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Abstract

Despite the increasing recognition of the importance of health for economic growth, the

role of medical innovation in this process remains largely unexplored. Specifically, what

are the causal effects of medical innovation on economic growth, and what shape does

this relationship take? To address these questions, we propose an R&D-based economic

growth model with overlapping generations, wherein life expectancy depends on healthcare

utilization and medical innovation, and we then empirically test the model’s implications.

Our findings reveal a clear causal pathway from medical innovation to economic growth,

with increasing life expectancy serving as a key transmission channel. In the early stages

of development, medical innovation does not have a positive effect on economic growth,

whereas in intermediate stages, a positive and significant effect emerges. In late stages of

development, where life expectancy is already very high, the effect becomes weaker and

potentially negative because health improvements are increasingly difficult to achieve and

become more resource-intensive.
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1 Introduction

Average global life expectancy at birth was below the age of 30 prior to the Industrial Revolu-

tion. Since then, it has risen continuously to surpass 70 years in 2019. In many rich countries,

life expectancy is even higher. Table 1 displays life expectancy in the years 1900 and 2019 for

selected countries together with the world average according to the data of Roser (2022). As the

last column of the table shows, life expectancy has increased by 60-127% between 1900 and 2019

across the set of countries and aggregates considered.

Table 1: Life expectancy at birth in 1900 versus 2019

Country Life expectancy (1900) Life expectancy (2019) Percentage change

France 45.0 82.7 84%

Germany 45.5 81.3 79%

Italy 41.4 83.5 100%

Japan 38.6 84.6 119%

UK 45.6 81.3 78%

US 49.3 78.9 60%

World average 32.0 72.6 127%

Notes: The data source is Roser (2022). Note that the data for Germany in column 2 are from 1905 and the data for the US are

from 1901.

One important driver of these increases is the improvement in living standards that took

place from 1900 to 2019. While the positive relationship between income and health — the so-

called Preston Curve (Preston, 1975) — is well-established empirically, the causal channels that

shape the positive correlation and the potential non-linearities in the effect of life expectancy on

economic growth have not been thoroughly investigated.1

At least three crucial sets of questions arise. First, although the two-way causality between

health and economic growth (or the level of per capita GDP) appears to be widely in line with

empirical observations (Bloom and Canning, 2000; Hall and Jones, 2007), there are confounding

factors that drive both economic growth and improvements in health. This is most obvious in the

case of technological progress, which is the main driver of long-run economic growth (Romer, 1990;

1For a non-exhaustive list of contributions to this debate and for different views, see Bhargava et al. (2001),

Boucekkine et al. (2002), Shastry and Weil (2003), Acemoglu and Johnson (2007), Weil (2007), Lorentzen et al.

(2008), de la Croix and Sommacal (2009), Aghion et al. (2011), Cervellati and Sunde (2011), Bloom et al.

(2014), and Bloom et al. (2024).
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Jones, 1995; Peretto, 1998) but, at the same time, is a crucial determinant of health (Acemoglu

and Johnson, 2007).

Second, the effect of health on economic growth depends heavily on the economic, demographic

and medical state of development (see also Cervellati and Sunde, 2011). In this context, the theory

of the epidemiological transition as described by Omran (1998) provides a suitable framework

for characterizing the dependence of economic growth on health improvements. Omran (1998)

proposes distinguishing between five stages of the epidemiological transition, during which medical

advances have different effects on different parts of the population. While the 1st stage (“pestilence

and famine”), a Malthusian stage without much of a role for medicine, and the 5th stage (“aspired

quality of life with persistent inequalities”), a futuristic stage of the epidemiological transition, lie

outside the time frame of our analysis, the 2nd to 4th stages are highly relevant for our theoretical

and empirical analyses. In the 2nd stage (“receding pandemics”), health improvements mainly

affect child mortality but not yet adult mortality and workforce growth. In this stage, mainly the

young cohorts grow resulting in an “inverse demographic dividend” (Bloom et al., 2003) involving

a temporary increase in the dependency ratio. In the 3rd stage (“degenerative, stress, and man

made diseases”), medical improvements reduce adult mortality, leading to positive impacts on

workforce growth and fostering investment. During this stage, medical innovations are likely to

have positive effects on economic growth, not least because improvements in health are not yet

highly resource intensive. For example, advancements in the treatment of cardiovascular diseases

have resulted in significant improvements in life expectancy at relatively low treatment costs.2

Finally, in the 4th stage (“declining cardiovascular mortality, ageing and emerging diseases”),

improvements in health mainly pertain to older adults who have already surpassed the working

age. In addition, the health improvements from medical interventions for the entire population

tend to be more limited and require increasingly more resources in terms of healthcare personnel

(a phenomenon known as flat-of-the-curve medicine; see Fuchs, 2004). These workers are no

longer available for other sectors, such as industrial research and development (R&D), which can

hinder economic growth. All of this indicates that improvements in health will lead to faster

economic growth during the 3rd stage of the epidemiological transition but may have a more

ambiguous impact during the 2nd and 4th stages.

Third, little is known about how medical innovation combines with industrial innovation as a

driver in the nexus of longevity and income growth. When medical and industrial R&D efforts

compete for the same resources, medical and industrial innovation can be seen as substitutes

(Jones, 2016; Kuhn and Prettner, 2016). However, this ignores the role of spillovers across R&D

2Here, the 3rd and 4th stages are blending into each other; while early advances against cardiac disease have

benefited the (late) working-age population, later advances were mostly benefiting retirees and would be consid-

ered part of the 4th stage as defined by Omran (1998).
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projects, where advances in industrial R&D (e.g., imaging and radiation, laser, robotic technolo-

gies) are often the basis for medical innovations, and vice versa. Moreover, it is well known that

by raising the demand for health care, income growth itself acts as a driver of medical innovation

(Hall and Jones, 2007; Jones, 2016; Frankovic and Kuhn, 2023; Kuhn, 2023), while, in the long

run, the health improvements resulting from medical innovation facilitate industrial innovation

by creating a healthier and more educated workforce.

Against this backdrop, Figure 1 illustrates, for the time frame 1890-2020, the annual co-

movement between GDP per capita and life expectancy at birth for the sample of industrialized

countries considered in this study (see below for details).3 The solid line is the bi-variate (un-

conditional) correlation, the dashed red line refers to the correlation obtained when controlling

for the impact of medical innovation on income per capita, whilst the dashed blue line is the

correlation arising when accounting for the effects of both medical and industrial innovation.

The figure shows that the co-movement between longevity and GDP per capita was relatively

low for the first half of the period, but it increased sharply after WWII, reaching a peak in the

late 1980s. Since then, the correlation has decreased by one third. The parameters of longevity

obtained from conditional regressions followed a similar pattern until the mid-1970s but remained

relatively low thereafter. In brief, the graph suggests that the longevity-income link is non-linear

and that since the 1970s, a significant portion of the co-variation has been explained by both

medical and industrial innovation. This corroborates the narrative described above.

We aim to shed additional light on the role of medical innovation as a driver of longevity

and income growth i) by proposing a theoretical model of knowledge-driven growth that in-

cludes health and health interventions driven by medical innovation and takes account of the

non-linearities in this context; ii) by explicitly distinguishing industrial and medical innovation

in a panel time series regression analysis, thereby isolating the effect of medical innovation on eco-

nomic growth. In so doing, we are the first to utilize a rich dataset that enables us to distinguish

patents that underlie industrial innovation from patents that are specific to medical innovation.

We identify the income effect of medical innovation through an event analysis that compares the

change in GDP per capita observed after the launch of these innovations with that of countries

that did not introduce them. We validate the results of this analysis by using alternative iden-

tifying assumptions and expanding the regression to a global sample of countries to address the

econometric issues associated with this type of estimation. We also estimate the linkage between

medical innovation, longevity and income levels through cointegration methods of regressions.

3Figure 1 reports the year-to-year elasticity obtained regressing GDP per capita against life expectancy

(both expressed in logs) using the panel Mean-Observation OLS regression (Keane and Neal, 2020). Because of

endogeneity issues, we label the estimated coefficients as correlation parameters even if their range of variation

may go outside the unit circle.
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Figure 1: Year-by-year co-movement between longevity and GDP per capita

Notes: The graph reports the yearly parameter estimates, β̄t, obtained from a MO-OLS regression of GDP per capita against

life expectancy, controlling for medical innovation and industrial innovation (both expressed as patent stock per inhabitant):

lnGDPpcit = αi + βit lnXit + εit with β̄t =
∑N

i=1 βit.

Among other factors, we control for various measurement issues and employ alternative model

specifications. Reassuringly, the impact of medical innovation estimated using this technique is

extremely close to the income increase obtained from the event analysis. Note that our main

dataset begins in 1890 and therefore spans more than a century. This implies that we can distin-

guish between periods in which health improvements i) mainly reduce infant mortality and lead

to fast population growth of young cohorts during the early stage of development as defined by

the epidemiological transition; ii) mainly affect the working-age population in the intermediate

stage of development; and iii) come with increasing resource requirements and mainly benefit

older adults potentially beyond their working age in late stages of development. This, in turn,

allows us to analyze potential stage dependencies to the extent to which economic growth reacts

to improvements in health and medical innovation. Overall, our analysis contributes to the lit-

erature a distinctly innovation-based and, in terms of unpacking different channels over time, a

more nuanced view on the nexus between health and economic growth.

The paper is organized as follows. In Section 2, we propose a theoretical model to describe the

effects of medical innovation and life expectancy on economic growth when growth is driven by

purposeful R&D investments. In Section 3, we present the empirical specifications that underpin

our econometric work, while Section 4 contains the description of the data. Section 5 is devoted
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to the presentation of the empirical findings. Finally, in Section 6, we conclude and draw lessons

for policymakers.

2 Model

2.1 The demographic structure

Households consist of overlapping generations in the spirit of Blanchard (1985). Specifically, the

total population is composed of different cohorts that are identified by their date of birth t0. Each

cohort consists of a measure N(t0, t) of individuals at a certain point in time t > t0. Individuals

face a constant risk of death at each instant, which we denote by µ(t). Due to the law of large

numbers, this rate is equal to the fraction of the population dying at each instant. The population

grows at rate n(t) ≡ β(t)−µ(t), with β(t) referring to the birth rate, which is equal to the period

fertility rate in this demographic structure. It follows that, at time t, the size of a cohort born

at t0 < t amounts to N(t0, t) = βN(0)eβt0e−µt, where N(0) refers to the initial population size.

