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FOREWORD

The principal aim of health care research at IIASA has been
to develop a family of submodels of national health care systems
for use by health service planners. The modeling work is pro-
ceeding along the lines proposed in the Institute's current Re-
search Plan. It involves the construction of linked submodels
dealing with population, disease prevalence, resource need, re-
source allocation, and resource supply.

In this paper Anatoli Yashin focuses on the changing health
status of a population as revealed by a multistate analysis of
transitions between various states of illness and the healthy
state. The mathematical apparatus that he outlines yields useful
indices of the frequencies of demands for health care services.

Recent related publications in the Health Care Systems Task
are listed at the end of this paper.

Andrei Rogers
Chairman

Human Settlements
and Services Area
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ABSTRACT

Medico-demographic models are used to describe the dynamic
properties of a population's health status. In these models the
human population is represented as a number of interacting social
groups of individuals whose dynamic properties are birth, aging,
death, and the transition of an individual from one state to an-
other. The probability of these transitions plays a central role
in the analysis of a population's health status.

This paper concentrates on the expected number of transitions
hetween states of selected groups of individuals and other wvari-
ables from both discrete and continuous time models using the
Markovian assumption. Correlation properties of the wvariables
generated by the transition properties are also investigated.

The derived formulas and properties may help the health care
decision maker to estimate the expected frequency of hospitali-
zation and the expected number of visits to physicians during a
selected time interval. It also gives a reasonable basis for
calculating health care resource demands within the limits of the
assumptions used. Forecasting transition probabilities helps in
detecting possible future problems that may arise in a health
care system.
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THE EXPECTED NUMBER OF TRANSITIONS FROM ONE STATE TO
ANOTHER: A MEDICO-DEMOGRAPHIC MODEL

1. INTRODUCTION

Health care systems are special regulators of the health
status of a population. Although these systems may vary through-
out the world, they all carry out identical primary functions and
pursue identical goals: the availability of medical experience

and knowledge toc individuals requiring health care.

Throughout the centuries of human evolution, disease has
appeared in different forms. At the beginning of civilization,
epidemic diseases were the main danger for human beings. Step
by step, the spectrum of diseases has changed over time, until
now cardiovascular disease and cancer are the main causes of
mortality in developed countries. 1In response to these disease
transformations, local health care systems continually change
their structures and redefine the emphasis of their programs. New
problems are continually being generated by the rapid change of
environment and the social-economic conditions of life in dit-
ferent countries. Are the health care systems ready to meet
these problems? One of the main purposes of health care sys-
tem modeling is to give a correct answer to this question.
Another purpose is to help health care decision makers solve

the management problems that arise from these new conditions.
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The decision maker who learns to use these models as an aid in
policy planning is more informed and therefore able to make a

wiser decision.

The ability to adapt is an immanent property of natural
biological living systems. When these systems start to lose
this property, the process of deterioration, which comes from
aging, begins to take place and ends with either death or re-
newal. Within this biological framework, one can say that
social and organizational systems have one remarkable pro-
perty: their aging and adaptation processes are controllable.
Returning to the health care systems, we can formulate the
problem of controlling the adaptation processes to new con-

ditions and use the modeling approach for this purpose.

The methodology used in health care modeling addresses
the peculiarities of the system that distinguish it from other
socio-economic systems (Venedictov 1976, Yashin and
Shigan 1978, Shigan et al. 1979, Shigan and Kitsul 1986). Some

of these peculiarities are:

-- The heterogeneity of the human population from the medi-
cal point of view

-- The changing of the heterogeneity characteristics over
time

~- The important role of the human factor at different
levels of control ’

-- Uncertainties in the links between health care subsystems
and the environment

-- The absence of a unique formal criterion of managing
health care systems

~- The variety of the sources of information used for
decision making (biological, physiological, medical,

demographic, etc.)

For this reason, models in health care often have a probabilistic
description, are oriented to a multicriterion optimization,
contain behavioral aspects, and use formal and informal pro-

cedures to check their validity (Yashin and Shigan 1978).



The dynamic properties of a population's medical hetero-
geneity are described with the help of medico-demographic
models. The methodology of designing such models presupposes
that the population under investigation may be divided into
a finite number of social groups. If we let N denote the num-
ber of these groups, we may numerate them by 1,2,...,N and re-
late each of them to social, medical, and spatial factors,
which are common to the majority of people. Two sets of social
groups are relevant for selection in medico-demographic models.
One of them characterizes the population's medical status and
corresponds to unhealthy groups with different kinds of ill-
nesses. For example, the people who have tuberculosis may be
considered as one group; another group may contain the people

with cancer. A more detailed consideration would include the

different stages of the diseases. "Vaccinated", "initial
stage", "intermediate stage", "active form" are examples of
such divisions. (Begun et al. 1980, Waaler and Piot 1969).

Another set of groups characterizes the healthy portion
of the population. The structure of this part arises as a
result of the difference in probabilities of falling into
illness in different social, professional, ethnic or spatial
groups. These groups identify the different chances of be-
coming ill and may be called risk groups. 1In special cases
researchers introduce some auxiliary groups such as "latent
i1l" in screening models (Petrovski et al. 1978) or "sus-
ceptible" in epidemic disease models (Waaler and Piot 1969).
The dynamic properties of the medico-demography model reflect
birth, aging, and death processes as well as the transitions
of individuals from one group to another (e.g., transitions
from the state of being healthy to being ill, from ill to

death, a change in social status, a change in residence, etc.)

The central part of our research will be the model of
individual transitions. One of the generally accepted pro-
perties used in describing individual transitions between
states is the Markovian property. It implies that the indivi-
dual's behavior is modeled by the Markovian type of stochastic



pracess with a finite number of states in discrete or continuous
time. Using a Markov model, one may derive useful characteris-
tics such as the number of individuals in different groups,
their specific sex and age distributions, their expected period
of stay in the group, and the group from which they came. These
characteristics are also important for the estimation of the
influence of the health care acitivity on external economic
subsystems. The mathematical description of the medico-demo-
graphic model is close to that used in the investigations of
multiregional migration (Rogers 1975) and manpower dynamics
(Bartholomew 1973). The main distinction is to be found in the
internal structure of transition coefficients, the spectrum

of output variables,and the peculiarities of the available in-

formation that is used for the estimation of unknown parameters.

In this paper we consider the properties of the special
class of random variables generated by the sampling path of
such a Markov process. Among them are the expected number
of transitions from one state to another during the selected
time interval, the number of departures from various states
during the selected time interval, and the number of entries
into various states during the selected time interval. Ex-
pressions for average values of these variables and also the
structure of their covariance matrix are of interest in this
model. In the case of a constant intensity matrix in con-
tinuous time, some of the properties of the expected number
of events may be found in Albert (1962).

