy sector as the largest emitting sector in the US
in 2047.

Emission projections only lead to small changes in the list of top-
emitting countries and sectors over the coming decades. Table 1 shows the
top 15 emitting country/sector pairs in 2018 (the end of the observation
period inMinx et al. 202128,29) and 2050.Under BAU, the identity of someof
the highest-emitting sectors within countries will remain unchanged in the
future. Despite peaking in 2036, Chinese energy-related emissions are the
largest single contributor to global GHG emissions in 2050. Indian energy
emissions take second place in this respect, replacing the Chinese industry
sector, which, notwithstanding sizable reductions until 2050, remains the
third-largest emitting sector. However, according to our projections, there
are also some notable differences in the composition of top emitters. In
emerging economies such as Indonesia, India, Iran or Vietnam, strong
increases in energy-related emissions are projected, placing them further up
in this list. Sectors in some economically advanced countries such as Japan
(energy emissions) or Saudi Arabia (energy and industry emissions) also
exhibit rising emissions, both in absolute and relative terms, moving them
upwards in the ranking for 2050. Currentmajor emitters such as theUnited
States or Russia, on the other hand, show reductions in at least some of their
major emitting sectors but remain large contributors to global GHG
emissions.

Only a few countries exhibit sustained decreases in GHG emissions
under BAU. Achieving the goals set down in the Paris Agreement requires
strong and sustained reductions in emissions across countries and sectors in
the comingdecades.However, only a few countries havemanaged to sustain
long-term decreases in emissions, most of them advanced economies that
account for a large share of past GHG emissions but a small portion of
current ones30. Learning from these past experiences can prove crucial for
gearing economies on track to reduce their sectoral emissions as well. The
few countries that achieved sustained reductions of GHG emissions in the
past (when excluding LULUCF emissions) are located in Europe, with the

exception of the United States and Jamaica31. Our emissions projection
exercise reveals that following current decarbonization trends and given the
expected global socioeconomic and demographic developments under
SSP2, only a few countries would add to the list of overall emissions-
reducing economies. These are mainly small countries such as Switzerland,
Luxembourg or Cuba, but also a few larger emitters such as Australia,
Poland, or Taiwan (see Supplementary Fig. S7).

Some countries have reversed their patterns of decreasing emissions in
the past. In contrast, some of the countries that were deemed to have had
sustained reductions in GHG emissions in the past31, are predicted to
increase their emissions again in the projection period (see Supplementary
Fig. S8). This group includes countries in the periphery of the European
Union, whichwere hit hard by the global financial crisis and the subsequent
European debt crisis. The economic recovery after the crisis in countries
such as Portugal and Greece (but also Cyprus, Hungary or Slovenia) was
accompanied by increases inGHGemissions in the recent past, a trend that,
according to our projections, extends into the future in the absence of active
climate policy actions. A similar development is projected for Jamaica and
North Macedonia, the only countries outside the group of high-income
economies that attained sustained reductions in GHG emissions in the
past31. Only modest reductions in emission intensities for these countries,
particularly in the transport sector, are offset by expected strong GDP
growth in the coming decades. These predictions underline the necessity of
strong policy support for structural changes in energy use and a reduction of
the fossil share in the energy mix going forward, especially for economies
where output growth picks up after times of economic slowdown30.

Short-term fluctuations in GHG emissions due to geopolitical events
canbe substantial.Ourmodelling approach is also able to assess the effects of
specific events that led to abrupt changes in GHG emissions on a national
scale, insofar as output dynamics are affected by these events or are forecast
to be in the near future (see the “Methods” section). The drop in emissions
due to the COVID-19 pandemic has been particularly pronounced for
advanced economies (see also Supplementary Fig. S1). Ourmedian forecast
for total GHG emissions in the European Union shows a reduction of

China − Energy India − Industry United States − Transport

1980 2000 2020 2040 1980 2000 2020 2040 1980 2000 2020 2040

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

2.5

0.0

2.5

5.0

7.5

Em
is

si
on

 in
te

ns
iti

es
(to

ns
 / 

10
k 

G
D

P)

a

China − Energy India − Industry United States − Transport

1980 2000 2020 2040 1980 2000 2020 2040 1980 2000 2020 2040
1.25

1.50

1.75

2.00

1

2

3

4

0

5

10

15

20

Se
ct

or
al

 e
m

is
si

on
s

(G
ig

at
on

s 
C

O
2e

q)

b

Fig. 1 | Illustrative country-sector level projections. Figure shows illustrative
projections of a sectoral emission intensities and b sectoral emissions for theChinese
energy-producing, the Indian industry, and the US transport sector. Black line

denotes historical values until 2018 and the median forecast thereafter. Red shaded
areas denote the 68% and 90% predictive posterior intervals.
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roughly 9.1% in 2020, close to the 8.8% reduction reported by the European
Comission32. Concerning the effects of the war inUkraine, our results imply
a 10% drop in GHG emissions for Russia in 2022 compared to 2021, while
for Ukraine emissions fall by more than a third as a result of economic
disruptions. In both countries, the industrial sector experiences the largest
drops in GHG emissions (see Supplementary Figs. S5 and S6). However,
one should note that our projection model is unable to capture a potential
increase in GHG emissions directly attributable to the intense fights in
Ukraine33.