Using the demographic assumptions, we show in Appendix A.1 that the population size at time

t amounts to

N(t) =

∫ t

−∞
N(v, t)dv = N(0)ent.

When the birth rate β(t) is equal to the death rate µ(t), we have n = 0 and the population stays

constant.

2.2 Healthcare

In the healthcare sector, a representative firm provides medical treatment by employing labor.

Following Kuhn and Prettner (2016), we assume that one unit of labor produces one unit of

medical treatment such that

h(t)N(t) = LH(t),

where LH(t) is aggregate employment in the healthcare sector and h(t) is healthcare per capita.

Consumption of healthcare per capita, h(t) = LH(t)/N(t), is therefore proportional to per capita

employment in the healthcare sector.
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2.3 Mortality and fertility

As in Hall and Jones (2007) and Schneider and Winkler (2021), among others, we assume that

the consumption of a quantity h(t) of healthcare lowers mortality.4 Moreover, following Frankovic

et al. (2020) and Frankovic and Kuhn (2023), medical technology M(t) contributes to reducing

mortality with (weakly) decreasing returns, that is µM < 0 and µMM ≥ 0, where the subscript

denotes the derivative with respect to the corresponding variable. Expressing the mortality rate

as µ(h(t),M(t)), we then get

dµ(h(t),M(t))

dM(t)
= µM + µh

dh(t)

dM(t)
.

Medical innovation, M(t), has therefore a twofold impact on the mortality rate. Firstly, it directly

allows people to live longer. Secondly, it triggers healthcare spending which, in turn, curbs

mortality. Thus, following well-established evidence that medical innovations typically lead to an

increase in healthcare utilization,5 we assume that the state of medical technology increases the

consumption of healthcare, i.e., dh(t)/dM(t) > 0, which implies dµ(t)/dM(t) < 0.

Medical innovation, as measured by the increasing stock of M(t), has also the potential to

curb child and early life mortality. Interpreting the fertility rate as a measure of surviving children

(net fertility)6 implies that β(M(t)) is a positive function of M(t), that is,

∂β(M(t))

∂M(t)
= βM > 0.

Considering all these effects, medical innovation has an unambiguously positive impact on pop-

ulation growth, n(t), such that ∂n(t)/∂M(t) = ∂β(t)/∂M(t)− ∂µ(t)/∂M(t) > 0.7

2.4 Consumption

An individual belonging to the cohort born at t0 maximizes her discounted stream of lifetime

utility

U =

∫ ∞
t0

e−(ρ+µ)(s−t0) log c(t0, t)ds, (1)

4Crémieux et al. (1999), Cutler et al. (2006), Hall and Jones (2007), and Baltagi et al. (2012) provide empir-

ical evidence on the impact of healthcare on mortality.
5See, for example, Baker et al. (2003), Cutler and Huckman (2003), Wong et al. (2012), and Roham et al.

(2014).
6In the seminal paper on endogenous fertility by Barro and Becker (1989), falling infant mortality rates

lower the cost of having a surviving child and, therefore, net fertility increases as mortality declines. Doepke

(2005) examines three variants of the Barro-Becker model to allow for different plausible assumptions with re-

spect to preferences/uncertainty and shows that the number of surviving children increases in all three exten-

sions as child mortality declines.
7Herzer et al. (2012) show that, over the last century, the fertility reduction triggered by declining mortality

was not enough to overcompensate for the positive effect of falling mortality on population growth.
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where c(t0, t) refers to individual consumption of the final good. The subjective time discount

rate ρ > 0 is augmented by the mortality rate µ(t) > 0 because individuals who face the risk of

death are more reluctant to postpone consumption into the future.

At any time individuals are alive, they are endowed with one unit of labor, which they supply

inelastically on the labor market at the wage rate w(t). Following Yaari (1965), we assume the

presence of a perfect annuity market in which individuals insure themselves against the risk of

dying with positive assets. Thus, individuals do not receive and do not leave bequests. They spend

their available income on healthcare h(t) and consumption c(t), the price of which is normalized

to one. Individual assets a(t) yield an annuity premium µ(t) in addition to the interest rate r(t)

and therefore evolve according to

ȧ(t) = [r(t) + µ]a(t) + w(t)−m(h, t)− c(t),

where m(h, t) denotes the cost of healthcare. Inserting m(h, t) = h(t)w(t) into the household

budget constraint yields

ȧ(t) = [r(t) + µ]a(t) + w(t)[1− h(t)]− c(t), (2)

which shows that the level of medical treatment, h(t), can be interpreted as the fraction of labor

income that an individual spends on healthcare services. In Appendix A.2, we show that utility

maximization subject to the wealth constraint yields the standard Euler equation

ċ(t)

c(t)
= r(t)− ρ,

stating that optimal individual consumption expenditures grow as long as the interest rate exceeds

the subjective time discount rate.

2.5 Aggregation

Agents are heterogeneous with respect to age. To get expressions of the dynamic behavior of

aggregate assets, Ω(t), and aggregate consumption, C(t), we apply the following rules to integrate

over all cohorts alive at time t (cf. Heijdra, 2017)

Ω(t) ≡
∫ t

−∞
a(t0, t)N(t0, t)dt0 = e−µtβN(0)

∫ t

−∞
a(t0, t)e

βt0dt0,

C(t) ≡
∫ t

−∞
c(t0, t)N(t0, t)dt0 = e−µtβN(0)

∫ t

−∞
c(t0, t)e

βt0dt0.

From the two previous equations, we obtain the following expressions for the aggregate Euler

equation and the law of motion of aggregate assets (see Appendix A.3)

Ċ(t)

C(t)
= r(t)− ρ+ n(t)− [n(t) + µ(t)] [ρ+ µ(t)]

Ω(t)

C(t)
, (3)
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Ω̇(t) = r(t)Ω(t) + w(t)[1− h(t)]N(t)− C(t). (4)

Eq. (3) shows that the aggregate Euler equation differs from the individual Euler equation. The

reason for this is that older people have higher income and consumption levels such that the

ongoing process of generational replacement (older people die and are replaced by newborns)

reduces aggregate consumption growth as compared with individual consumption growth (see,

e.g., Prettner, 2013; Kuhn and Prettner, 2016, 2018 for details).

2.6 Production

Final output, Y (t), which can be either consumed by individuals in the economy or invested in

the production of intermediates, is produced according to the function

Y (t) = LY (t)1−α
∫ A(t)

0

xi(t)
αdi,

where LY (t) refers to labor employed in final goods production, xi(t) to the amount of intermediate

i used in final goods production, A(t) to the stock of technologies as determined by the industrial

innovation sector, and α to the elasticity of output with respect to the input of intermediate i.

Assuming perfect competition in this sector, the factor rewards amount to

wY (t) = (1− α)
Y (t)

LY (t)
,

pi(t) = αLY (t)1−αxi(t)
α−1.

Next, we assume that intermediate goods are produced with physical capital utilizing a linear

technology with a unitary capital input coefficient such that xi(t) = ki(t), where ki(t) is the

capital employed by one intermediate goods producer i. Using all the ingredients we have so far

and denoting the price of an intermediate variety i by pi(t), we get profits in the intermediate

goods sector as

πi(t) = pi(t)ki(t)− r(t)ki(t) = αLY (t)1−αki(t)
α − r(t)ki(t).

Profit maximization implies the optimal mark-up pricing strategy

pi(t) =
r(t)

α
,

which shows that symmetry prevails such that the index i can be dropped. We use this result to

rewrite the interest rate as (see Appendix A.4)

r(t) = αp(t) = α2LY (t)1−αx(t)α−1 = α2 Y (t)

K(t)
,
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where K(t) = A(t)x(t) is the aggregate capital stock. With this information, we can rewrite final

output as (see Appendix A.5)

Y (t) = [A(t)LY (t)]1−αK(t)α.

Overall, the value of all assets in the economy is

Ω(t) = K(t) + A(t)VA(t),

where the stock of technologies, A(t), coincides with the number of intermediate goods producers

because each of these companies must make a fixed up-front investment by purchasing a patent

before it can begin production. As the fixed production costs are equal to the total discounted

stream of the firm’s operating profits (a new entrant would always be willing to bid at a lower

price), VA(t) represents the value of both the intermediate goods producer and the individual

patent.

The gross domestic product (GDP) of the economy is then defined as

GDP (t) = Y (t) + PH(t)H(t) + VA(t)Ȧ(t),

where PH(t) = w(t) is the price of healthcare, H(t) is the output of the healthcare sector, and

VA(t)Ȧ(t) is the value created by the R&D sector.

2.7 R&D sector

The production function for new industrial technologies is given by

Ȧ(t) = ν(τ̄)A(t)

[
LA(t)

N(t)

]
,

where ν(τ̄) is the productivity of researchers, which, according to the estimates of Jones (2010)

and Jones and Weinberg (2011), depends on the average age of the population denoted by τ̄ ,

LA(t)/N(t) is the share of researchers in the population, and A(t) on the right-hand side of

the equation captures intertemporal knowledge spillovers. This formulation sterilizes the strong

scale effect of population size on economic growth (Jones 1995).8 Below, we assume that the

productivity of researchers follows a hump-shaped pattern in relation to their average age, that

is ντ̄ > 0 and ντ̄ τ̄ < 0. This assumption is based on the observation that researchers tend to

8 Models of endogenous growth, in which an increase in the growth rate of the stock of researchers (due

to population growth) generates faster steady-state output growth, are inconsistent with the data. In order to

avoid such bias and ensure a balanced growth path, we divide the number of researchers by the total population

(see Laincz and Peretto 2006; Peretto 1998).
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display different levels of productivity throughout their careers, with an initial increase, followed

by a peak, and eventually a decline as they age. This pattern has been described and estimated

by Feyrer (2008), Jones (2010), Jones and Weinberg (2011), and Jones et al. (2014). These

studies, which analyze the age profile of inventors and innovators, suggest that the frequency of

inventions by middle-aged individuals is significantly higher than that observed for younger and

older individuals, with the peak productivity years typically falling between the mid-30s and early

40s.