2. THE EXPECTED NUMBER OF EVENTS IN THE DISCRETE TIME MARKOV
PROCESS MODEL

The transitions of individuals from one state or group to
another generate a sequence of random events whose statistical
properties are interesting for the researchers of multistate
population dynamics. One such sequence may be represented
by the transitions between two selected groups. The average

number of these transitions during the given time interval



is often an important frequency characteristic, useful for many
social, economic, and medical applications. The expected num-
ber of transitions that a person makes from one region to an-
other during a selected time interval reflects the migration
inclinations of individuals, a factor that influences the eco-
nomic status of the regions. The frequency of changing pro-
fessional status reflects employment situations. The proper-
ties of the expected numbers of transitions are important
characteristics of marriage-divorce processes in multistate
demographic models. They are also useful in the investiga-
tions of childbearing, abortions, criminal behavior, and road
accidents. They may characterize the frequency of transitions
between the different branches of an economy, the quantity of
breakages and repairs of technical equipment, the elimination

of technological processes, and so on.

In the medical field many transitions can be analyzed and
projected through a Markov process model, thus providing us
with information concerning not only changes but also the
effects these changes have on society. 1In the simplest case
of one group being healthy and another ill, such a model can
predict the expected number of people who will fall ill during
a selected time interval as well as define the expected dura-
tion of time spent in this state and the expected load on the
medical service system. The average number of transitions
between stages of a particular disease characterizes the pecu-
liarities of the evolution of that illness, the properties of

the applied drugs, and the peculiarities of the curing procedure.

All the examples mentioned above can be expressed in a
similar way mathematically. Assume that the behavior of
"standard" individuals is described by the discrete time
finite state Markov chain y(t), with the transition prob-
abilities matrix P = [Pij(t)] i,y =1,N, t =0,1,2,....
The initial distribution is given as Pi(O), i = 1,N. The
duration of process y(t) in state j is interpreted as an

individual staying in group j.

Denote by Nij(t) the number of transitions from i to j that

are made by individual during the time interval [O,t]. The point



of our interest is the expression for E Nij(t)=ﬁij(t), which is
the expected number of transitions from i to j during the time
interval [0O,t]. The symbol E denotes the operator of the mathe-
matical expectation and ﬁj(t) will represent the expected
number of entries to state j during the time interval [O,t].
Besides the expected number of transitions between two selected
groups, some other characteristics are also important for users
of medico-demographic models. Among them are the expected num-
ber entering a selected state, the expected total number of
deaths for all reasons, the average number of hospitalizations
during the year, the expected number of road accidents, etc.,

are all examples of useful output variables of this model.

Other important output variables of medico-demographic
models are the expected numbers of departures from selected
states. The average number of departures from the state of
being healthy during a selected time interval characterizes
the general morbidity of a region. The expected number of
departures from the initial stage of a degenerative disease
during a selected time interval depicts the speed of disease
development and may also reflect the efficiency of the cure.
We will denote the expected number of departures from the
state i by the symbol ﬁi(t). Some generalizations of these
variables include the expected number of transitions between
two different sets of social groups, the expected number
entering selected social groups or average number of depar-
tures from such groups during some time interval. These
generalizations are necessary for the aggregation of the
data in order to design a general strategy for a population's

health system.

If A and B are the given sets of groups, we will denote
by ﬁAB(t)’ ﬁB(t), and N> (t) as the corresponding expected
number of transitions between sets A and B, the expected
number entering set B, and the expected number departing
from set A, respectively. The convenient expressions for

these variables are given in the following theorem.



THEOREM 1.

Let y(t) be the discrete time Markov process

with finite number of states N and a one-step transition pro-

bability matriz [Pg;ﬁ i, = 1,N, k=1,2,....

The following

expressions are true for the expected number of events which

were introduced above.

Nij(t)

t

)

k=1

] k

Pi(k_1)Pij(k)r lIJ=1INI

e~

1

Il o~1¢et

k=1

t

) Py (k=1)P, 4 (k)

j€B k=1

D) P; (k=1)P; 5 (k)

D) Pi (k=1P; 4 (k)

Pi (k-1)PlJ (k) ’ J=1 N

Pi(k—1)Pij(k), i=1,N

i#]

(1)

(2)

(3)

(4)

(5)

(6)

The probabilities Pi(k)’ k=1,2,..., may be calculated from the

discrete time Kolmogorov equations

P. (k)

N

m£1 Pm(k—1)Pmi(k), P, (0), i=1,N

The proof of these formulas is given in Appendix A.

(7)
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3. THE EXPECTED NUMBER OF EVENTS IN THE CONTINUOUS TIME FINITE
STATE MARKOV PROCESS MODEL

Attempts to make the model of individual behavior more
realistic leads to generalizations of the previous Markov chain
scheme. One reason for this is the fact that individual tran-
sitions may occur at arbitrary time moments in a selected time
interval. This circumstance compels one to réplace the discrete
time scheme with the more realistic continuous time model. Thus
in this section the individual's transition behavior will be
described by the continuous time Markov process which will be
denoted by y(t). The method of investigating these transitions
in continuous time will be based on the previous results, which
were obtained for the discrete time case, and on the use of some

limited operations (see Appendix B).

Let qij(t), i,j=1,N be the transition intensities of the

continuous time Markov process y(t), qij(t) >0, 1 # 3,

qjj(t)= - Z qji(t). We will use the same notation for the
i
expected number of events, as in the discrete time case. The

following theorem gives us the expression for these variables.

THEOREM 2. Let y(t) be the continuous time Markov process
with a finite number of states N and a transition intensity
matrix [qij(t)],i,j=i,N, t>0. The following expressions are

true for the expected number of events generated by y(t):

IS t

ij(t) = { Pi(S)qij(s)ds (8)
= _ t
Ny () = i;j /7P, (s)q 4 (s)ds (9)
—i : t
(t) = j;i /7 Py (s)g;5(s)ds (10)
N - t M = (11)
Npp(t)= D 1 [7P; (s)ay 4 (s)ds, AMB = ¢ 1



_ t
N, (t) = . (s)q.. (s)a
B iéB jéB o P18y (e)ds (2
(t) = 3 T 5. (s)q.. (s)ds (13)
i€n j¢a 0t M)

where Pi(s), i=1,N satisfies the Kolmogorov forward equations:

N
- rt
P;(t) = { k£1 Py (s)gy 4 (s)ds + P, (0) (14)

In application one sometimes needs to know the expected num-
ber of transitions which occur during the time interval [x,t],
where x > 0. Denote this value by ﬁij(x,t). It is not diffi-
cult to see that with the help of similar calculations we can
find

Nyjxot) = {© Py(s)a;(s)ds

Sometimes one may have some additional information about the
state of the process y(t) at the initial time moment or at
time mcment x > 0. So denoting by ﬁij(x,t,k) the expected
number of events which occur during time interval [x,t] given
vy (0)=k and by ﬁ?j(x,t) the expected number of events which
occur during the same time interval given y(x)=k and using
the calculation as before, we get

t

Nij(x,t,k) = i Pki(s)qij(s)ds

=k I
Nij(x,t) = £ Pki(x,s)qij(s)ds

where Pki(s) and Pki(x,s) are the solutions of the Kolmogorov

equations
N s
Pg(s) = 8,4 + 221 { P, (Waq,; (u)du
N s
Py (x,8) = Gki + 221 4 sz(x,u)qzi(u)du
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4. THE PROPERTIES OF THE SECOND MOMENTS OF RANDOM PROCESSES
GENERATED BY THE SEQUENCE OF EVENTS -- DISCRETE TIME CASE