Regional and sectoral trends in GHG emissions
Globally, GHG emissions have been increasing in the past decades with
almost no interruptions34–36. Our projections indicate that these increases
continue almost unhindered under BAU (see Fig. 2). This development
makes achieving the Paris goals without swift and decisive action virtually
impossible. Considering only CO2 emissions and keeping gas shares as in
2018, the median of our projections indicates that the carbon budgets for
limiting global warming to 1.5 °C (400 GT) or 2 °C (1150 GT) with a
probability of 67%37 are exhausted in 2030 and 2046, respectively.

Differences in emission dynamics across countries and industries
change the sectoral composition of GHGs on a global scale over the coming

decades. Energy production remains the largest contributor to GHG
emissions in most individual countries and accounts for around 39% of
global GHG emissions in 2050. This sector experiences a steep increase in
emissions in many countries, especially so for developing countries and
emerging economies in Asia and Africa. However, our projection exercise
also reveals that reductions in emissions from this sector account for the
largest portion of the decrease in countries with projected overall emission
reductions. SupplementaryFig. S3 shows the evolutionofGHGemissions in
the energy systems sector for selected countries. While most countries tend
to follow their past trend (see the first two rows of Supplementary Fig. S3),
some see their emissions peak and decline in the projection period as
compared to their longer-term trend (third row of Supplementary Fig. S3).
The transport sector experiences the largest relative increases in globalGHG
emissions until 2050, reaching 13.8 GT CO2eq, almost doubling from
7.2 GT CO2eq in 2018, and accounting for slightly over 19% of total
emissions. For most economies with projected reductions in overall emis-
sions, the transport sector is also either the sole sector with increasing
emissions in the future (see, e.g., Denmark, Bulgaria, or Czechia in Sup-
plementary Fig. S4), or the one reducing emissions at the slowest pace (e.g.
France, Great Britain, Germany, Italy). Decarbonization in the transport
sector without additional policies and technological advancement is thus
projected to be relatively unsuccessful. Industrial emissions remain the
second-largest contributor to global GHG emissions throughout the pro-
jection period.However, their growth is substantially lower compared to the
2000s, a period that was mainly driven by strong growth in Chinese
industrial emissions, and their share of total emissions reduced from 27.3%
in 2018 to 24.1% in 2050. Emissions related to agriculture (excluding
LULUCF) and buildings grow by 40% and 11% and account for roughly
12% and 4% of global emissions in 2050, respectively.

Emission intensities converge towards substantially lower levels in
almost all regions of the world. They are expected to fall in all world regions,
albeit at different paces, with the notable exception of economies in the
Middle East (see Fig. 3). The oil-dependency of countries in this region,
coupledwith only partially successful economic diversification efforts so far,
has resulted in rising or stagnating emission intensities in the past decades, a
trend that continues into the future in the absence of targeted policy efforts.
However, the strong downward trend in emission intensities within the
other regions suggests a convergence towards less emission-intensive pro-
duction patterns globally. This is also confirmed by Supplementary Figs. S9
and S10. Decreases in emission intensities are somewhat decelerating in
regions such asAfrica, or South-East and SouthernAsian countries towards
the end of the projection period. This reflects some of the structural shifts
into more emission-intensive sectors such as industry or transport in these
emerging economies.

Despite falling emission intensities, total emissions are increasing
substantially for a majority of world regions. Countries in Southern and
South-East Asia as well as Africa are projected to be the ones with the
strongest growth in GHG emissions (see Fig. 4). Improvements in emission
intensities are outweighed by strong projected output growth and popula-
tion developments under the SSP2 scenario. Despite these increases, per
capita emissions in these economies remain below the global average,
causing 37% of total emissions while containing 57% of the global popu-
lation in 2050. Our projections also indicate stark increases in GHG emis-
sions for countries in Latin America and the Caribbean, as well as oil-
exporting countries in the Middle East. The strong growth of emissions in
the latter contrasts with the downward trend (or stagnation) that is obser-
vable in many other high-income countries. Notwithstanding a projected
deceleration in overall GHG emissions growth, Eastern Asian countries
(most notably China) are expected to remain the largest contributors to
global emissions, accounting formore than 25%of global emissions in 2050.
For Europe & Eurasia, the general downward trend that is observable in
many European countries within the region is almost entirely outweighed
by strong increases in a few other countries. Most notably, our projections
imply that under BAU, Turkey’s GHG emissions more than double from
around600MT in2018 to 1.3 GT in2050. Similarly, emerging economies in

Table 1 | Top emitting sector/country pairs in 2018 and 2050

Rank Emissions in 2018 (GT) Emissions in 2050 (GT)

1 CHN Energy 6.09 CHN Energy 7.06

(3.77–13.02)