There are two saving vehicles, namely physical capital, which pays an interest rate r(t), and

shares of firms, which pay dividends and yield a valuation gain when sold. The no-arbitrage

equation for these two investments implies that both saving vehicles need to pay the same rate

of return such that

r(t) =
πA(t)

VA(t)
+
V̇A(t)

VA(t)
.

After reformulating and acknowledging that πA(t) = α(1− α)Y (t)/A(t), we get

VA(t) =
α(1− α)Y (t)/A(t)

r(t)− V̇A(t)/VA(t)
.

Due to free entry in the R&D sector, the revenue of an R&D firm (which is the total value of the

patent multiplied by the new patents produced) must equal the wage bill of the firm. This means

that

VA(t)Ȧ(t) = w(t)LA(t).

Perfect labor mobility leads to equalization of wages across sectors. Therefore, by inserting the

expression for wages w(t) = (1− α)Y (t)/LY (t) into the previous equation, we obtain

LY (t)

N(t)
=
r(t)− V̇A(t)/VA(t)

αν(τ̄)
,

which represents the share of labor employed in the final goods sector.

2.8 Market clearing and steady-state growth

Along a balanced growth path, we have Ȧ(t)/A(t) = g(t), V̇A(t)/VA(t) = n(t), and hence aggregate

output grows at the rate of population growth plus the rate of technological progress, Ẏ (t)/Y (t) =

n(t) + g(t). With this information, we can rewrite

LY (t)

N(t)
=
r(t)− n(t)

αν(τ̄)
,

LA(t)

N(t)
=
g(t)

ν(τ̄)
.

Assuming that labor markets clear, i.e., LH(t) + LA(t) + LY (t) = N(t), and using the previous

results, we get the growth rate of the technological frontier, namely

g(t) =
˙A(t)

A(t)
= ν

LA(t)

N(t)
= [1− h(t)]ν(τ̄)− r(t)− n(t)

α
. (5)
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Since Ċ(t)/C(t) = Ω̇(t)/Ω(t) = n(t) + g(t) along a balanced growth path, Eqs. (3) and (4) can

be written, respectively, as

g(t) = r(t)− ρ− [n(t) + µ(t)][ρ+ µ(t)]
Ω(t)

C(t)
, (6)

g(t) = r(t)−n(t)+[1−h(t)]w(t)
N(t)

Ω(t)
−C(t)

Ω(t)
= r(t)−n(t)+[1−h(t)]

r(t)ν(τ̄)(1− α)

r(t)− αn(t)
−C(t)

Ω(t)
, (7)

where the last equality of (7) follows from the fact that w(t)N(t)/Ω(t) = r(t)ν(τ̄)(1− α)/[r(t)−
αn(t)] (see Appendix A.6 for the derivation). Therefore, our economy is described by the dynamic

system composed of Eqs. (5)-(7). These equations determine the interest rate, r(t), the ratio

of consumption to assets, C(t)/Ω(t), and the economic growth rate, g(t). Below, we drop time

indices, whenever this does not impair the clarity of the exposition.

In Figure 2, we provide a graphical representation of the balanced growth allocation in (C/Ω, r)

space (left panel) and (g, r) space (right panel). As shown in Appendices A.7 and A.8, setting

Eq. (5) equal to Eq. (6), implying balanced growth of technology and consumption, yields a

downward-sloping locus relating r to C/Ω (the rd locus); whereas setting Eq. (5) equal to Eq. (7),

implying balanced growth of technology and assets, results in an upward-sloping locus in the

same space (the ru locus). The balanced-growth equilibrium is determined by the intersection

of the two loci at point E1. It can be ascertained that the rd locus shifts up if either research

productivity, ν, the mortality rate, µ, or the population growth rate, n, increases, and shifts down

if the per capita level of medical treatment, h, increases. Furthermore, the ru locus shifts up if

research productivity, ν, or the population growth rate, n, increases and shifts down if the per

capita level of healthcare, h, increases. The inverse relationship between r and g provided by

Eq. (5) is depicted in the right panel of Figure 2 (the rg locus). An increase in either research

productivity, ν, or the population growth rate, n, induces a parallel upward shift of the rg locus,

whereas an increase in the per capita level of medical treatment, h, results in a parallel downward

shift of this locus.

2.9 The channels through which medical progress affects economic

growth

As described above, our model relates to the theory of the epidemiological transition developed

by Omran (1998) on the channels through which medical technology impacts economic growth.

According to this theory, societies experience five stages in the path to epidemiological modern-

ization.9 For our purpose, only the 2nd to 4th stages are relevant. During the 2nd stage (“receding

9In his original work, Omran (1971) was only referring to three stages, but in the light of the rapid medical

and epidemiological developments during the 1970s and 1980s, he revised this to five stages for Western indus-
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Figure 2: Balanced growth equilibrium.

pandemics”), the prevalence of pandemics and famines decreases, and life expectancy increases

to about 50 years. During the 3rd stage (“degenerative and man-made diseases”), the rate of

mortality decrease slows down, while heart diseases, strokes, diabetes and deaths caused by pollu-

tion become increasingly frequent. During this stage, life expectancy increases to about 75 years.

In the 4th stage (“declining cardiovascular mortality, ageing and emerging diseases”), progress

against cardiovascular mortality increases life expectancy to about 80 to 85 years, while the rise

of chronic diseases and aging result in high medical costs for both governments and individuals.

Below, we analyze the effect of medical innovation during the 2nd to 4th stages of the epidemio-

logical transition that are covered by our available data. For the sake of simplicity, we also refer

to these stages as early, intermediate, and late development stages.

The 2nd and early 3rd stages of the epidemiological transition

During the 2nd stage of the epidemiological transition, medical innovation leads to a reduction

in child and early life mortality, implying that ∂n/∂M > 0 and ∂µ/∂M is small and close to 0.

Moreover, since there is no role for the healthcare utilization channel, we assume that ∂h/∂M = 0.

Medical innovation therefore raises the rate of population growth, n, and both the rd and ru loci

shift up (see Figure 3). It then follows that the impact of medical progress on the interest

rate, r, is positive (whereas that on the ratio C/Ω is ambiguous). The rg locus shifts up when

n increases, with an ambiguous impact on the rate of economic growth. As can be seen, two

equilibria are possible: E2 in the top panel and E3 in the bottom panel of Figure 3. If the rg

trialized countries.
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Figure 3: The effects of medical progress on r and g. Top panel: The 2nd stage of the epidemio-

logical transition. Bottom panel: The early 3rd stage of the epidemiological transition.

locus shifts a little (red line), the increase in the interest rate, r, is accompanied by a decrease

in the economic growth rate, which becomes equal to g2 (the E2 equilibrium). Instead, if the rg

locus shifts up more markedly (blue line), we observe an increase in the growth rate (from g1 to

g3). Compared to the initial E1 equilibrium, both the interest rate and the economic growth rate

are higher in E3. In the 2nd stage of the epidemiological transition, it is likely that equilibrium
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E2 will be attained because the reduction in child and early-life mortality increases the share of

young individuals, which results in a decrease in the average age and a consequent reduction in

average research productivity.10 Overall, this implies that economic growth slows down during

that stage and the economy moves from equilibrium E1 to E2. However, starting with the 3rd

stage of the epidemiological transition, medical progress reduces mortality at older ages such

that ∂µ/∂M < 0. This leads to an increase in the average age of the population and, thus, a

rise in research productivity. At the same time, the reduction in mortality incentivizes people

to save, which mitigates the upward pressure on the equilibrium interest rate. Altogether, these

results imply a strong upward shift of the rg locus, leading the economy to move to equilibrium

E3 as illustrated in the bottom panel of Figure 3. At the same time, the reduction in mortality

incentivizes people to save, which mitigates the upward pressure on the equilibrium interest rate.

Altogether, these results imply a strong upward shift of the rg locus, leading the economy to move

to equilibrium E3 as illustrated in the bottom panel of Figure 3. This implies that the economic

growth rate rises to g3 > g1 > g2.

The late 3rd and 4th stages of the epidemiological transition

During the late 3rd and 4th stages of the epidemiological transition, medical innovation leads to

a further increase in longevity, while child mortality is already very low. Thus, ∂µ/∂M < 0 but

∂n/∂M becomes smaller and eventually close to 0. The healthcare utilization channel starts to

play a crucial role, where we have ∂h/∂M > 0. Figure 4 provides a graphical illustration of the

effects of medical progress on r and g. Since ∂µ/∂M < 0 and ∂h/∂M > 0, an increase in the

level of medical technology, M , shifts the rd locus down. Moreover, taking into account that

∂h/∂M > 0, the ru locus also shifts down when the level of medical technology, M , increases.

Since both equilibrium loci move downwards when medical technology improves, it follows that

the impact of medical progress on the interest rate, r, is negative (whereas that on the ratio C/Ω

is ambiguous). The rg locus shifts down when h increases with an ambiguous impact on the rate

of economic growth. As before, two equilibria can emerge: E2 in the top panel and E3 in the

bottom panel of Figure 4. In the late 3rd stage of the epidemiological transition, average research

productivity, ν, is still on the non-descending part of its age gradient, which limits the downward

shift in the rd, ru, and rg loci. If the rg locus shifts only little (red line), the decrease in the

interest rate, r, is accompanied by an increase in the economic growth rate, which becomes equal

to g2 (the E2 equilibrium) in the top panel. In the 4th stage of the epidemiological transition,

10An alternative interpretation is that an increase in the population growth rate mainly raises the share of

young people in an economy. Since young individuals do not yet participate in the labor market, this leads to

an inverse demographic dividend (Bloom et al., 2003). The way we can capture such an inverse demographic

dividend in the model is via the reduction in average productivity.
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Figure 4: The effects of medical progress on r and g. Top panel: The late 3rd stage of the epi-

demiological transition. Bottom panel: The 4th stage of the epidemiological transition.

however, average research productivity ν decreases, which reinforces the downward shift in the

rd, ru, and rg loci. In addition, the 4th stage of the epidemiological transition is characterized

by a significant impact of medical innovation on healthcare consumption (the derivative ∂h/∂M

is large). Thus, a marked downward shift of the three loci rd, ru, and especially rg (blue line)

occurs. In this case, the economic growth rate decreases (from g1 to g3) as depicted in the bottom
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panel. Compared to the initial E1 equilibrium, the interest rate and the economic growth rate

are both lower in E3.