The expected number of events gives a good but often in-
sufficient characterization of the point processes Ni(t), Nij(t)’
Nj(t), i,j=1,N, t=0,1,2,...,. 1In applications, the properties
which are connected with the behavior of the second moments of
some processes generated by the given sequence of events are
also useful. For example, the knowledge of the correlation
characteristics between two processes generated by the two
sequences of transitions between one couple of groups and an-
other couple of groups correspondingly may be useful for the
estimation of the medical demands in medico-demographic models
when the information about some transitions is incomplete. The
change in variance of the random number of transitions over time
characterizes the accuracy of the forecast; the establishment of
the independency properties between some of such processes sim-

plifies the further investigations, and so on.

In order to give a precise formulation of the results con-
nected with the second moment properties, we introduce the pro-

cesses ui.(t) with the help of equalities

J

o~

pi.(t) = N,.(t) -

I.(s-1)P..(s), i,j=1,N, t=0,1,2,...,.
; i3 ] (s=1)P;;(s), i,]

1 1

(15)
As is shown in Appendix A the variables

Ii(s-1)Pij(s), i,j=1,N, s=0,1,2,...,.
coincide with the conditional mathematical expectations of the

random variables ANi (s) given the history of the process y(t)

up to time s-1. So ghe processes uij(t) may be considered as
a sequence of random numbers of transitions between i and j
which are bounded by the conditional mathematical expectations.
The remarkable property of the processes uij(t) is formulated

in the following theorem.
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THEOREM 3. Let the processes “ij(t) and ukm(t) be generated
by the transitions of the process y(t) from the state 7 to state
J and from the state k to state m respectively. Then the ex-
pression for the mathematical eaxpectation of the product
“ij(t)°“km(t)' 1,7=1,N, k,m=1,N, i1#j,k#m,t=0,1,2,..., 18 given
by the following equality

t

521 Pi(s=1)P; () [1-Py4(s)1,

Elug 5 (B0 (831 = 655 vp

(16)

i,j=T,8, t=0,1,2,...

where Gij,km 1, if i=k, j=m

0, if i=k, or j#m

is the Kronecker's symbol and Pi(s) satisfies the Kolmogorov

equation (7).

Corollary 1. From the equality (16) one can see immediately
that the processes uij(t) and ukm(t) are uncorrelated if i#k or
m#Fj .

Corollary 2. The expression for the variance of the pro-
cess uij(t) also follows from the formula (16) when i=k, j=m.

It is

Il e~

2 _ _ _ o
EuSys () = P; (s=1P;4(s) [1-P ()], i,3=T,N, £=0,1,2,...,.

s=1

(17)

The proof of this theorem is shown in Appendix C.
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5., THE PROPERTIES OF THE SECOND MOMENTS OF RANDOM PROCESSES
GENERATED BY THE SEQUENCE OF EVENTS -- CONTINUOUS TIME
CASE

The continuous time case also has similar properties of the
second moment of the analogous processes. As before, we will
denote by uij(t) the bounded processes defined by the equali-

ties:

t . .o
uij(t) = Nij(t) - { I[y(s=1)]qij(s)ds , i,j=1,N,t > 0 (18)
The remarkable property of these processes is the subject of

the following theorem.

THEOREM U4. Let the processes “ij(t) and ukm(t) be gene-
rated by the transitions of the processes y(t) from the state
i to state J and from the state kK to state m, respectively.
Then the expression for the mathematical expectation of the
product uij(t)ukm(t), 1,§=1,N, k,m=1,N, i#j, k#m, t>0
18 given by the following equality

Elu s (B (£)] = 8

t , m—
i / Pi(s)qij(s)ds, k,j=1,N, t>0 (19)

l] ,km 0

Corollary 1. If k#1 or m#¥j the processes uij(t) and

ukm(t) are uncorrelated.

Corollary &. The variance of the process uij(t) is given

The proofs of the both corollaries is straightforward. The

proof of theorem 4 is shown in Appendix D.
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6. FURTHER GENERALIZATION OF THE TRANSITION MODEL

A number of specialists in the field of demography, sociol-
ogy, and medical demography (e.g., Rogers 1981) assert that the
Markov process model does not satisfactorily describe the regu-
larities in an individual's transitions between different groups.
This is because in the Markov process model one does not use the
past history of the process, which can fundamentally influence
the future behavior of the individual's real life. The next
step in making the transition model closer to reality is the re-
laxation of the Markovian property using the more complicated
process simulating the individual's transitions between a finite
number of states. Semi-Markov processes are often used as the
natural generalization of the Markovian scheme. The main dis-
tinction between these two kinds of processes lies in the type
of distributions for the time interval that the individual stays
in some selected states. In the Markovian case, this distribu-
tion is exponential. In the semi-Markovian case, it may be an
arbitrary distribution concentrated on the positive half of the
real line. Not using the Markovian property complicates the
calculations of the output variables of the medico-demographic
model and leads to the use of the more sophisticated techniques
of martingale theory which is also suitable for the investiga-

tion of more complex situations.

The methodology of martingale theory has been developed in-
tensively during the last decade. It also has many applications.
The more popular examples of martingales are the likelihood
ratio procéss, stochastic integrals, the sum of zero-mean random
variables, and the risk function in stochastic optimal control
problems. The notion of martingales X(t) is indistinguishable
from the nondecreasing right-continuous family of oc-algebras
(Ft), t > 0. The martingale X(t) is measurable with respect to
F. for any current time moment t > 0. Sometimes it is said that
martingale X(t) is adapted with respect to (Ft), t > 0. The
properties that distinguish martingales from other stochastic
processes, adapted with respect to flow (Ft), t >0, are as
follows:
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(1) E |[X(t)]| < =, t >0

(2) E (X(t)l Fs)= X(s), s

A
s

In our consideration the flows of og-algebras are generated by
the histories of the stochastic processes given on some basic
probabiltiy space (Q,F,P). Every point process Nij(t) has
its own predictable (Ft)—adapted process A(t) called "compen-
sator" (Liptser and shirjaev 1978). The main property of this
compeniiior is that the processes uij(t) i#j, t > 0,
i,j = 1,N defined by the equalities uij(t) = Nij(t) - Aij(t)
are (Ft) - adapted martingales. 1In the case of Markovian pro-
cesses, the compensators Aij(s) were

. t
; Ii(s)PlJ (s) and »g Il (S)qu (s)ds

Il ~1ct

respectively, for the cases of discrete and continuous time.