2 CHN Industry 5.29 IND Energy 3.57

(2.59–4.85)

3 USA Energy 2.48 CHN Industry 3.05

(1.05–8.26)

4 USA Transport 1.84 IND Industry 2.65

(2.13–3.31)

5 IND Energy 1.36 CHN Transport 2.63

(1.06–6.58)

6 RUS Energy 1.23 USA Transport 1.63

(1.4–1.92)

7 IND Industry 1.07 USA Energy 1.56

(1.14–2.06)

8 USA Industry 1.01 IDN Energy 1.32

(0.94–1.81)

9 CHN Transport 0.98 IND Transport 1.11

(0.81–1.51)

10 CHN Agriculture 0.90 SAU Energy 0.88

(0.79–0.98)

11 IND Agriculture 0.76 SAU Industry 0.87

(0.62–1.25)

12 CHN Buildings 0.65 JPN Energy 0.86

(0.62–1.22)

13 BRA Agriculture 0.61 VNM Energy 0.84

(0.6–1.22)

14 RUS Industry 0.60 BRA Agriculture 0.84

(0.6–1.19)

15 USA Buildings 0.57 IRN Energy 0.81

(0.66–0.99)

The table shows the top15 emitting country/sector pairswith historical values for 201828,29 aswell as
median projections for 2050, using ISO3 country codes. Values denote sectoral GHG emissions in
Gigatons (GT), with the 68% posterior predictive interval for projections given in brackets below.
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Eurasia such as Kazakhstan or Georgia are expected to increase their
emissions strongly but are outweighedbyprojected reductions inRussia and
Belarus. Although our model incorporates some of the short-term fluc-
tuations due to economic disruptions, there is high uncertainty about
longer-term developments in the region given the unclear effects of the
economic sanctions imposed against Russia and its prospects of re-
integration in global markets. Emissions of developed countries in Asia-
Pacific, dominated by Japan andAustralia, stagnatewith a slight tendency to
increase towards the end of the projection period. In contrast, North
American countries, mainly driven by US emissions, are the only ones
reducing emissions sustainably, though slowly, according toourprojections,
with emissions in 2050 roughly 20% lower than in 2018. Supplementary
Table S1 gives an overview of the regional distribution in terms of shares of
global sectoral emissions as of 2018 and the projected regional distribution
in 2050.

Emission dynamics differ markedly across countries by development
level and economic structure, but also across sectors within nations. Con-
sidering the dynamics of GHG emissions by income classes, low and lower-
middle-incomecountries show the strongest increases inGHGemissions, in
line with their expected economic catch-up dynamics, low roll-out of
emission-reducing technologies and slow climate policy adoption (see
Supplementary Fig. S1). Upper middle-income countries, the largest group
in terms of total GHG emissions, also see increases in the projected period,
although at a slower pace. High-income countries see slight increases in
GHG emissions after the pronounced drop caused by the COVID-19
pandemic. Further differentiating them by oil dependence, it becomes clear
that increases in oil-exporting countries (most of them located in theMiddle
East) are thedriving force behind this evolution (see Supplementary Fig. S2).
Oil-importers among high-income countries are projected to follow their
path of reduction in emissions after peaking in the early 2000s. However,
GHGemissions from the transport sector are still increasing in this group of
economies. Given the relative size of this sector and its fast expansion
dynamics in other country groups, the need for a faster roll-out of tech-
nology and policy adoption geared towards net-zero transportation is evi-
dent. Crucially, however, the electrification of the transport sector has to be

accompanied by amore sustainable energymix for electricity production to
avoid the paradox of potentially increasing overall emissions as a result38.

Region and sector-specific differences in dynamics imply shifts in the
distributionof aggregate andper capita emissions at the global level. Figure 5
shows aggregate emissions differentiated by sector andworld regions for the
years 2018 and 2050. One can see that emission increases in emerging
economies of Africa, South-East and Southern Asia together with Middle
Eastern countries are expected to account for the bulk of global emissions
growth until 2050. Sectoral shifts in GHG emissions can be discerned for
Eastern Asia, with the transport sector becoming more important as
opposed to industry, or Southern Asia, where fast-growing industry emis-
sions overtake agricultural emissions as the second-largest contributing
sector. Figure 6 shows that in 2018, the average footprint of a North
American was the largest, with almost 20 tons per person, but this figure is
expected to reduce by more than one-third until 2050. Our projections
indicate that Middle Eastern per capita emissions surpass them by then,
after increasing by almost 50% from their level of 13.4 tons in 2018 to 19.3
tons in2050.Thisfigure is already twiceashigh as the global average in2018,
6.72 tons per capita, but is projected to become almost 2.5 times higher than
the global average in 2050, 8.04 tons per capita. Africa remains the region
with the lowest GHG emissions footprint but also increased it from roughly
2.5 to 3.8 tons per capita.