Table 2: Effects of medical innovation by stage of the epidemiological transition.

Stage

Share of the

working age

population

r(t) h(t) ν(τ̄) g(t) Economic effects

2nd ↓ ↑ - ↓ ↓ Rising share of young people

3rd ↑ first ↑, later ↓ ↑ ↑ ↑ Labor force expansion and

capital accumulation

4th ↓ ↓ ↑↑ ↓ ↓ Resource-intensive medicine

Notes: r(t) represents the interest rate, h(t) denotes healthcare spending as a share of wage income, ν(τ̄) refers to research

productivity depending on the average age τ̄(t), and g(t) indicates the growth rate of per capita GDP.

We summarize the effects of medical innovation on different outcome variables, differentiated

by the three stages of the epidemiological transition, in Table 2. Taken together, these effects

give rise to empirically testable predictions that we describe in Subsection 2.11.

2.10 Numerical illustration from the perspective of a single country

In Table 3, we illustrate the effects of medical innovation numerically across the stages of the

epidemiological transition. To this end, we adopt the perspective of a single country that we

follow over time. The purpose of this illustration is to show the dynamics as they are displayed

qualitatively in Figures 3 and 4 and in Table 2. We do not aim to calibrate the model to fit

the data of a particular country, which—due to the stylized nature of such a long-run economic

model and the many idiosyncratic events that countries are confronted with over time—would be

a futile attempt. Instead, we empirically test the model’s central predictions in Section 5, relying

on data of several countries for the time span of 1890-2018.

For our numerical illustration, we assume that α = 1/3 and ρ = 0.03, which are conventional

values for these parameters in the literature on economic growth. Furthermore, we assume that

we start with h ≈ 0, n = 0.5%, µ = 3.5% (leading to a life expectancy at age five of 29 years)

and ν = 0.15 in the baseline case to get a reasonable growth rate of the economy.

When simulating the effects of medical progress in the 2nd stage of the epidemiological tran-

sition, we assume, broadly in line with data for the US during that period, a decrease in child

mortality such that population growth rises to n = 2% and a decline in mortality to µ = 3%.
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Table 3: Effects of medical innovation on economic growth, numerical illustration

Stage ν(τ̄) h(t) n(t) µ(t) 1/µ(t) τ̄(t) g(t) r(t) C(t)/Ω(t)

Baseline 0.15 0 0.005 0.035 29 25 0.54% 5.32% 14.60%

2nd 0.12 0 0.02 0.03 33 20 0.44% 5.85% 12.44%

3rd (early) 0.18 0.15 0.015 0.02 50 29 1.75% 6.02% 13.89%

3rd (late) 0.20 0.25 0.01 0.015 67 40 1.87% 5.88% 13.43%

4th 0.15 0.35 0.005 0.01 100 67 0.11% 3.71% 9.91%

Notes: ν(τ̄) refers to research productivity depending on the average age τ̄(t) = 1/ [n(t) + µ(t)], h(t) is healthcare spending as a

share of wage income, n(t) refers to population growth, µ(t) denotes the mortality rate such that its inverse 1/µ(t) represents life

expectancy for surviving children, g(t) is the growth rate of per capita GDP, r(t) is the interest rate, and C(t)/Ω(t) is the ratio

of aggregate consumption to aggregate assets.

These parameter changes imply an increase in life expectancy at age five to 33 years and a re-

duction in the average age of the population to 20 years. As the average age of the population

decreases and moves further away from peak productivity years in science, the demographic shifts

induce a decrease in average research productivity to ν = 0.12. Overall, the economic effect re-

sults in an increase in the interest rate and a decrease in the growth rate, exactly as illustrated

in the top panel of Figure 3.

When simulating the effects of medical progress in the early 3rd stage of the epidemiological

transition, we assume, again in line with the data, that the effect of mortality reduction on child

mortality starts to wane and fertility starts to decrease, such that population growth falls to

n = 1.5%. Concurrently, healthcare utilization starts to rise to h = 15% of wage income, and

mortality falls to µ = 2%, which implies an increase in life expectancy to 50 years of age. The

average age of the population increases as a result to 29 years, which implies a rise in average

research productivity as compared with the previous two scenarios. As a result of the shifts, both

economic growth and the interest rate rise, which is in line with the illustration in the bottom

panel of Figure 3.

In the late 3rd stage of the epidemiological transition, we assume, in line with the data, that

medical progress raises healthcare utilization to h = 25%, mortality shrinks to µ = 1.5%, resulting

in an increase in life expectancy to 67 years, and the population growth rate falls to n = 1%.

This implies that the average age of the population reaches 40 years, which is close to the peak

of research productivity depending on age found in the literature (Jones, 2010). Thus, research

productivity rises further to ν = 0.2. Overall, these changes imply a further increase in economic

growth but also a decrease in the interest rate, which is in line with the prediction for this stage

of the epidemiological transition as displayed in the top panel of Figure 4.

18

Electronic copy available at: https://ssrn.com/abstract=4491818



Finally, in the 4th stage of the epidemiological transition, we assume that further medical

progress raises healthcare utilization to h = 35%, mortality falls to µ = 1%, implying a life

expectancy of 100 years, and population growth decreases to n = 0.5%. This leads to a rise in

the average age of the population to 67, far above the age of peak research productivity, resulting

in a decrease to ν = 0.15. Overall, this implies a fall in economic growth and in the interest

rate, which is consistent with the illustrations for the 4th stage of the epidemiological transition

as shown in the bottom panel of Figure 4.

2.11 Testable predictions

We are now able to state the testable predictions for the empirical part of the paper. From

Figures 2–3 and Tables 2–3, the following two testable hypotheses can be derived.

Hypothesis 1. There is a causal pathway from medical innovation to economic growth. An

important transmission channel is the effect of medical innovation on expanding life expectancy.

Hypothesis 2. The overall effect of medical innovation on economic growth is non-linear. Med-

ical innovation has the potential to either increase or decrease economic growth, depending on the

epidemiological background. We can distinguish between the following cases:

• For countries in early stages of development (2nd stage of the epidemiological transition),

medical innovation stifles economic growth.

• For countries in intermediate stages of development (3rd stage of the epidemiological tran-

sition), medical innovation fosters economic growth.

• For countries in late stages of development (4th stage of the epidemiological transition),

the positive economic growth effect of medical innovation weakens and eventually becomes

negative.

We move on to describe the empirical models by which we test the two hypotheses in Section

3, present the data and summary statistics in Section 4, and report the results of the empirical

analysis in Section 5.

3 Empirical analysis

Based on the predictions of the theoretical model, we conduct regression analysis to identify the

causal linkages between medical innovation, longevity, and income per capita. The analysis is

developed in two main parts, namely an event analysis and a structural regression.
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3.1 Event analysis

In the first step, we perform an event analysis to assess the impact of the introduction of medical

innovations on income per capita within our sample of countries, controlling for various economet-

ric issues and confounding factors, which are detailed below. Specifically, we quantify the effect

of the introduction (launch) of medical innovations as resulting from the first patent filing at the

United States Patent and Trademark Office (USPTO). For each country, we assume the year of

the first patent application in medical fields to be the start of the treatment and the country to

remain treated from then on (full absorption condition). Our identification strategy is based on

the idea that countries capable of seeking patent protection for their innovations at the USPTO

have reached a certain threshold of knowledge to effectively utilize advanced healthcare-related

technologies, regardless of whether they are developed domestically or abroad. This would result

in an increase in life expectancy and, in turn, in the level of GDP per capita. Indeed, the devel-

opment of medical innovations depends on internal technological capabilities and on how firms

(as well as the public sector) in a country respond to the population’s demand for healthcare.

In the event analysis, our baseline equation is

Yit = α0i + α1 · Eit + α2 · Zit + αt + εit, (8)

where the outcome variable, Yit, is GDP per capita in country i in year t, Eit is a binary indicator

of unitary value from the year of the first filing onwards and zero otherwise (treatment × post).

α0i’s identify country fixed effects capturing the impact of un-observable characteristics that do

not vary over time, αt refers to a set of time dummies that collect the effects of co-movements

caused by un-observable factors (technology shocks, globalization, changes in the institutional

setting, etc.), and εit represents a spherical error term. To address the issue of omitted variables,

we employ Zit as a vector of control variables, which includes key factors identified by standard

growth theory as drivers of income, such as the stocks of physical assets and industrial innovations

per inhabitant.

We estimate the Difference-in-Differences specification in Eq. (8) as Local Projection (LP-

DiD) regression following Dube et al. (2023). This amounts to expressing Eq. (8) in first differ-

ences and assessing the forward increases in the outcome variable h years after the realization of

the event at time t (with h = 1, 2, ..., H):

Yit+h − Yit−1 = αh1 ·∆Eit +
J∑
j=1

α2,j ·∆Zit−j +
J∑
j=1

α3,j ·∆Yit−j +
h∑

j=−J

α4,j ·∆Eit+j + αt + εit. (9)

The LP-DiD regression utilizes lagged values of the dependent variable from the original spec-

ification (Eq. (8)) to address selectivity issues, as richer countries, where available income is

20

Electronic copy available at: https://ssrn.com/abstract=4491818



higher and the population demands more healthcare, may engage in medical innovation earlier

and self-select into the treatment group. We also include lags of the treatment to control for

dynamic effects of this variable because GDP per capita may respond with a delay to the launch

of medical innovation. Conversely, leads of the treatment variable serve to exclude anticipation

effects because income per capita may change prior to the introduction of medical innovation (at

time t). This may happen when individuals adjust their investment decisions, thereby influenc-

ing income levels, in anticipation of better health conditions resulting from medical innovations.

This phenomenon might also have occurred in the earlier stages of our time horizon when medical

innovations were episodic and random, and the adoption of new medical treatments commenced

before these innovations were patented.