The martingale properties of the processes uij(t) allow one
to establish the following general relation between expected
number of transitions from i to j and the corresponding com-

pensators. This relation follows from the second condition in

the definition of martingales and is as follows:

E Nij(t) = E Aij(t)
The next step in developing formal description methods for
non-Markovian random jumping processes is the probabilistic
representation of the compensators Aij(t), that is the repre-
sentation Aij(t) in terms of probabilistic distributions re-
lated with the jumping process y(t). Such research, however,
requires a more sophisticated apparatus of the martingale
theory and its applications (Neveu 1975, Shirjaev 1980) and

deserves separate consideration.



-15-

7. EXAMPLES

1) Assume that entries into the transition intensity matrix
do not depend on time, i.e., g
N..(t) will be

1]

ij(t)=qij. The expression for

— _ t B -

Nij(t) = qij{ Pi(s)ds = qijTi(t)
where Ti is the expected time an individual should spend in group
i during time interval [0,t]. If N=2 and j=2 represent a terminal
state, then P1(s) is the exponential probability of survival

P1(s) = e 12

— oo
So when t = =, then N12(w) = q12£ P1(s)ds = 1

Note that ftPi(s)ds is the expected time which an individual
0

spends in state i during the time interval [0,t]. 1In the case

when N=2 and J=2 is a terminal state, this time coincides with

the expected time of life T, and if q12(t) is constant

T = —
912
2) Consider now the population consisting of two groups
of living individuals: the first group being "healthy” and the
second, "ill". The third, auxiliary group consists of the popu-
lation that has died -- an absorbing state. Assume that the

elements of the transition intensity matrix are constants

999 99, 9713
Q= 931 93 933
0 0 0

It turns out that the Kolmogorov equations for the probabilities
of states can be solved in the explicit form in this case. The

expressions for these probabilities are as follows:
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ALt
2
P (t) = ge (qz1+qz3+>\2)P1 (o) + 6121[1-P1 (0)]]
A1t
- e [(q21+q23+)\2)P1 (o) + q21[1'P1 (o) ]] s/(kz‘k.])
ALt
2
P,y(t) = 3e [(q12+q13+>\1) [1-P4 (0)] + q4,P, (o)]
Aaqt
1
- e (q12+q13+x1)[1—P1(0)]+ q12P1(0i]E /(Az—k1)
Aot
P3(t) =1 + 3je [A1+q13P1(o)+q23[1—P1(o)]]

At
1
e [x2+q13P1(o)+q23[1—P1(o)]]z /(X y=h )

where Az and A1 are given by the expressions

= _ _ 2 v
M= (q11+q22 Magmagy)” + “q12q21)/2

- 2
2 = <q11+q22 + ey ymayy) * 4 “q12q21>/2
The expected number of transitions from state 1 to state 2 is

given in the following expressions

Azt

[(-q22+A2)P1(o)+q21[1—P1(o)]](e -1)

992 1
Nyp (®) 3‘—

i
Aq

A1t
[(q22+A1)P1(o)+q21[1—P1(0)]] (e —1);

See the similar calculations in Chiang (1968), Tuma et al.
(1979) . In the cases of four and more number of states or if
the elements of the transition matrix depend on time, the for-
mulas obtained from theorems 1, 2, 3, and 4 give convenient
computational expressions for statistical characteristics in

the random number of events.
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3) Consider a population consisting of the same groups of

people as above.

In the tables below, qij’ where i,j=1,2,3, denotes the
transition coefficient for the discrete time model; p(i), where
i=1,2,3, represents the probability of being in state i; Nij’
where 1i,j=1,2,3, is the expected number of transitions from i to
j; T(i), where i=1,2,3, denotes the time spent by individuals in
groups (i), and t is the current time, which changes from 1 to 11.
The three groups of individuals may be interpreted as healthy

(i or j=1), i1l (i or j=2), or dead (j=3).

The first three tables show the results of calculations
based on constant transition probabilities (qij’ where i,j=1,2,3).

In these cases, = qij-T(j), for any time moment t. (The de-

N. .
pendence oftﬂm:vaigables on t is omitted in this formula.)
Table 1 shows a high probability of recovery (q21=0.8),

which generates a relatively high probability of individuals being
in the "healthy" group (P1=o.uu1) over 11 units of time. The ex-
pected transitions from "ill" to "healthy" (N21) over 11 time units
is 2.629. The expected time that individuals spend in the healthy
state (T1) is 6.009 time units and in the ill state (T2) is 3.287.

Table 2 differs from Table 1 in that there is a lower proba-
bility of recovery (q21=0.1). As a result, the probability of
being healthy at the end of the time interval is also lower (P1=
0.092) and the expected number of recoveries is 0.559. The
expected time that individuals spend in the healthy state is 2.549,
as against 5.592 in the ill state.

Table 3 is characterized by the high probability of transi-
tion from "ill" to "dead" (q23=0.8). As a result the probability
of being healthy is 0.004. The expected number of transitions

from "ill" to "healthy" is 0,124 and the expected time that indi-

viduals spend in the healthy state is short: 1.844.

The last three tables show the results of calculations based

on changing some of the transition probabilities qij'

Table 4 shows the transition probability from "healthy" to

"ill" changing the variable from 0.5 to 0.9, over time, which
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results in a high level of transition probability from "ill" to
"dead". As a result the probability of a person dying is 0.999.
Table 5 represents the case where the probability of remaining
ill is high (q22=0.8) and morbidity (q12) changes as in Table 4.
Table 6 shows an increasing morbidity (q12) and an increasing

probability of dying (q23).

8. CONCLUSION

The expected number of events which are related to the
Markov transition model may be calculated successfully if the
corresponding transition probabilities (in discrete time) or
transition intensities (in continuous time) are known. The in-
itial probability distribution functions over the states are
supposed to be known too. In reality the transition coefficients
are the functions of time and the individual's age. For instance,
some of these coefficients in medico-demographic models demon-
strate age specific morbidity, recovery, and mortality patterns.
In the case of multiregional migration they are the age specific

migration patterns and so on.

The estimation of the transition coefficient is a very im-
portant problem which depends on the available description of
the individual's behavior, statistical data, and some additional
hypotheses, which explain the motivation or necessity of the
transition. The review of these methods deserve special consid-
eration. The expected number of events is not the only important
output characteristic of medico-demographic models. The expected
time spent in selected states is another characteristic of the
population that is essential to health care managers. Combining
the expected number of transitions with the expected time span
in a selected state provides useful information for decision

makers who are concerned with the health of a population.
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Table 1. Constant transition probabilities: high recovery rates.