Discussion
A swift and sustained reduction of GHG emissions is imperative for any
attempt to limit global warming to an acceptable degree. At the heart of the
framework designed to structure global climate policy are the NDCs that
countries submit to the UNFCCC, where they specify to which extent they
intend to reduce their GHG emissions. These are typically accompanied by
an intended set of (sector-specific) measures aimed at achieving this goal.
One approach, often (but not exclusively) chosen by emerging market
economies, is to specify reductions in relation to a BAU trajectory. Thus,
theremight be incentives for these countries to inflate BAUprojections such
that pledged reductions in their NDCs are less stringent than they
might appear to be19. Our modelling framework provides projections for
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Fig. 2 | Global GHG emissions bymain sectors. Figure shows total GHG emissions on a global level and separately for fivemain sectors. Black line denotes historical values
until 2018 and the median projection thereafter. Red shaded areas denote the 68% and 90% posterior predictive intervals.
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sectoralGHGemissions that can serve as a benchmark for such estimates by
abstracting away from the potentially idiosyncratic assumptions that might
drive national BAU GHG projections.

Figure 7 presents a comparison of our projections with those of three
selected countries for total GHG emissions up until 2030, the year for which
most NDCs are formulated. The comparison of projected GHG emission
trends shows that national BAU projections (blue line) appear exaggerated
comparedwith our projected paths. The BAU estimates forGHGemissions
of Indonesia, Iran and Turkey as presented in their NDCs or similar
documents exceed themedianof our projections bymore than50%by2030.
Our results imply that all these countries might overachieve their pledged
emission reduction as part of their (unconditional) NDCs (green line)
without substantial changes in policy-making or technological advance-
ments, which raises questions about their ambition level. The sectoral
breakdown of our projections would also allow us to assess national BAU
estimates at a more granular level if they are available. Supplementary
Fig. S11 presents such a comparison for Mexico, showing that most of the
difference across scenarios for total GHG emissions stems from the pro-
jected paths in emissions from energy production. In this sector, the
dynamics of emissions under BAU derived from our framework differ
markedly from the ones reported in Mexico’s updated NDC.

The quantification of uncertainty for projections of emission inten-
sities, and by extension GHG emissions, is another important contribution
of the methodological framework proposed. Predictive uncertainty entails
various dimensions, including parameter uncertainty, which is not typically
assessed in the framework of IAMs. Rather, uncertainty is often assessed by

comparing projections for particular variables across simulations of dif-
ferent IAMs3. Our modelling setup allows for a straightforward quantifi-
cation of projection uncertainties and thus lends itself for comparison and
potential validation of IAM results. In the setting chosen to compute our
projections, it should be noted that by conditioning on SSP paths for the
socioeconomic and demographic variables included, the credible bands
surrounding our projections should be viewed as a lower bound resulting
from uncertainty about future trends of emission intensities only (see
Methods). We compare our projections to scenario projections of GHG
emissions involving baseline dynamics in socioeconomic and demographic
variables as well as no substantial shifts in the energy mix or technological
advancement for five widely used IAMs (see Supplementary Discussion G
formoredetails). This exercise shows that the simulated scenario trajectories
generally alignwell with our results on a global level, with all IAMoutcomes
but one falling within the one standard deviation range of our projections
(see Supplementary Fig. S12). At the regional level, however, discrepancies
becomemore apparent, especially so for theOECDregion and economies of
Eastern Europe and the former Soviet Union. These results can provide
insights that may be helpful to revise some of the assumptions baked into
IAMs, as well as for methods that downscale global or regional results from
IAMs to the country-sector level.

Both the comparison of our projections to BAU estimates by countries
and to results from IAMs highlight important potential use cases for them.
While we provide a brief exploratory analysis here, we leave a more com-
prehensive comparison exercise as a promising avenue for further research.
In a similar vein, collating results from other cross-country studies21 can
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yield interesting insights intodiscrepancies among them.Adetailed analysis
of differences across assumptions about socioeconomic and demographic
developments, the sources of these discrepancies and their effects would
shed light on the realism of existing emission projections. Carrying out
extensive comparison exercises, both across country-specific and cross-
country studies as well as with IAM results (on the global, regional and local
level), is a potentially fruitful avenue for further research and would also be
in line with recent endeavours within the climate science community (see
Supplementary Note A).

The flexibility of our modelling approach in terms of assumptions and
input data addresses the need for methodological contexts that can be reg-
ularlyupdatedwhennewdata areobserved27.However, the relative simplicity
of our approach does not come without drawbacks. Characterizing sectoral
GHG emissions simply as a product of their main drivers, expanded with
demographic dynamics, and inferring dynamics based on this decomposi-
tionmay ignore important aspectsdriving the evolutionofGHGemissions in
the future. Changes in human behaviour in general and consumption pat-
terns in particular are aspects that have been found to be of importance for
emissions mitigation39 and more research into demand-side oriented solu-
tions to climate change is being called for40. Ourmodel does not consider the
possibility of suchbehavioural changes besides the impact they couldhaveon
the macroeconomic and demographic quantities included in the analysis.
However, it highlights somesectorswhereadditional efforts, both concerning
technological advancement and behavioural changes, are particularly
pressing. With emissions from the transport sector expected to increase
strongest, globally but also within many economies, it is vital to scrutinize

potential decarbonization strategies for it. Simulations from IAMs have
shown that even in the most ambitious case, emissions from transport
amount to 4.2 GT per year in 205041, a non-negligible decrease from current
levels and far below our BAU estimate of 13.8 GT. Yet, it is far off from a full
decarbonization of the sector. More efficient urban demand management
(e.g. the provision of public transport) andmeasures for steering the demand
for individual transportation (e.g. by increasing fossil fuel taxes) are impor-
tant alleys to be explored but their potential is hard to assess quantitatively41.