In Eq. (9), αh1 represents the single-year value of the average treatment on the treated (ATT)

effect, which we will illustrate through an event-analysis plot below. If the assumption of pre-

treatment parallel trends between the treated and control units is satisfied, the departure of

αh1 from zero would quantify the single-year increase in GDP per capita (expressed in dollars)

attributable to medical innovation.

It should be observed that the forward increase in GDP per capita with respect to its pre-

treatment trend uses the average of the outcome variable over a ten-year interval before the event

(∼ Yit−1). This makes the pre-event value of GDP per capita less sensitive to outliers, ensuring

more accurate estimates compared to the use of single-year values. Also, the number of years

after the treatment may vary significantly across countries; hence, to mitigate the impact on ATT

of countries with a low number of post-event time points, we re-scale the single-year values of the

treatment coefficient with a frequency weight inversely proportional to the number of time points

used for its computation.

There are two characteristics of our data, which are worthy of discussion here. First, our

sample is made up by a group of industrialized countries observed for over a century, and all of

them file at least one patent related to medical innovation (pharmaceuticals, medical equipment,

etc.) at the USPTO in the time horizon of our analysis, although in different years. This implies

that our treatment regression model is staggered and, more importantly, that all countries enter

the treatment group at a given point in time. Our regression procedure takes into account this

dimension of the data by comparing, for each year within the time interval, the change in income

per capita between the units that have been treated and those that have not been treated but

will be treated later on. In other words, the group of control units used in the DiD regression

changes each year, consisting of the ‘switchers’ only (i.e., units that have not yet been treated).

To assess whether this condition affects our results, as a robustness check, we replicate the

LP-DiD regression using a larger sample of countries extracted from a different source covering
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the world as a whole. Although for these countries data are available only for a shorter period of

time, with this sample, we are able to build a control group that includes both ‘not-yet-treated’

and ‘never-treated’ units; the latter are countries that have no patent applications in the medical

field at the USPTO.

Second, we may question whether the year of introduction of medical innovation (i.e., the

launch of the first medical patent) can be considered as a valid treatment by fulfilling all iden-

tification criteria discussed above (selection, anticipation effects, etc.). The usage of this identi-

fication assumption is a common practice in the microeconomic literature examining the impact

on different dimensions of performance associated with the transition to a new technology (see

Czarnitzki et al., 2023, Alderucci et al., 2020). At the macroeconomic level, similar procedures,

based on treatment analysis, have been used to study the effect of democratization on economic

development (Acemoglu et al., 2019). Note that if our identification strategy is grounded, we

should expect to observe similar or even greater increases in GDP per capita when the threshold

of the achieved technology base used to consider a country as treated is raised to higher levels,

rather than simply considering the launch of the first innovation (patent). Therefore, as alterna-

tive treatment variables, we will consider the year in which each country experiences the largest

increase in the stock of medical patents per person (referred to as the peak year in the literature

on local projections; see Jordà, 2005), as well as the year in which a country reaches the same

degree of medical innovation as the US, as measured by the median or the maximum value of the

per capita stock of medical patents in the US. For this specific analysis, the US is excluded from

the event analysis.

3.2 Structural regression

In the second step of the empirical analysis, we identify the long-term impact of the structural

drivers of GDP per capita, using the following cointegration model

lnYit = βi + βM lnMit + βA lnAit + βL lnLit + λi lnFt + εit, (10)

where Y is GDP per capita, βi is the country fixed effect, M is medical innovation, A is industrial

innovation, L is longevity, and F identifies un-observable factors (shocks) that have asymmetric

effects across countries, here captured by λi’s. The long-run effect of the right-hand side vari-

ables in Eq. (10) is derived from the short-run parameters of a dynamic panel regression model.

Specifically, we re-formulate Eq. (10) as an Auto-Regressive Distributed Lag specification and es-

timate it with the Cross-Sectionally augmented estimator devised by Chudik and Pesaran (2015)

(CS-ARDL). Our empirical specification, expressed in general terms, is therefore given by

yit = γi + γ1yit−1 + γ2x
k
it + γ3x

k
it−1 + λift + εit, βk =

γ2 + γ3

1− γ1

, (11)
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where lowercase letters denote the natural logs of the variables, y = lnY , xk = lnXk, with X

denoting the vector of regressors (k = M,A,L), and f = lnF is measured through the cross-

sectional means of all the variables in the model (Common Correlated Effects, CCE; Pesaran,

2006). The parameter βk refers to the long-run impact of the explanatory variables in Eq. (10).

In the main text below, we report the long-run (cointegration) elasticities that we obtain by

estimating Eq. (11), as well as γ1, which measures the speed of adjustment of variables towards

equilibrium.

Compared to the main procedures commonly used in the literature (static and IV regressions),

our estimation procedure controls for the dynamic adjustment of variables, and accounts for the

starting disparities in longevity, which have been found to drive much of the differences in prior

works (Aghion et al., 2011, Bloom et al., 2014). The CS-ARDL regression provides consistent

estimates regardless of the integration order of the variables and is less susceptible to reverse

causality issues than other estimators, provided that the lag structure of the variables is correctly

specified. For the sake of notational simplicity, Eq. (11) uses one-year lags; empirically, the number

of lags is selected using the rule-of-thumb formula p = T 1/3, where T is the number of periods

in the estimation. To validate the soundness of our regression procedure, we report the results

of the tests on the presence of unit roots, cointegration, residual cross-sectional dependence, and

causality in Appendix B (see Tables B8-B10). The last condition, which is crucial for interpreting

cointegration estimates, is verified through a set of weak exogeneity tests. These findings indicate

that the causation runs from xk to y.

4 Data and summary statistics

The analysis is conducted by matching various data sources. The first dataset includes histor-

ical data from 1890 to 2018 offering baseline information on income, innovation activities, life

expectancy, and a set of other factors (confounders) that may have driven income increases in

the last century. The second dataset covers the same group of countries with historical data but

is shorter, spanning from 1981 onwards. It contains alternative measures of innovation and a

larger group of control variables. The third dataset covers a global sample of countries from 1950

onward but offers insights only on a limited number of variables.11

Historical data on income, capital, employment, population, etc., is taken from the Long-Run

Productivity Dataset (Bergeaud et al., 2016; release August 2020). GDP per capita is expressed

in US dollars at constant prices as of 2015 and is adjusted for purchasing power. Longevity is

11The first and the third sources are used in the event analysis. The first and the second sources are used in

the cointegration analysis.
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expressed in terms of life expectancy at birth and is extracted from the ‘Our World in Data’

dataset (Roser, 2022). Innovation is mainly measured in terms of patent counts using data

from the Comprehensive Universe of U.S. Patents (CUSP) dataset (Berkes, 2018). This includes

information on patent applications at the United States Patent and Trademark Office (USPTO),

distinguished by year of application, country of assignee, and technology (IPC) class. The dataset

provides a consistent series of patent applications from 1836 to 2010, which are extended until

2018 using data from OECD Statistics on USPTO Patent Applications by technology (hereafter

denoted as OECD-SPA).

We identify two primary patent categories: medical patents and industrial patents. Medical

patents are those falling under the International Patent Class (IPC) A61 of the World Intellec-

tual Property Office (WIPO), encompassing medical equipment and pharmaceuticals. Industrial

patents are defined residually as those patents that do not fall under the category of medical

patents.

In robustness checks, but limited to the period from 1981 onwards, we use data from the

OECD-SPA dataset on patent applications at the European Patent Office (EPO) and applications

filed under the Patent Cooperation Treaty (PCT). For this shorter time interval, we also consider

a measure of innovation effort made in medical fields, based on data on R&D expenditures (source:

OECD-SPA, R&D by sector and major field, FORD). All our measures of innovation are defined

as cumulative numbers of patent applications (i.e., stocks) and are calculated using the perpetual

inventory method with a geometric depreciation rate of 15%. To build R&D stocks, we capitalize

research expenses expressed in real US dollars adjusted for purchasing power. To eliminate scale

effects, all stock variables are expressed as a ratio to the population.

To avoid omitted variable biases, we include a broad set of controls: (i) physical capital per per-

son (source: Long Term Productivity database); (ii) human capital (source: Barro-Lee database);

(iii) government size (source: Macrohistory database); (iv) financial development (source: Macro-

history database); (v) trade openness (source: Macrohistory database); (vi) foreign knowledge

spillovers (source: own computations; see below for details); and (vii) total health expenditures

as a share of GDP (only from 1981 onwards; source: OECD). The per capita stock of physical

capital is obtained by multiplying the capital stock per hour worked by the number of hours

worked per worker. Human capital is expressed as the average number of years of tertiary educa-

tion in the population aged 15-64 years. The data release of 2021 of the Barro-Lee dataset allows

historical series for the period 1820-1945 to be integrated with post-WWII data from Barro and

Lee (2013). Our index of human capital is available at five-year intervals from 1890 to 2010 and,

accordingly, we interpolate values for intermediate years. Human capital is used as a control vari-

able to ensure that the impact of innovation (medical and non-medical) is not confounded with
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that of education, which is another key driver of economic growth according to most economic

growth theories.

The Macrohistory database developed by Jordà et al. (2016) provides data on the GDP share

of public debt (our proxy for government size), the credit to the private (non-financial) sector

(our proxy for financial development), and the value of exported goods and services over GDP

(trade openness). We control for government size to exclude the impact of medical innovation

being confounded with the effect of the expansion of public expenditures related to increasing

longevity and aging, such as rising spending on healthcare and pensions (note that the latter

data are available only from the late 1960s onwards). The private credit-to-GDP ratio is used

to filter out the effect of financial development, which is a key enabler of all investment types,

especially those based on riskier and/or longer-term projects. Trade openness is introduced to

filter out productivity gains, and the resulting income increases associated with the rising scale of

production. Moreover, we construct measures of international technology spillovers, induced by

knowledge developed in the area of medical and industrial technologies. Our spillover variables

are obtained as the weighted stock of foreign patents. To address reverse causality issues (e.g.,

bilateral trade may reflect differences in income levels across countries), we define weights as the

inverse distances between pairs of countries (Madsen et al., 2021). Geographical distances (in

kilometers) are taken from the Geo-Dist dataset (Mayer and Zignago, 2011). As the primary

measure for constructing the weight, we use distances that reflect the population concentration

in the main agglomerations of each country. We also assess the sensitivity of our results by uti-

lizing simple inverse-distance measures or inverse population-weighted distance with exponential

(quadratic) decay. The latter should capture the fact that knowledge dissemination becomes

difficult beyond certain distance thresholds (Lychagin et al., 2016). Controlling for distance is

important, given the evidence that advancements in medical technologies and healthcare systems

result in positive knowledge spillovers through the sharing of medical service treatments, etc.