Time unit

variable 1 2 3 4 5 6 7 8 9 10 11
Transition probabilities from state i to state j

., 0.500 0.500 0.500 0.500 V.50 0.500 0.500 0.500 0.5 0.500 0.500
1, 0.500 0.520 0.500 0.50C 0.500 0.500 0.500 9.500 0.500 0.500 0.500
94 0. 0. Q. 0. Q. Q. Q. 0. Q. 0. 0.
95, 0.300 0.800 0.300 0.2 0.300 0.800 0.800 0.8L0 0.300 0.3C0 0.800
95, 0.100 0.100 $.15C 0100 3.130 0.100 0.190 0.100 2.100 0.100 0.130
qy3 V100 0.120 0.120 0.102 0.100 0.100 Q.100 0.100 0.100 J.100 0.100
aj; 0. 0. 0. 0. 0. 0. 0. 0. 0. . oO.
a3, 0 0 0. 0. 0. Q. 0. 0. Q. 0. 0.
33 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Probabilities of betng in state 1, 2, or 3

p(l) 0.800 0.560 V.616 1.566 0.555 0.531 0.513 0.494 0.476 0.458 0.441
p(2) 0.200 0.420 0.322 0.340 0.317 0.309 0.296 0.286 0.27% 0.205 0.256
p(3) 0. 0.020 0.062 0.094 0.128 V.160 0.191 0.220 0.249 0.277 0.303
Expected number of transitions from state i to state j

N 0.400 0.580 0.988 1.271 1.543 1.814 2.070 2,317 2.555 2.784 3.004
N, 2.400 0.680 0.988 1.271 1.548 1.814 2.070 2.317 2.555 2.784 3.004
N 3 0. 0. 0. 0. 0. 0. Q. 0. Q. Q. Q.
NoT 0.160 0.496 0.754 1.026 1.279 1.527 1.764 1.992 2.213 2.425 2.629
N>, 0.020 0.062 0.094 0.123 0.160 0.191 0.220 0.249 0.277 0.30% 0.329
Ny3 0.020 0.062 0.094 0.128 0.160 0.191 0.220 0.249 0.277 0.303 0.329

Expected times in state 1, 2, or 3

T(1) J. 1.360 1.976 2.542 3.097 3.527 4.140 4.634 5.109 5.567 6.009
T(2) o] 2 0.620 0.942 1.232 1,599 1.9(8 2.205 2.491 2.760 3.031 3.287
T(3) 0. 0.020 0.082 0.176 0.304 0.464 0.655 0.876 1.125 1.401 1.704

Table 2. Constant transition probabilities: low recovery and
mortality rates.

Time unit

variable 1 2 3 4 5 6 7 8 9 10 11

Transition probabilities from state 7 to state J

9 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
4i, 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
93 0. 0. 0. Q. 0. Q. 0. Q. 0. 0. 0.
9, 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.10C 0.100 0.100
9,5, 0.800 0.800 0.800 0.800 0.800 0.80C0 0.800 0.800 0.3C0 0.800 0.8C0
o5 0.100 0.100 0.100 0.100 0.120 0.120 0.100 0.100 0.100 0.150 0.100
45, Q0. 0. 0. Q. J. 2. 0. 0. 0. 0. C.
a3, 0. 0. 0. ©. 0. 0. 0. ©O. 0. 0. oO.
933 1,000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1,000 1.000 1.000
Probabilities of being in state 1, 2, or 3

p(l) 0.800 0.42) 0.266 0.199 0.165 0.145 0.131 0.120 0.110 0.101 0.092
p(2) 0.200 0.560 0.658 0.659 0.627 0.584 0.540 0.498 0.458 0.421 0.337
p(3) 0. V.020 0.076 U.142 0.238 0.270 0.329 0.383 0.433 0.478 0.521

Expected number of transitions from state 7 to state J

Niy 0.400 0.610 0.743 0.842 0.925 0.998 1.06% 1.123 1.178 1.225 1.274
Ny, 0.400 0.610 0.743 0.842 0.925 0.998 1.063 1.123 1.178 1.228 1.274
Ni3 J. 0. J. 0. 0. 0. 0. 0. 0. 0. 0.
Noy J \)20 0.076 0.142 0.203 0.270 0.329 0.383 0.433 0.478 0.521 0.559
N, 0.150 0.608 1.134 1.662 2.163 2.631 3.063 3.461 3.82’7 4.104 4.474
No3 0 020 0.076 0.142 0.208 0.270 0.32% 0.383% 0.433 0.478 0.521 0.592
Expected times in state 1, 2, or 3

T(1) 0.300 1.220 1.486 1.685 1.550 1.996 2.127 2.24p 2.355 2.456 2.549
T(2) 0.200 0.760 1.418 2.077 2.704 3.283 3.829 4.326 4.784 5.205 5.592
T(3) J. 0.020 0.096 0.233 0.446 0.716 1.045 1.428 1.860 2.333 2.859
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Table 3. Constant transition probabilities: high mortality rates.

Time unit

Variable 1 2 3 4 5 6 7 8 9 10 11

Transition probabilities from state 1 to stage J

q, 0500050005000500030005000500 0.500 0.500 0.500 0.500
q;, 0.500 0.500 0.5W 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
95 0. 0. 0. 0. J. 0. 0. 0. Q. 0. 0.
957 O.1QO 23.100 3.120 0.100 Q.100 0.100 0.130 90.100 0.100 0.100 0.120
q,, 0.100 0.1C0 0.130 V.100 0.400 0100 0.100 0.100 0.100 0.100 0.1
953 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800
a3 0. 0. 0. Q. 0. 0. Q. 0. 0. Q. Q.
a3, 0. 0. 0. 0. 0. 0. 0. 0. 0. Q. Q.
433 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.00C 1.000 1.000
Probabilities of being in state 1, 2, or 3

p{l) 0.800 0.420 0.252 0.151 0.091 0.054 0.033 0.020 0.012 0.007 0.004
p(2) 0.200 0.420 0.252 0.151 0.091 0.054 0.033% 0.020 0.012 0.007 0.004
p(3) . 0.160 0.496 0.598 0.819 0.891 0.9% 0.961 0.976 0.986 0.992

Expected number of transitions from state i to state J

Ny C.400 0.610 0.726 0.812 0.857 0.884 0.901 0.910 0.916 0.920 0.922
NI 0.400 0.610 0.736 0.812 0.857 0.884 0.901 0.910 0.916 0.920 0.922
NI3 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
No 0.020 0.062 0.087 0.102 0.111 0.117 0.120 0.122 0.123 0.124 0.124
NS 9 020 0.062 0.037 0.102 0.111 0.117 0.120 0.122 0.123 0.124 0.124
N33 0.160 0.496 0.698 0.819 0.391 0.9% 0.961 0.976 0.986 0.992 0.995
Expected times in state 1, 2, or 3

(L) 0.800 1.220 1.472 1.623 1.714 1.763 1.801 1.821 1.832 1.839 1.844
T(2) 0.200 0.620 0.872 1.023 1.114 1.168 1.201 1.221 1 232 1.239 1.244
T(3) 0. 0.160 0.65 1.354 2.172 3.063 3.998 4.959 5.9% 6.921 7.913

Table 4., Changing transition probabilities: increasing morbidity
rates and high mortality rates.