Another limitation of our analysis regards the exclusion of LULUCF
emissions. Besides the technical limitation that ourmodel is not able to assess
negative emissions in an internally consistent manner, there are also con-
ceptual differences in the accounting of these emissions, both between IAMs
and country GHG inventories as well as within the latter42, though recent
approaches have been proposed to bridge this gap43. This lack of consensus
obstructs the construction and availability of comparable and reliable time
series on LULUCF emissions for the global sample of countries we strive for.
The absence of this sector in the current projection model neglects an
important part of the discussion on future climate policies, considering that
pledges regarding this sector represent about a quarter of total emissions
reductions included in countries’ NDCs43,44. Deriving projection scenarios
for national LULUCF emissions that have a narrativewhich is coherentwith
the ones provided here is thus a relevant topic of future research.

Our study provides projections of nationally resolved, sectoral GHG
emissions for a global sample of countries, together with estimates for the
lower bound of their uncertainty. Similar to IAM scenarios, they are not
meant to be an outlook for the most likely future, but instead outline a
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possible future under a particular scenario narrative in which policy efforts
and technological advancements broadly followpast trends.Whether or not
this future trajectory is to realize is subject to the actions policymakers and
the public take today. In this contribution, we deliberately abstain from
providing structured policy advice based on the projections, thus
acknowledging that this requires additional knowledge on the particular
institutional factors governing the sectoral mix at the country level, an
analysis which is out of scope for the present study. However, it provides
useful information about the relative importance of sectors and thus com-
plements recent efforts in developing methods to identify effective policy
interventions at the sectoral level26. We believe that our projection exercise
will prove valuable fornational policy-makers in identifying themost critical
sectors within and across countries in order to formulate effective policies
aimed at reducing future GHG emissions.

Methods
Characterizing sectoral GHG emissions
The conceptual framework for obtaining projections of GHG emissions is
closely related to theoneproposedonebyRaftery et al. (2017)21.We relyona
simple form of the Kaya identity24 to express sectoral GHG emissions in a
given country as a product of their main drivers:

Es ¼
Es

G
×
G
L
× L; ð1Þ

where Es denotes emissions in sector s,G is a measure of total output (gross
domestic product, GDP), with Es/G being the corresponding emission
intensity, L denotes total population and G/L output per person. We
introduce identical, economy-wide population and affluence dynamics for
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all sectors and approximate them using total national population and GDP
per capita, while emission intensity is computed for each sector separately,
implying sector-specific versions of the Kaya identity. This decomposition
carries the notion of distinct technological levels and innovation
(dispersion) dynamics in sectors, as well as capturing potential economy-
wide structural changes (e.g. moving from an industry-based economy
towards a service-oriented one).

Our specification of the Kaya identity notably excludes a measure for
energy or energy intensity. Limited data availability for energy consumption
for the global sample of countries over the full historical observation period
we cover, as well as SSP-consistent national pathways, prevented us to
include such a measure that would allow deeper insights into the specific
drivers of sectoral GHG emissions. In order to capture the effects of human
capital and other demographic trends on the development of emission

intensities, we enrich the empirical specification of our framework with
additional demographic variables. In particular, we include information
about the age and educational structure of an economy as well as the degree
of urbanization.

All these variables have been shown to be important determinants of
emission intensities and energy consumption. In particular, a higher edu-
cational level of individuals correlates negatively with emission levels after
controlling for income differences and lifestyles45. The rationale behind this
correlation is thatmore educated societies tend to bemore environmentally
conscious and conserve energy more efficiently, all other things kept con-
stant. The age structure of a population has also been commonly identified
as an important determinant of emissions and emission intensities46.
However, it is not entirely clear upfront how the aging of a society affects
emissions, and whether these effects are the same across different sectors.
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For example, an increasingly aging population could require more heating
in the residential sector45 but at the same time, older persons tend to be less
mobile and thus cause fewer transport emissions. Similarly, it is conceivable
that urbanization can have unclear effects on energy consumption or
emissions. An increased spatial concentration of the population could
decrease transport emissions stemming from less commuting but urban
households could also have a higher energy consumption due to facilitated
access and higher income. It has also been shown that the effects of urba-
nization differ along the developmental stages of an economy47. The flexible
nature of our proposed statistical model (see next subsection) accom-
modates such potentially different effects across economies and sectors. The
choiceof variables is also dictatedby the availability of comparable historical
data and future trajectories. ProjectionsbasedonSSPnarratives are available
on a national scale for all additional indicators included in our model48–51.
Furthermore, while the inclusion of energy consumption in our specifica-
tionwould allow us to gainmore insights into the specific drivers of sectoral
GHG emissions, we do not think that it would change our results sub-
stantially as we capture the most important drivers of energy consumption
with economic output and population.