(Chandra and Staiger, 2007, Baltagi and Yen, 2014).

In the event analysis, we utilize the Penn World Table (release 10) to build a control group that

also includes ‘never-treated’ companies. This source allows us to broaden the sample coverage to

127 countries. Additional details regarding this data are briefly outlined below.

The sample of countries covered by our historical analysis includes Australia, Austria, Belgium,

Canada, Chile, Denmark, Finland, France, Germany, Ireland, Italy, Japan, Mexico, Netherlands,

New Zealand, Norway, Sweden, Switzerland, UK, and the US. Our data offers the advantage of

tracking the changing role of medical innovation along the path of economic development and

rising longevity. One caveat is that the availability of the data is endogenous to the development

of countries (affecting the quality of record keeping), with the risk of offering an overview on a
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selected group of economies; this, however, is a feature commonly shared by all studies using

macro-historical data. Descriptive statistics for the entire sample and by country are available in

Tables B1 and B2 in Appendix B.

5 Results

5.1 Preliminaries: causality and dynamic properties of the empirical

model

To test Hypotheses 1 and 2, we need to ascertain whether the data support the idea that, even after

controlling for industrial innovation, income per capita, longevity, and medical innovation have a

structural relationship, and that causality runs from medical innovation (via longevity) to GDP

per capita. In this respect, we first run a set of panel unit root tests to determine the integration

order of the variables. Afterward, we perform cointegration tests to ascertain the presence of a

stationary (long-run) equilibrium relationship among our variables. Then, to assess the direction

of causation, we test the (weak) exogeneity condition using a panel Vector Error Correction

regression in which each of the variables mentioned above is regressed against the lagged changes

observed in all variables of the model, along with the residuals of the cointegration relationship

(see Eberhardt and Presbitero, 2015). The results of these tests indicate that a stationary, long-

run relationship exists between income per capita, medical innovation, and longevity. Moreover,

the direction of causation mostly runs from the variables on the right-hand side of Eq. (11)

to GDP per capita. In our cointegration analysis, we account for the effect of strong cross-

sectional dependence caused by un-observable common factors. In Appendix B, we show that

there is no unaccounted cross-sectional dependence in the cointegration residuals, implying that

our estimates should be consistent. The results of all these tests are reported in Tables B8-B10

in Appendix B.

5.2 Event analysis

The findings of our event analysis are illustrated in Figure 5. In Panel (A), we utilize historical

data going back to 1890 for 19 countries (excluding the US) to examine the impact of medical

innovations on GDP per capita up to 25 years after their introduction. The graph presents two

plots: one (red crosses) represents the results of a baseline regression without controls, while

the other (blue dots) represents the outcome obtained from the full specification with control

variables in Eq. (9). Each plot illustrates the change in income levels, measured in real US dollars

per person and the associated 95% confidence interval (vertical bars). The lack of significance in
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Figure 5: Event-analysis results: Response of GDP per capita to medical innovation

Notes: The graph illustrates the change in GDP per capita (in constant US$ at 2015 prices and PPP) to medical innovation treat-

ment. The responses are estimated from a set of Local Projection Difference-in-Differences specifications (Eq. (9)). The specification

includes time dummies and utilizes three-year lags of outcome variable (selection control), per-capita stocks of physical capital and

industrial patents (control of omitted variables), and treatment variable (dynamic adjustment control), as well as h forward values

of treatment (control of anticipation effects). Standard errors are clustered at the country level.

the estimates during the pre-event period suggests that the assumption of pre-treatment parallel

trends is satisfied. By contrast, the significance of the coefficients following the event indicates

that medical innovations have an economically relevant effect on income per capita. This impact

corresponds to the value of the estimated parameter. Panel (A) demonstrates that medical

innovation leads to a subsequent increase in income over the course of several years. After

approximately a quarter of a century, the impact of medical innovation becomes statistically

significant and economically substantial, resulting in an increase in income by $1,844 per person.

When compared to the average income of our historical sample of countries ($20,222), this value

corresponds to a significant 9.1% increase.

The next two graphs explore how the income response changes when we raise the innovation

threshold used to determine a country’s treatment status (Figure 5(B) and (C)). In Panel (B),
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we compare the event plot associated with the launch of innovation (represented by blue dots)

with the event plot obtained by considering the year of the peak increase of medical innovation

as an event (red crosses). As expected, this regression indicates a much faster effect of medical

innovation on GDP per capita, as it becomes significant within a decade from the treatment

and exhibits a significantly greater magnitude. In less than twenty-five years, the income increase

induced by (peak) medical innovation is twice as much as when considering the year of innovation

launch, amounting to $3,703 (an average increase of 18%). In Panel (C), we examine the impact

of medical innovation on the change in income levels by analyzing the year in which a country

achieves the median and maximum levels of medical innovation of the US. It is important to

note that not all countries in our sample have reached these thresholds. Therefore, in this case,

the analysis includes both the ‘switcher’ and ‘never-treated’ units as part of the control group.

Furthermore, it is worth mentioning that the achievement of these thresholds occurred relatively

late within the time frame of our study. As a result, our event analyses evaluate the response

of GDP per capita over a 15-year period following the event. Within our historical sample, 15

out of 19 countries have been able to achieve the median value of the per capita stock of medical

patents held by the US. For these countries, we observe a statistically significant increase in GDP

per capita of $5,391. On the other hand, Switzerland stands out as the only economy capable

of reaching the maximum levels of medical innovation of the US. For this country, we estimate

an income increase of $14,715. Overall, the results in Panels (B) and (C) of our event analysis

support the validity of our identification strategy, indicating that the introduction of medical

innovation can be considered an effective determinant of income.

Moving on to Panel (D), we expand our analysis to a global sample of 127 countries observed

from 1950 onwards. Among these economies, 59 have filed patent applications in the medical

field at the USPTO. The remaining 69 countries do not have medical patents and remain within

the control group. These results reveal that the increase in GDP per capita estimated for this

larger sample is $2,707, which is markedly lower than that found for the group of rich countries

in Panels (A)-(C). However, in relative terms, the income response to the introduction of medical

innovation that emerges from Panel (D) is quantitatively important, amounting to 32% of the

average income level of the global sample of countries.

5.3 Structural estimates

Next, we conduct a long-run (cointegration) analysis and estimate a structural equation that links

GDP per capita to the main factors identified by our theoretical model as income drivers (refer to

Table 4). In the following section, we expand the empirical model to incorporate additional factors

that were not considered in our theory but could potentially influence income evolution. Failure
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to account for these factors could potentially bias the estimated impact of our main explanatory

variables. The effect of all other un-measurable factors is captured by the CCE terms.

In column (1), we regress GDP per capita on the per capita stock of medical patents. When

considered as sole regressor, the coefficient of this variable should capture all income-enhancing

effects associated with technological advances achieved in medical fields, including effects that

are channeled through increased life expectancy, as well as effects that are channeled through

improvements in health that are unrelated to survival but also technological complementarity

or knowledge spillovers across medical and industrial innovation. Column (2) breaks down the

impact of medical innovation into that enabled by advances in medical equipment and phar-

maceuticals, respectively, illustrating that both components are significantly related to income

levels with a slightly higher impact of the former. In column (3), we include longevity as a re-

gressor and find a coefficient of 1.3, which is highly statistically significant and consistent with

previous research (see, among others, Cervellati and Sunde, 2011). In column (4), we identify

the income elasticity of industrial innovation which, reasonably, is found to be much larger than

that associated with medical innovation (0.062). Column (5) considers all explanatory variables

together. This regression confirms that all explanatory variables have a significantly positive

impact, although the parameter estimate for medical innovation is substantially smaller in mag-

nitude. This finding reveals that the income effect of medical innovation is channeled through

extended longevity. Nonetheless, medical innovation may also have a direct impact. This ef-

fect could be either positive due to technological complementarity and knowledge spillovers, or

negative if medical innovation is associated with ineffective health care spending (Chandra and

Skinner, 2012), crowding out industrial innovation as a driver of economic growth. We will re-

visit this issue later in the paper. From the comparison of estimates in columns (2) and (6),

it emerges that the coefficient of medical equipment technologies remains largely positive and

significant even with the inclusion of life expectancy, while the coefficient size of pharmaceutical

innovations falls and remains only marginally significant. This suggests that medical equipment

technologies are more likely to raise income by allowing for improvements in non-survival related

health, such as reductions in chronic disease, disability or mobility impairments as well as by

facilitating technology spillovers, while the income impact of pharmaceutical innovations mainly

transmits through increases in longevity.

5.4 Robustness checks to omitted factors and other econometric is-

sues

One possible concern is that our long-run estimates are affected by problems of omitted variables,

which may lead to an overstatement of the impact estimated for our key regressors. In Table B3 of
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Table 4: Health innovation and income levels: long-run estimates (CS-ARDL)

(1) (2) (3) (4) (5) (6)

Medical innovation 0.027*** 0.004***

(0.001) (0.001)

Medical equipment 0.023*** 0.011***

(0.001) (0.001)

Drugs 0.011*** 0.002*

(0.001) (0.001)

Longevity 1.323*** 1.600*** 1.458***

(0.048) (0.058) (0.056)

Industrial innovation 0.062*** 0.089*** 0.087***

(0.003) (0.004) (0.004)

Speed of adjustment -0.102*** -0.137*** -0.094*** -0.105*** -0.133*** -0.162***

(0.014) (0.016) (0.015) (0.014) (0.017) (0.017)

Obs. 2,380 2,380 2,286 2,380 2,286 2,286

R-squared 0.149 0.169 0.148 0.159 0.183 0.197

Countries 20 20 20 20 20 20

Notes: Dependent variable: GDP per capita. Long-run estimates derived from a panel CS-ARDL regression with homogeneous

parameters. The data span the years 1890-2018. All variables are expressed in logs. Estimates include country-specific fixed effects

and common correlated effects. Newey-West standard errors are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

Appendix B, we perform a sensitivity analysis including the set of controls introduced in Section 4.