Time unit

Variable 1 2 3 4 5 6 7 8 9 10 11

Transition probabilities from state i to stage J

9, 0.500 0.500 0.400 0.400 0.300 0.300 0.200 0.200 0.100 0.100 0.100
9, 0.500 0.500 0.600 0.600 0.700 0.700 0.800 0.800 0.3 0.900 0.90
95 0. 0. 0. Q. 0. 0. Q. 0. 0. 0. Q.
a5, 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
9,5 0.100 0.100 0.120 0.130 0.100 0.100 0.100 0.100 0.150 0.100 0.100
954 G.800 0.800 0.800 ©.800 0.300 0.800 0.800 0.800 0.800 0.800 0.800
3, 0. 0. 0. 0. 0. 0. 0. Q. Q. 0. 0.
q3, 0. 0. Q. Q. 0. 0. 0. 0. 0. 0. Q.
43, 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Probabilities of being in state 1, 2, or 3

p(l) 0.800 0.420 0.210 0.113 0.050 0.024 0.009 0.004 0.001 0.001 0.000
p(2) 0.200 0.420 0.294 0.155 0.095 0.044 0.024 0.010 0.005 0.002 0.001
p(3) 0. 0.160 0.496 0.731 0.856 0.9%1 0.967 0.986 0.994 0.998 0.999
Expected number of transitions from state i to state J

N U.400 O.§1O 0.694 0.739 0.754 0.762 0.76% 0.764 0.764 0.764 0.764
N, 0.400 0.610 0.736 0.804 0.839 0.856 0.863 0.867 0.868 0.868 0.869
N3 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
N7 0.020 0.062 0.091 0.107 0.116 0.12% 0.123 0.124 0.125 0.125 0.125
NS, 0.020 0.062 0.0 0.107 0.116 0.121 0.123 0.124 0.125 0.125 0.125
N23 0.160 0.496 0.731 0.85% 0.931 0.967 0.986 0.994 0.998 0.999 1.000
Expected times in state 1, 2, or 3

T(1) 0.800 1.220 1.4%0 1.543 1.593 1.617 1.627 1.631 1.632 1.633 1.633
T(2) 0.200 0.620 0.914 1.069 1.164 1.209 1.232 1.242 1.247 1.249 1.250

T(3) 0. 0.160 0.656 1.387 2.243 3.174 4.141 5.127 6.121 7.118 8.117
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Table 5. Changing transition probabilities: increasing morbidity
rates and low recovery and mortality rates.

Time unit

variable 1 2 3 4 5 6 7 8 9 10 11

Transition probabilities from state i to state j

q; 0.500 0.500 0.400 0.400 0.300 0.300 0.200 0.200 0.100 0.100 0.100
a5 0.5C0 0.500 0.600 0,600 0.700 0.700 0.300 0.800 0.900 0.9C0 0.9U0
93 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
] Q.120 0.100 0.100 0.100 0.100 0.120 0.100 0.100 0.100 0.100 0.100
a5, 0.800 0.800 0.800 0.800 0.800 0.300 0.800 0.800 0.300 0.800 0.800
a53 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
a3 0. 0. 0. o 0. 0. 0. 0. 0. 0. 0.
a3, 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
433 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Probabilities of betng in state 1, 2, or 3

p(l) 0.800 0.420 0.224 0.160 0.117 0.102 0.082 0.074 0.060 0.055 0.050
p(2) 0.200 0.560 0.700 0.694 0.667 0.616 0.574 0.525 0.486 0.443 0.404
p(3) 0. 0.020 0.076 0.146 0.215 0.282 0.344 0.401 0.454 0.502 0.547

Expected number of transitions from state i to state J
0.400 0.610 0.700 0.763 0.799 0.829 0.8456 0.860 0.866 0.872 0.877

N

Ni; 0.400 0.610 0.744 0.840 0.922 0.994 1.059 1.118 1.172 1.221 1.266
Nl3 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

N21 0.020 O.Q76 0.146 0.215 0.282 0.344 0.401 0.454 0.502 0.547 0.587
NS, 0.160 0.508 1.168 1.724 2.257 2.750 3.209 3.629 4.019 4.373 4.696
N3 C.020 0.076 0.146 0.215 0.282 0.344 0.401 0.454 0.502 0.547 0.587
Expected times in state 1, 2, or 3

T(1) 0.800 1.220 1.444 1.604 1.721 1.823 1.905 1.979 2.039 2.093 2.143%
T(2) 0.200 0.760 1.460 2,154 2.822 3.438 4.012 4 537 5.023 5.466 5.870
T(3) 0. 0.020 0.096 0.242 0.457 0.740 1.083 1.485 1.938 2.441 2.987

Table 6. Changing transition probabilities: increasing morbidity
and mortality rates.

Time unit

Variable 1 2 3 4 5 6 7 8 9 10 11

Transition probabilities from state i1 to state §

9, 0.500 0.500 0.400 0.400 0.300 0.300 0.200 0.200 0.100 0.100 0.100
9, 0.500 0.500 0.600 0.600 0.700 0.700 0.800 0.800 0.9C0 0.900 0.900
93 0. 0. 0. ©0. 0. 0. 0. ©O. 0. 0. 9o.
957 V.600 0.600 0.500 0.500 0.400 0.400 0.300 0.300 0.200 0.200 0.100
d55 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200
953 0.200 0.200 0.3% 0.300 0.400 ¢.400 0.500 0.500 0.600 0.600 0.7C0
43 0. J. 0. 0. 0. 0. 0. 0. 0. 0. 0.
43, 0. Q. 0. Q. 0. 0. Q. J. 0. Q. 0.
q33 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000Q
Probabilities of being in state 1, 2, or 3

p(l) 0.800 0.520 0.428 0.371 0.246 0.205 0.112 0.086 0.035 0.024 0.003
p(2) 0.200 0.440 0.400 0.337 0.327 0.238 0.211 0.132 0.104 0.052 0.0%32
p(3) 0. 0.040 0.172 0.292 0.427 0.558 0.676 0.782 0.861 0.924 0.960
Expected number of transitions from state i to state J

Ny 0.400 0.660 0.831 0.980 1.054 1.115 1.137 1.155 1.158 1.160 1.161
NI, 0.400 0.660 0.917 1.140 1.312 1.455 1.545 1.614 1.645 1.667 1.674
Ni3 J. J. 0. Q. 0. 0. 0. 0. 0. 0. 0.
N21 0.120 0.384 0.584 0.752 0.883 0.978 1.042 1.081 1.102 1.113 1.116
N, 0.040 0.128 0.208 0.275 0.341 0.388 0.431 O 457 0.478 0.488 0.495
NG3 0.040 0.128 0.248 0.349 0.430 0.575 0.681 0.747 0.809 0.840 0.863
Erpected times in state 1, 2, or 3

T(1) 0.800 1.320 1.748 2.119 2.3265 2.570 2.682 2.768 2.803 2.827 2.8%
T(2) 0.200 0.540 1.040 1.377 1.704 1.942 2.153 2,285 2.339 2.441 2.473
T(3) J. 0.040 0.212 0.504 0.931 1.488 2.165 2.347 3.808 4.732 5.692




APPENDIX A: The Proof of Theorem 1

In order to calculate the value of ﬁij(t), consider the

increment of the Nij(t) at an arbitrary moment in time t:

ANij (t) = Nij (t) - Nij (t_1)’ t=1'2’o.o’o

It is not difficult to see that for ANij(t) the following

equality is true
ANij(t) = I[y(t-1)=1i] Ily(t)=]]

where by I(+) we denote the indicator of random event ().