Model specification
We rely on a unified multivariate time series model capturing the joint
dynamics of GDP per capita, population and sectoral emission intensity,
augmented with human capital and demographic variables (age structure
and urbanization), inspired by models used in the macroeconomic
literature52,53.

We collect our endogenously modelled variables for each country
i = 1,…,N and sector s = 1,…, S in the vector yi,s,t (t = 1,…, Ti). It thus
captures M = 6 variables, of which the socioeconomic and demographic
variables are the same across sectors, whereas emission intensities are
not. We assume that yi,s,t follows a vector autoregressive (VAR) process
of order p:

yi;s;t ¼
Xp

j¼1

Ai;s;jyi;s;t�j þ Bi;swi;s;t þ εi;s;t ; εi;s;t ∼N ð0;Σi;sÞ: ð2Þ

Here, yi,s,t−j denotes the jth lag of the endogenous variables, with the
corresponding autoregressive coefficients collected in the M ×M matrix
Ai,s,j. The deterministic terms wi,s,t include country-specific intercepts and
linear time trends, with the corresponding coefficients contained inBi,s. The

vector εi,s,t is composed of Gaussian noise with zero mean and variance-
covariance matrix Σi,s specific to country i and sector s.

The potentially large number of parameters to estimate and the rather
short sample period available for individual countries raises concerns with
regard to the efficient estimation of parameters, a problem commonly
known as the curse of dimensionality. Our modelling strategy aims to
alleviate this issue by pooling information across countries in a data-driven
fashionusingBayesianmethods. For that,we assume that the autoregressive
coefficients for each sector arise from a common global distribution, with
country-specific deviations. Specifically, let αi,s = vec([Ai,s,1,…,Ai,s,p]) for all
i and s, then:

αi;sj�αs;Ωαi;s
∼N ð�αs;Ωαi;s

Þ; ð3Þ

where �αs denotes amean vector that is common across countries but sector-
specific. The diagonal country and sector-specific matrices Ωαi;s

effectively
control the deviations of individual country coefficients from this common
mean. A standard Normal-Gamma prior on the diagonal elements of the
matrix is specified54,

Ωαi;s

h i
j
¼

2 ψ i;s

h i
j

λ2i;s
; λ2i;s ∼G ðaλ; bλÞ ; ψ i;s;

h i
j
∼G ðaψ ; bψÞ; ð4Þ

where ½Ωαi;s
� j corresponds to the jth diagonal element of Ωαi;s

. This setup
imposes shrinkage for country-specific coefficients towards the common
mean governed by the global shrinkage parameter λi,s. The parameter ½ψ i;s� j
in turn governs the strength of shrinkage for individual coefficients and
allows for deviations of the jth element of αi,s from the commonmeanwhen
the data are informative. For instance, a large ½ψ i;s�j corresponding to the lag
ofGDPper capita in the emission intensity equationof country i and sector s
implies less regularization of the associated coefficient towards the global
within-sectormean. Coefficients related to the deterministic terms included
in themodel are left unregularized, allowing for flexible capture of country-
specific intercepts and linear time trends.

Another layer of hierarchy is imposed by placing a similar Normal-
Gamma prior on the common mean vector �αs in order to flexibly push
coefficients towards zero. This has been shown to improve forecasting
performance in the context of VAR specifications55. To complete themodel
setup, an inverse-Wishart prior is imposed on the variance-covariance
matrix of the error terms. To facilitate computation, a triangularization
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scheme is used to decompose Σi,s into HSH⊤. On the free off-diagonal
elements ofH, a variant of the Normal Gamma prior is imposed, while for
the elements of the diagonal matrix S inverse-Gamma priors are used.
Analytical results of the resulting posterior distributions and efficient
sampling schemes are available for this class of models55.

Following our conceptual framework based on sector-specific Kaya
identities, we estimate themodel for each sector separately, thus accounting
for potentially substantial differences in the sectoral dynamics of GHG
emissions. In addition, within a sector panel, separate models are estimated
for groups of countries where sectoral emission intensities have already
peaked. We determine whether sectoral emission intensity in a given
country has peaked in a similar vein as previous studies21. In particular, we
locate the potential maximum in emission intensity after applying a loess-
based smoother on the original series. If sector-specific emission intensity
peaksonly after 2005or shows substantial increases after an initial peak early
on, we assume that there is not enough evidence that the peak has occurred.
Models for country/sector pairs where emission intensity has already
peaked are estimated using data only for the post-peak period to better
capturemore recentpatterns in thedrivers ofGHGemissions. Furthermore,
the specifications for the two groups of countries are assigned different
deterministic terms to capture the difference in dynamics. The models for
countries where sectoral emission intensities have already peaked also
include a linear trend in addition to the country-specific intercept, which all
specifications include irrespective of whether a peak within a sector was
observed. This difference in modelling parametrizations further captures
the notion that sectoral emission intensities of countries after a sustained
peak have the tendency to continue a downward trend.