We find that in all estimates, our main regressors continue to remain highly significant. A number

of findings are nevertheless worth briefly discussing. In line with standard growth theories, GDP

per capita is found to be positively related to the capital-labor ratio (with an elasticity of 0.06),

human capital (0.12), and trade exposure (0.34), which has a large elasticity, probably reflecting

the large variation of trade figures over time. The public debt-to-GDP ratio is also found to be

positively related to income per capita. This finding may capture the expansionary effect of public

infrastructure and other public spending (Gemmell et al., 2016). Alternatively, it may reflect

co-movements between increases in per capita income and life expectancy, and the associated

expansion of public expenditure for social protection over time. The latter explanation seems to be

supported by the decrease in the coefficient for longevity when controlling for the public debt-to-

GDP ratio in the regression. Conversely, the private credit-to-GDP ratio is negatively correlated

with GDP per capita. A high private credit-to-GDP ratio can indicate that the economy is heavily
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indebted. By increasing the risk of default, a high level of debt can lead to financial crises that

disrupt economic activity and lower GDP per capita in the long run. The finding may also be

explained by the fact that in wealthier countries, a greater proportion of savings is invested in

more sophisticated financial instruments, rather than being held in deposits or used for credit.

Noteworthy, our estimates are also robust when including proxies for international knowledge

spillovers.12 A positive income effect is associated with foreign stocks of medical innovation, but a

negative effect is observed for industrial innovation developed abroad. The latter finding contrasts

with most of the existing literature, which suggests that the international exchange of ideas leads

to higher levels of total factor productivity.13 A few studies, however, show that negative spillover

effects can arise across countries due to import competition and the fact that an increasing share

of traded goods is based on technologically advanced products, whose production is increasingly

geographically concentrated, reducing the scope for international knowledge transfers (Bitzer and

Geishecker, 2006, Venturini, 2015). The difference between our findings and the majority of

the results in the literature on industrial technology spillovers may also be attributed to the

composition of our sample and/or our use of income per capita as the dependent variable, instead

of Total Factor Productivity.

For a shorter time interval (1981-2018) we are able to perform a finer sensitivity analysis,

where we use the per capita stock of medical R&D, or the per capita stock of patent applications

filed at the EPO or obtained under the PCT, as indicators of medical innovation. Over this time

period, we can also control for health expenditures, expressed as a ratio of GDP. All of these

estimates confirm the main pattern of our results (see Table B4 in Appendix B).14

We also evaluate the impact of using longer data intervals on the accuracy of our estimates.

In essence, instead of conducting regressions on yearly observations, we estimate the model using

data taken at non-overlapping five-year intervals. Specifically, we run both a static and dynamic

specification (the latter being formulated as an ARDL(1,1)) augmented with country-specific

12Since spillover variables are computed as weighted means of foreign innovation stocks, we do not include

CCE terms (i.e., un-weighted means) of these regressors in such estimations. See Eberhardt et al. (2013) for a

discussion of the identification of international knowledge spillovers in cross-country studies characterized by

strong cross-sectional dependence due to common unobservable factors.
13To assess whether the evidence regarding the cross-border income effects of foreign medical technology is

influenced by the distance-based weighting scheme utilized, we also provide estimates based on simple inverse-

distance weights for foreign knowledge and population-weighted inverse distance weights in Table B3 of Ap-

pendix B. These results are fully consistent with our main findings.
14Notably, medical innovation becomes insignificant in the regression with longevity, but only if we do not

control for health expenditure. The latter has indeed a strong and direct negative impact on per capita GDP,

which is likely reflected in the coefficients on medical innovation and longevity if the health expenditure variable

is excluded. This is, again, consistent with the mechanisms present in the model.
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fixed effects and CCE terms. These estimates should be less sensitive to the impact of common,

short-term shocks and mitigate the attenuation bias associated with classical measurement errors

in the explanatory variables. These errors could be due, for instance, to the time lag between the

priority date and the application date (or the granting date) of the innovation. One disadvantage

of using data over longer time intervals is that the empirical model may not be entirely immune

to reverse causality, which can result in upward biased estimates for the explanatory variables.

This seems to emerge from the estimates of five-year data intervals, which are reported in Tables

B5 and B6 in Appendix B. In both types of estimates, the parameters for medical innovation and

longevity are significantly larger than those presented in Table 4. This suggests that long-run

estimates based on annual data are highly reliable.

5.5 Quantification of effects

Using the long-run elasticities in Table 4 as a reference (column (5)), we can quantify the rise

in income levels resulting from plausible changes in our key variables. Based on our estimates,

an additional patent in the medical field (per person) would result in a 0.1 percent increase in

income per capita in the long run. By contrast, a one-year increase in life expectancy would

boost income per capita by 2.4 percent, a finding that is broadly in line with earlier studies on

the macroeconomic effects of health (see, e.g., Bloom et al., 2004; Aghion et al., 2011).

We can also determine the rise in income per capita associated with a standardized increase

in medical innovation, as measured by the stock of medical patents, by disentangling the effect

channeled by longevity from that transmitted by other mechanisms, such as spillovers. The

gross income effect (including the longevity channel) induced by a standard deviation increase

in medical innovation can be quantified as a 0.089 absolute change in GDP per capita (0.089 =

0.027 × 3.3, where 0.027 represents the estimated elasticity and 3.3 is the natural log of the

standard deviation in medical innovation, namely 27.5 patents per person, as reported in Table

B1). If we express this value as a proportion of GDP per capita (20, 222 dollars on average),

income per capita would increase by 1,809 US$ (1, 809 = 0.089 × 20, 222). Reassuringly, this

value is extremely close to the income increase obtained from the event analysis. As shown

in column (5) of Table 4, most of this impact is conveyed through the increase in longevity.

Therefore, the direct impact of medical innovation on income is much smaller, equal to 268 US$

(= 0.004× 3.3× 20, 222).
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5.6 Non-linearities

Another key finding in Section 2 (Hypothesis 2) is that medical innovations translate into higher

income levels only for countries in the 3rd stage of the epidemiological transition (see also, among

others, Bhargava et al., 2001). For these countries, the benefits of faster population growth and

higher savings outweigh the negative effects of costly healthcare and potential increases in the

interest rate. In the earlier stages of the epidemiological transition, medical innovations mainly

lead to a faster growth of the non-working age population, while the interest rate rises. Both

effects together imply a negative impact of medical innovation on per capita GDP growth, which

is consistent with the findings by Cervellati and Sunde (2011). In later stages of development,

i.e., particularly in the 4th stage of the epidemiological transition, medical innovation features

decreasing returns, which can be viewed as an extended form of ‘flat-of-the-curve medicine’.

While the original notion advanced by Fuchs (2004) can be read as decreasing returns of treatment

intensity for a given state of medical technology, our analysis focuses on the crowding-out effect

of medical innovation on productive resources. Indeed, to the extent that medical innovations

expand longevity and increase the demand for medical care, this diverts resources from production

and R&D activities. At that stage, income may once again start to have a negative relationship

with medical innovation.

In this section, we delve into Hypothesis 2, and examine whether our results reflect the non-

linear relationship between life expectancy and GDP per capita, as suggested by Figure 1. The

results of our analysis when allowing for stage dependencies and non-linearities, respectively,are

shown in Table 5. First, we conduct regressions when categorizing the sample into various groups

of countries based on their stage of the epidemiological transition at the beginning and end of

the sample period, which is approximately around the 1920s and 1970s, respectively. Second,

we examine in greater detail the interplay between medical innovation and longevity, seeking to

pinpoint the age threshold at which medical innovation begins to have a positive impact on GDP

per capita.

In columns (2) and (3), we divide the sample into countries with a life expectancy at birth

below and above 50 years before 1920, and then run the regression using data from 1920 to

2018. This age threshold aligns with the transition threshold between the 2nd and the 3rd stage

of the epidemiological transition (Omran, 1998). More than half of the countries in our sample

met this condition at the start of the twentieth century (11 out of 20 countries), while the other

half surpassed this threshold only more recently.15 We can compare these estimates with the

15The group of 3rd stage transition countries in 1920 includes Australia, Canada, Denmark, Ireland, Nether-

lands, Norway, Sweden, Switzerland and the USA. The group of 2nd stage transition countries includes Austria,

Belgium, Chile, Germany, Finland, France, Italy, Japan, Mexico, New Zealand, and the UK.
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benchmark estimates obtained for the entire sample in column (1). The table shows that the

long-run impact of longevity is similar across country groups. The effect of medical innovation,

however, is positive only for the group of countries that have completed the transition to the

3rd stage of the epidemiological transition at the beginning of the sample period, whereas it is

negative for the other set of countries.

To support the prediction of our theory that medical innovations only raise income levels as

long as the workforce is not too old, i.e., before transitioning from the 3rd to the 4th stage of the

epidemiological transition, we run the regression for countries with a life expectancy below 70

years between 1950 and 1970 separately from those with a life expectancy exceeding 70 years.

The former group would identify countries that were still in the 3rd stage of the epidemiological

transition in the last quarter of the twentieth century (column 4), while the latter group had

already transitioned to the 4th stage (column (5)).16 These regressions use time observations from

1970 onwards, yielding results that are consistent with those in columns (2) and (3): longevity

appears to be insignificant for both country groups, while the coefficient of medical innovation

is positive for countries in the 3rd stage of the epidemiological transition but not for those that

have already transitioned to the 4th stage.

Results similar to columns (2) and (3) are also obtained when running a regression on the

total sample, but with the inclusion of an interaction term between medical innovation and a

dummy variable for countries that progressed from the 2nd to the 3rd stage of the epidemiological

transition before the 1920s (column (6)). This estimation illustrates that the main effect of

medical innovation – which captures the income level effect for countries in the earlier stage – is

negative (-0.032) and comparable to that reported in column (3), while the interaction variable has

a positive coefficient (0.071).17 Conversely, when we interact medical innovation with a dummy

identifying countries that transitioned from the 3rd to the 4th stage before the 1970s (column

(7)), we get a pattern of results consistent with columns (4) and (5): the coefficient of the

interaction term is negative and significant (-0.008), while the effects of the other regressors align

with our baseline estimates. Overall, our findings support Hypothesis 2, indicating that medical

innovations are associated with higher income levels only at intermediate values of longevity, i.e.,

between a minimum and a maximum threshold of life expectancy.