Let Ft be the history of the process y(t) up to time t.

The conditional mathematical expectation of ANij(t) given F __,

may be written as follows

E[ANij(t)/Ft—1] = I[y(t—1)=1]Pij(t) (A.1)
The fact that the indicator I[y(t-1)=i] is measurable with res-
pect to Ft—1 was used here. Using the definition of ANij(t) we
can represent the expected number of transitions ﬁij(t) with

22~
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the help of the following expression

Il o~1ct

ﬁij (t) = E

t
ANij(k) = k£1 EANij(k) (A.2)

k=1

Taking the mathematical expectation from both parts of equation
(A.1) we get

ElﬁNij(t) = Pi(t—1) Pij(t) (A.3)

and consequently from (A.2)

t
E Nij(t) = kZ1 P, (k=1) Pij(k) (A.4)

ﬁij(t)

where probabilities Pi(k), k=0,1,2,..., may be received from

the discrete time Kolﬁogorov equation

N
P, (k) = m£1 P (k-1) P_.(k), P;(0), i=1,...N

A1. The Expected Number Entering State j

Let Nj(t) be the number of process y(t) transitions from
arbitrary states to state j. The expected number of these
transitions ﬁj(t) = ENj(t) may be found from the evident re-

lations

Nj(t)

1l
~1
|
-
.
Camn
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-
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o
~
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~
N
~
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and consequently

N.(t) = } J P.(k-1) P..(k), 3=1,N, t=0,1,2,...
J i3 k=1 * +



A2. The Expected Number Departing from State i

Denote by Nl(t) the number of transitions from state i to
an arbitrary state. The expected number of these transitions
N'(t) is given by the formula

N (t) = ] ] P.(k-1)P,(k) (A.6)
j#i k=1 ]
which can be ohtained easily by summing both parts of the

equation (1.4) over j.

A3. Some Generalizations

Some generalizations of these formulas for the expected
number of transitions are related to the transitions from some
set of states to another set of states. Assume that we are
interested in the expected number of transitions from the
set of states A to the set of states B, AN B #¥ ¢, during
the time interval [0O,t]. Denote this variable by ﬁA'B(t).

Using the equation (A.4) one can easily get

N (t) = P.(k=-1)P.. (k)
A/B iéA jéa k£1 1 +J

Denote by ﬁg(t) the expected number of the transitions of the
process y(t) from any arbitrary state to the set of states B
during the time interval [O,t]. It is not difficult to get
from (A.5) the following expression:

2|

() = ] ) 1 Pj(k=T)P, (k)

B JEB i#B k=1

In the same way, if ﬁA(t) denotes the number of transitions
from the set of the states A to any arbitrary state, from
(A.6) one can easily get

) = J ] 7 B (k=1)P, (k)
i€a j€A k=1 ]



APPENDIX B: The Proof of Theorem 2

Consider the sequence of the divisions of the time inter-

val [0O,t].

h hoyh e = ¢ Ath=t}}2-t§ =1 n=1,2...

O=t0, t1, gre e

According to the definition of the transition intensities let

gij(t) be the probability of being in state j at time moment ti
given that y(t) was in the state i at time moment t,_1- Then

h h, _ h h h .
h h, _ h h h
Pij(tk_.', tk) = ‘l+qjj(tk_1)At + 0(At) (B.1)

if the time interval Ati is small enough.

Denote by yh(k) the discrete time Markov chain which
is generated by the continuous time process y(t) at time tk’
k=0,1...h. The transition probabilities for the discrete time
process yh(k) are given by the expressions (B.1). We will

denote with index h the variables which are concerned with

-25-
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the discrete time Markov chain yh(t). Thus, for the expected

=h

number of events Nij(t)’ we have according to the formula (1)

h h h
Pi (1) Py (Bpqr &)

—h 5
(t) = ; 3

N. .
1] k

e~

Tending Ath to zero and using the equalities (B.1) we get

lim N2, (t) = {tPi(s)qij(s)ds (B.2)

h-)-oo lj
— — —i — —
Eznote as before by Ntﬁt), Nij(t), Nj(t), N~ (t), NAB(t), NB(t),
N (t), the variables having the same sense as in discrete time

and referring to the continuous time processes y(t).

It is clear from the definition of the Markov chain yh(k)

that the following inequality is true for any t > 0!

Moreover, when h tends to infinity, Nij(t) steadily tends to
Nij(t)‘ Changing the orders of the limits and the mathematical
expectation on the left-hand side of the formula (B.2) we get

— t ..
Nij(t) = { Pi(s)qij(s)ds, i,j=1,N (B.3)



APPENDIX C: The Proof of Theorem 3

Consider the expression for the product uij(t)°ukm(t) in
discrete time. According to the definition of these processes
uij(t), i,3=1,N, given by the expression (15), we have that

Ul] (t)ukm(t) = Nl] (t)Nkm(t)

t t
+ ) Ii(s—1)Pij(s) I I (s=1)Py(s)

Taking the mathematical expectation from both parts of this
equality, we receive the sum of the four addendums on the
right-hand side. The values ot each of these are then cal-

culated separately.

-27-
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Note that the product Nij(t) Nkm(t) may be rewritten
in another way

Nij(t)Nkm(t) =

o~

1=1

t

Nkm(l-1)ANij(l) + 121 ANij(l)ANkm(l)

+

I~ ct

1=1

First, consider the mathematical expectation from the first

item of the right-hand side of the equation for Nij(t)Nkm(t)
t
3[521 Nij(s—1)ANkm(sﬂ =E[S£1Nij(s-1)Ik(s-1)Pkm(sﬂ

where Pkm(s) denotes the transition probability for one step
from the state k at time s-1 to the state m at time s (another

notation may be Pkm(s-1,s). Now let us find the expression
for

E[Nij(s-1)1k(s-1ﬂ

We have

i s=1

E[Nij<s-1)xk<s-1ﬂ = E|Ix(s=D) [ Ii<1—1)1j<1i

(C. 1)

rs—1
=E| ) Ii(l—1)Ij(l)Ik(s—1)]

Using the Markovian property of the process y(t) we get from
(C. 1)
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s-1
E[Nij (,s-1)Ik(s—1)] =EI:1£1 Ii(l—1)Ij(l)ij(l,s—1)]

(C.2)

s=1

] [121 =T Fig () Py Lesml)
Thus t £ 51
E [121 Nij‘l‘”ANkm‘l’] = 521 121 Pi<1-1)1>ij(1)pjk<1,s-1)pkm(s)