The model is estimated using Markov Chain Monte Carlo (MCMC)
methods and estimation is implemented using the statistical software R56.
Each model run employs 150,000 MCMC draws, of which the first two-
thirds are discarded as burn-in to ensure that model parameters are drawn
from their stationary posterior distributions. Of the remaining draws, every
fifth is retained to decrease potential serial correlation among posterior
draws. Basedon these posterior drawsof parameters, projections are derived
as described in the next section.

Projection procedure
We obtain long-term projections of GHG emissions by linking them to the
established projection narratives given by the SSPs. The SSPs are scenarios
that capture different potential, internally consistent trajectories for differ-
ent socioeconomic dimensions25. Core elements of these scenarios involve,
among others, population and their sociodemographic characteristics48,
economic output dynamics49,50, and urbanization51,57. It is important to note
that these scenarios gauge the evolution of socioeconomic quantities in the
absence of the implementation of additional climate policies. Hence, the
adoption ofmitigation policies in ourmodel is solely captured by changes in
emission intensities as a measure of trends in technological progress and
policy decisions (e.g. ones that influence the dispersion of available
technologies).

In our projection exercise, we condition the country- but not sector-
specific paths given by the SSP2 scenario for variables other than emission
intensity. SSP2 can be loosely interpreted as a middle-of-the-road scenario
in which social, economic, and technological trends are assumed not to
differ markedly from historical patterns25. We combine long-term projec-
tions of GDP with short-term forecasts sourced from theWorld Economic
Outlook database by the International Monetary Fund (see Data for more
details). This allows us to better capture (potential) fluctuations in GHG
emissions in the near future caused by the distortion of economic output
dynamics, such as the temporary reductions caused by the COVID-19
pandemic58 and other events of global or country-specific relevance.

Deriving conditional forecasts involves three steps. First, draws from
the posterior distribution of the parameters of the models described in the
previous subsection are obtained. Second, using these draws and the tra-
jectories of the additional variables given by the SSPs, conditional forecasts
for country-specific sectoral emission intensities are derived using

established algorithms59. Third, total emissions per country and sector are
derived as implied by the sector-specific Kaya identities. Repeating these
steps a large number of times yields posterior predictive distributions of
GHG emissions specific to each country and sector. From these distribu-
tions, summary statistics such as their mean, median or quantiles can be
computed.This also allows for straightforwarduncertainty quantification. It
should be stressed that the uncertainty surrounding our projections of
sectoral emissions represents a lowerboundof total uncertainty for emission
projections, which stems from the fact that we condition on fixed paths for
the socioeconomic and demographic variables included in our model.

For a small number of country-sector pairs, this procedure resulted in
unstable forecasts due to the erratic behaviour of the historical emission
intensity series. For these cases, predictions of emission intensities were
adjusted ex-post by using information on the evolution of emission inten-
sities in the same sector for the five geographically nearest neighbouring
countries, using the implicit assumption that geography serves as an
approximation for the similarityof structural characteristicsdriving changes
in emission intensities.Alternatively,we couldalso identify similar countries
using the Euclidean distance for a set of standardized structural character-
istics that describe the economic and demographic structure of countries.

The predictive performance of competingmodels is assessed in out-of-
sample validation exercises using standard metrics, including comparisons
of root mean squared error (RMSE) and cumulative log predictive scores
(LPS) for emission intensities over a forecasting horizon of H = 4 years. In
particular, we computed the RMSE of the emission intensity forecast for
each country and sector as follows:

RMSEi;s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
H

XH
h¼1

yi;s;tþh � y�i;s;tþh

� �2

vuut ; ð5Þ

where yi,s,t+hdenotes the actual value of the emission intensity of country i in
sector s at horizon h and y�i;s;tþh the respective forecast of it.We compute the
RMSE at each iteration in theMCMC chain and average the RMSE over all
iterations. The reported value is then the sum over all countries within a
given sector. The cumulative LPS on the other hand is computed as

LPSi;s ¼
XH
h¼1

log pðyi;s;tþhj�y�i;s;tþh; varðy�i;s;tþhÞÞ; ð6Þ

where yi,s,t+h again denotes the actual value of the emission intensity of
country i in sector s at horizon h, �y�i;s;tþh and varðy�i;s;tþhÞ denote the mean
and the variance of forecasts at that horizon, and p(•) denotes the density of
the Normal distribution. The resulting LPS scores are then summed over
countries for each sector for a measure of density forecasting performance.
Results are presented in Supplementary Table S2. Comparing alternative
covariate choices, the model implied by the sectoral Kaya decomposition
augmented with information about the age/education structure of the
economy and the degree of urbanization shows the best predictive ability in
termsofpoint forecasts (RMSE) formost sectors. Fordensity forecasts (LPS),
the model including only the Kaya components and information about the
age/education structure slightly outperforms the full specification in most
sectors. The full specification also has the highest proportion of countries
whose 95% credible interval includes the observed value at the end of the
validation period. In terms of projection trajectories until 2050, the different
models yielded qualitatively similar results. However, the full specification
yielded projections for some key countries and sectors (e.g., the Chinese
energy sectors) that appeared to be more in line with previous projection
results. We therefore opted for the full specification as our model of choice.