(C.3)

Making similar calculations, we derive the mathematical expec-

tation of the second component

t
E [121 Nkm(l—1)ANij(lJ

s-1

t_
= 1 1

P, (1-1) P (L)P . (1,8=1)P ()
s=1 1=1

taki i
ng into account that E[ANij(t)ANkm(tﬂ

t
= 855 km ! P;(s-1) Piy(s)

s=1

1 1
where Gij,km is the Kronecker's symbol
1 if i=k, Jj=m
°ijmkm = {
0 in other cases

the expression for the expected value of the product Ni-(t)N (t)

J km
becomes
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t s-1
. t)| = p.(1-1)P, . (1)P.. (1,5=1)P (s)
B[ (£ Ny (8)] RN 15 (D Py
% s=1
Tl 121 P, (1-1) Py ()P (1,5-1)B;; (s)
N (C. )
* 854 km Z P;(s=1) Py4(s)
s=1
t
The product N, (t) ! I,(s-1) P__(s) may be rewritten as follows
s=1 :
t t
ij(t)s£1 I, (s=1)Py  (s) l£1Nij(l—1)Ik(l—1)Pkm(l)
(C.5)
t 1
+ 1§1 821 I, (s=1) Pkm(s)ANij(l)

Taking the mathematical expectation from both parts of equality

(C.5) and using the expression (C.2) for E[Nij(l—1)Ik(l—1)], we
get

t 11

Ik(s-1)Pkm(sﬂ =y ) P; (s=1)P, 4 (8) Py, (s,1-1)Py (1)

[ 500 1
E |N,.(t)
1J 1=1 s=1

s=1

(C.6)
t 1
) Py (s=1)P__(S)P,; (s=1,1-1)P,. (1)
1=1 s=1 ]

Making the similar calculations we can get for

t

E [Nkm(t) Z Ii(s-1) Pij(s@

s=1

the following expression:

t t 1-1
E [Nkm(t)sz11i(s—1)Pij(sﬂ = 121 S;IPk(s—‘l)Pkm(s)Pmi(s,l—-1)Pij(l—1)

(c.7)
t 1

+ P. (s=1)P,.(s)P.. (s=1,1-1)P, (1)
! 17k km
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t t
The product 2 Ii(s—1)Pi.(s) z

s=1 j S_1Ik(s‘1)Pkm(S) may be rewritten

as follows:
t t

t [
SZ1Ii(s—1)Pij(s)SZ1Ik(s—1)Pkm(s) 521 lZ1Ii(l'1)Pij(l)Ik(s“1)Pkm(s)

t

S
SZ1 l£1Ik(l—1)Pkm(l)Ii(s—1)Pij(s)

+

(C.8)
t

S£1Ik(s—1)Ii(s-1)Pkm(s)Pij(s)

Taking the mathematical expectation from both parts of this
equality and taking into account the Markovian property of
the process y(t), we get from (C.8)

t s

SZ1 lZ1Pi(l-1)Pij(l)Pik(l—1’s—1)Pkm(s)

t t
E| ) I.(s=1)P,.(s) } I, (s-1)P (SJ
[s=1 + 13 gk kn

t s

P, (1-1)p, (1)P, . (1-1,s-1)P.. (s)
sZ1 121 k km ki 1j

+

t

iksz Pk(s-1)Pkm(s)Pij(s) (C.9)

1

Summarizing the expressions (C.4), (C.6), (C.7), and (C.9),

it is not difficult to get the assertion of theorem 3.



APPENDIX D: The Proof of Theorem 4

Let y(t) be the continuous time Markov process with the
transition intensity matrix [q (t)], i,Jj= 1 N. As in Appendix

B we will use the auxiliary Markov chain y (k) which is gene-

rated by the process y(t) at time tg, t?,...tg = t, with the
one step transition probabilities P, J(tg_1,tg), i,j=1,N. Let

(t), i,j=1,N N be the processes which correspond to the
Markov chain y (k) in accordance with Appendix B.

The analogue of the expression (C.1) is the formula

h h _ .h h
h h h,.h h h
+ Nij(t)-s£1Ik(ts_1)Pkm(ts_1,tS) (D.1)
h h h h h
+ N (t) Z (g )Pyt qrty)
s=1
h h
h h h h
+ Z Ii(ts-1)Pij(ts-1’ts) Z Ik(ts—1’ts)Pkm(t
s=1 s=1
h, h , . as h
where Ik(ts—1) is the indicator of the event {y (s-1) = k}
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It is not difficult to prove that the product u?(t)uim(t)
tends to the product u..(t)ukm(t) when h tends to infinity where
the processes My (t) are deflned by the formula (18). The mathe-
matical expectatlon E[u (t)uk (t)] tends also to the E[n; CUukm(a]
Therefore it is necessary to find the corresponding expressions
for the right-hand side in (D.1) and pass to the limit when h
tends to infinity. Consider at the beginning the first addendum
of the right-hand side of (D.1). Remembering the formula (cC.4)

for the discrete-~time case we can easily write

s-1
h (b M
5 ] Py (e )2y (DR, (61,6 By (60
t s-1
h & h h
+ 521 ng P ()P (t )B_; ( n,ts_1)Pij(tS) (D.2)
+ 8 T e e p.eh) + 0aeh)
ij,kmSZ1 i'7s=1""1j"'"s

Tending the value of Ath to zero or the same h to infinity

and noting that the change of the operations leads to the limit
with respect to h and taking the mathematical expectation on the
left-hand side of the formula (D.2), as in Appendix B, one gets

E Nij(t)Nkm(t)

{t{SPi(u)ij(u,s)qij(u)qkm(S)duds

t.s
+ { { Pk(u)Pmi(u,s)qkm(u)qij(s)duds

t

1j,km0 P (s)q (S)ds (D.3)

+ 6

In a similar way, we can get the following continuous time

analogs of expressions for the discrete time processes:
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t t.s
E[Nij(t)fo' Ik(s)qkm(s)ds] {

{ Pi(u)qij(u)ij(u,s)qkm(s)duds

Jt{SPk(u)qkm(u)Pki(u,s)qij(s)duds
(D.4)

t{st(u)qkm(u)Pmi (u,S)qij (s)duds

/

0

t
E[Nkm(t){ Ii(s)qij(s)ds]

+ {t{SPi(u)qij(u)Pik(u,s)qkm(s)duds

(D.5)
E [{txi ()a (s)ds'{tIk (s)qy (s)ds| = {t{spi () q 5 (W Py (1,8) G (8) cuds
(D.6)

t.s
+ {{ Pk (u)qkm(u)Pkl (U,S)qij (s)duds

The probabilities Pki(u,s) in these formulas satisfy the following

Kolmogorov equations

t

Pki(u,s) = { N

1Pkl(u,s)qli(s)ds + Gki

l~>2

Collecting these expressions we get theorem 4.
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