Data
Data are obtained from various sources. For emissions data, we rely on the
synthetic dataset of GHG emissions by Minx et al. (2021)28,29. It covers
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annual information for all GHGs covered by the Kyoto Protocol (i.e.,
including carbondioxide (CO2),methane (CH4), nitrousoxide (N2O), anda
range of F-gases such as hydrofluorocarbons or perfluorocarbons) and
spans a sample of 228 countries and territories at the sectoral level for the
period 1970–2018, with a fast-track extension to 2019.We aggregate across
GHGs using global warming potentials (GWPs) for a 100-year timescale to
obtain total GHGs in tons of CO2 equivalents emitted in five sectors: energy
production, transportation, industry (including emissions from waste
treatment and disposal), buildings, and agriculture. We refrain from
modelling GHG emissions related to LULUCF given the lack of cross-
country comparability due to conceptual differences in their
quantification42, poor data quality and the large uncertainties associated28, as
well as the distinct nature of the underlying key drivers60.

For data on GDP, we rely on figures sourced from the World Devel-
opment Indicators of theWorld Bank61, with adjustments and imputations
from other sources (such as the IMF) for economies where data points are
missing. To ensure comparability across countries and time, GDP was
converted to purchasing power parity units, expressed in 2011 US dollars.
For most countries, coverage starts in 1980. For countries of the former
Soviet Union and Yugoslavia, we restrict the data to start in 1995 given the
unreliability of official statistics prior to the transition of these countries to a
market economy and economic volatility following the break-up of com-
munist states. Similarly, such a restriction was applied to a number of
economies where data quality was deemed unreliable for earlier periods,
including Eritrea, Timor-Leste, and Somalia. For the projection period, we
condition on existing SSP2 projections forGDPper capita, wherewe use the
average dynamics of two different sets of projections49,50, combined with
forecasts by the International Monetary Fund to capture anticipated short-
term fluctuations in economic output (available until 2026 as of the time of
writing). Similarly, SSP2-compatible paths are retrieved for the overall
population as well as the age and education structure of an economy48, and
urbanization patterns within them51, all of them adjusted to historically
observed patterns.

We retrieve the data on population and additional demographic
variables from the World Bank and the Wittgenstein Centre for Demo-
graphy and Global Human Capital (WIC). TheWIC provides information
on bothhistorical population by age, sex and education level, aswell as long-
term projections consistent with different scenarios of the SSPs48. In our
model,we include the shareof thepopulationolder than40years old and the
shareof thepopulationhaving completed secondary schooling as covariates.
Yearly values were obtained by interpolating the 5-year data available lin-
early. In addition, data on urbanization, defined as the share of the popu-
lation living in urban centres, as well as their future trajectories consistent
with the SSPs are available51. For a small number of countries, SSP-
consistent trajectories for urbanization are missing in this dataset. Where
this was the case, we rely on historical data and projections provided by the
World Urbanization Prospects of the United Nations62. Sectoral GHG
emission intensity is computedasGHGs emitted in a given sector, expressed
in terms of tons of CO2 equivalents, per US$10,000 of GDP in 2011 Pur-
chasing Power Parity.

The only countries with a population of over 5 million which are not
covered in our forecasting exercise are Eritrea, Libya, North Korea, Papua
NewGuinea, Syria, South Sudan andUzbekistan, mostly due to unavailable
historical demographic data. These countries and the additional 48 terri-
tories (including e.g. overseas dependencies) covered in the emissions
database by Minx et al. (2021)28,29 emitted GHGs amounting to 531
megatons of CO2 equivalents in 2018, around 1% of global GHG emissions
in that year, with the seven economies mentioned above emitting 378
megatons (more than 70% of the contribution of this group of economies).
Data for Serbia andMontenegro is provided as aggregate for a single entity
in Minx et al. (2021)28,29. In order to split those values for the individual
economies, we used historical information on the compositions of sectoral
GHG emissions from the World Resource Insitute for the period
1990–2018.

Data availability
The full set of results used in the analysis is available at https://doi.org/10.
5281/zenodo.7846142 as R56 binary files. The data presented in this work is
featured on an online tool, the World Emissions Clock hosted by World
Data Lab under https://worldemissions.io/. It is an informative and user-
friendly visualization platform that allows the user to understand the pro-
gress and possible challenges related to reducing GHG emissions under
different hypothetical scenarios.

Code availability
All codes required to replicate the results of our analysis are available at
https://github.com/oDNAudio/GHG_sector_projections.
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