16The group of 4th stage transition countries in 1970 includes Australia, Canada, Denmark, Japan, Nether-

lands, Norway, New Zealand, Sweden, Switzerland, and the UK. The group of 3rd stage transition countries

includes Austria, Belgium, Chile, Germany, Finland, France, Ireland, Italy, Mexico, and the US.
17As a robustness check, we also consider groups of countries in early stages of development and those be-

yond, based on life expectancy at 1914, so as to isolate the demographic impact of WWI, when three additional

countries (Belgium, France, and the UK) had a life expectancy greater than 50 years. These estimates, which

are available upon request, are similar to our baseline regressions.
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Table 5: Income effects of medical innovation along the epidemiological transition

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Dynamic regression (CS-ARDL)

Static

regression

(FE-CCE)

Medical innovation 0.004*** -0.014*** 0.035*** 0.014* -0.066*** -0.032*** 0.006*** -0.406*** -0.251***

(0.001) (0.003) (0.004) (0.008) (0.007) (0.003) (0.002) (0.031) (0.090)

Industrial innovation 0.089*** 0.093*** 0.135*** 0.100*** 0.135*** 0.120*** 0.096*** 0.086*** 0.061***

(0.004) (0.006) (0.006) (0.014) (0.009) (0.005) (0.004) (0.004) (0.011)

Longevity 1.600*** 2.607*** 2.594*** 0.518 0.633 1.535*** 1.329*** 3.013*** 1.438***

(0.059) (0.079) (0.198) (0.557) (0.461) (0.062) (0.066) (0.148) (0.448)

Medical innov. × 3rd stage in 1920 (dummy) 0.071***

(0.003)

Medical innov. × 4th stage in 1970 (dummy) -0.008**

(0.003)

Medical innovation × Longevity 0.100*** 0.063***

(0.008) (0.022)

Speed of Adjustment -0.133*** -0.112*** -0.171*** -0.269*** -0.310*** -0.137*** -0.165*** -0.212***

(0.017) (0.026) (0.022) (0.051) (0.037) (0.017) (0.019) (0.019)

Age threshold None

<50 yrs

before

1920

>50 yrs

before

1920

<70 yrs

before

1970

>70 yrs

before

1970

None None None None

Epidemiological transition 2nd stage 3rd stage 3rd stage 4th stage

Time period of regression 1890-2018 1920-2018 1920-2018 1970-2018 1970-2018 1890-2018 1890-2018 1890-2018 1890-2018

Observations 2,286 1,001 846 470 470 2,286 2,286 2,286 2,486

R-squared 0.183 0.141 0.142 0.329 0.245 0.181 0.220 0.247 0.920

Countries 20 11 9 10 10 20 20 20 20

Notes: Dependent variable: GDP per capita. All variables are expressed in logs. Long-run estimates derived from a panel CS-

ARDL regression with homogeneous parameters. Data span from 1890-2018. Estimates include country-specific fixed effects and

common correlated effects. Newey-West standard errors are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

Next, we aim to determine the timing at which the positive impact of medical innovation

shows up, and examine how it varies with longevity by introducing an interaction between these

two variables in column (8). By plotting the marginal effect of medical innovation along the

distribution of longevity, we can then identify the timing at which the positive impact of medical

innovation shows up. Admittedly, the results of this regression should be interpreted with caution

because the variables have an integration order greater than one, which could potentially compro-

mise the consistency of cointegration estimates. Following Eberhardt and Presbitero (2015), we

circumvent this risk by running our model as a static regression (column (9)), finding elasticities

that are generally in line with the long-run values presented in column (8) associated with the

dynamic regression. As expected, the parameter estimates of the static model are smaller because

they do not account for the dynamic adjustment in the effect of the explanatory variables.18

18Similar results emerge from the static regression augmented with the lagged values of CCE terms, used to
filter out the dynamic response of the outcome variable to un-observable factors (results are unreported).
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Figure 6: Income effect of medical innovation along longevity: within-country variation

Notes: The graph plots homogeneous long-run estimates from cols. (5) and (6), Table 5.

Figure 6 illustrates the marginal effect of medical innovation along the distribution of life

expectancy (by percentiles). The marginal effect is derived as ∂yit/∂mit = β̂Tm = β̂m + β̂m,l · lit,
where β̂m and β̂m,l are the parameters of medical innovation and of the interaction between this

variable and longevity, respectively, as reported in Table 5. The solid red line uses parameters

obtained from the dynamic regression (column 8), while the dashed blue line is based on static

estimates (column (9)). Both distributions reveal that the marginal effect of medical innovation is

negative at lower levels of longevity but increases quickly as life expectancy rises. The threshold at

which the income effect of medical innovation becomes positive is between 54 and 58 years, which

is close to the threshold (50 years) between the 2nd and 3rd stages of the epidemiological transition

(see Omran, 1998). The figure also displays the value of life expectancy at the boundaries of each

quartile of the distribution (55.2, 68.9, and 75.3 years, respectively), as well as the corresponding

values of the marginal effect of medical innovation, β̂Tm (-0.005, 0.017, and 0.026, respectively).

Moving from the first to the second quartile of the longevity distribution, which corresponds to

a 14-year increase in life expectancy (from 55 to 69 years), the total effect on income of medical

innovation would surge from -0.005 to 0.017. However, a further inter-quartile move along the

distribution, which is equal to a 6-year increase in life expectancy (from 69 to 75 years), would

result in a more modest positive change in the income effect of medical innovation (from 0.017
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to 0.026). This finding corroborates the second part of Hypothesis 2, namely that the positive

income effect of medical innovation becomes weaker at higher levels of life expectancy and for

later stages of the epidemiological transition.

Next, we aim to identify the non-linear impact of medical innovation on GDP per capita, which

is driven by increases in life expectancy, by exploiting cross-country variation in the income effect

of the former explanatory variable. Specifically, we estimate our dynamic regression model (CS-

ARDL) country by country using the Mean Group regression and then illustrate in Figure 7

how the relationship between medical innovation and GDP per capita varies with each country’s

mean or minimum value of longevity over the sample period. Heterogeneous slope estimates

of Eq. (1) are reported in Table B7 in Appendix B, and are by and large consistent with the

results presented in Table 4. Our findings are thus robust to the issue of parameter heterogeneity.

Based on such country-by-country estimates, we plot the distribution of income effects of medical

innovations using both the average and minimum levels of longevity of our sample of countries.

Life expectancy is lowest for all countries at the beginning of the sample period, implying that

this value is predetermined with respect to medical innovation and hence is not affected by reverse

causality. This implies that the plot using the minimum level of longevity is particularly suitable

for inferring the shape of income effects along the distribution of longevity. The graph shows

that, whether considering the minimum (panel (a)) or mean value (panel (b)) of life expectancy

of each country, the marginal impact of medical innovation is hump-shaped along the longevity

distribution. Medical innovation is found to exert a positive impact on GDP per capita only in

countries where the minimum level of longevity is over 44 years, which is considerably lower than

the threshold level we previously identified by exploiting within-country variation. If we consider

the mean value of longevity, the initial threshold is less conservative and equals 64 years. Overall,

Figure 7 provides strong evidence supporting the view that medical innovation has non-linear

effects on GDP per capita, primarily through increases in longevity.
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Figure 7: Income effect of medical innovation along longevity: cross-country variation

Notes: The graph plots country-specific long-run estimates, based on MG-CCE regression, of the income effect of medical innova-

tion plotted against the minimum and the mean value of longevity (expressed in logs).
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6 Conclusions

We analyze the effects of medical innovation and increasing life expectancy on economic growth.

In so doing, we first propose a theoretical framework in which economic growth is driven by

purposeful R&D investments in industrial innovation, while life expectancy is driven by increasing

medical innovation and healthcare consumption per capita. In this setting, we show that medical

innovation has the potential to raise economic growth, with an important transmission channel

being the positive impact of medical innovation on life expectancy. Overall, the effect of medical

innovation on economic growth is non-linear because in early stages of development (particularly

in the 2nd stage of the epidemiological transition according to the five-stage classification by

Omran, 1998), health improvements mainly pertain to young cohorts before they reach working

age. At the same time, the interest rate increases due to faster growth of aggregate demand. At

this stage, economic growth could even decrease with medical innovation. In intermediate stages

of development (i.e., the 3rd stage of the epidemiological transition), workforce growth increases

with medical innovation, and expanding life expectancy leads to higher investment. The latter

effect puts downward pressure on the interest rate, which raises the incentives for R&D. At this

stage, economic growth increases with medical innovation. In late stages of development (i.e., the

4th stage of the epidemiological transition), expanding medical innovation has a lower impact on

mortality and workforce growth but comes with an increasing demand for labor-intensive health

care. As a consequence, medical innovation can reduce employment in industrial innovation, thus

slowing down economic growth. Therefore, medical innovation will be growth-enhancing mainly

for countries in intermediate stages of development, specifically the 3rd stage of the epidemiological

transition according to Omran (1998).

We test the theoretical predictions in the empirical section using historical data for industrial-

ized countries and applying difference-in-differences local projection and a cointegration method

of regression. Our empirical findings corroborate the causal effect of medical innovation on GDP

per capita. Reassuringly, the quantitative effects are found to be very similar in both approaches.

In addition, we find that the effect of medical innovation on economic growth is non-linear. We

divide the sample into two groups based on the stage of the epidemiological transition. The

first group consists of countries in the 2nd stage of the transition, where increased longevity is

linked to a growing population of young people. The second group includes countries that have

progressed beyond this stage, where higher life expectancy leads to expansion in both the work-

ing age population and capital stock. We find that medical innovation only becomes beneficial

after the 2nd stage. However, we show that the positive effect of medical innovation on economic

growth is strong only in the 3rd stage of the epidemiological transition. Indeed, this effect levels

off as life expectancy continues to rise, particularly as countries transition into the 4th stage, when
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resource-intensive medicine crowds out the rate of economic growth.

Why are these results important? First, our results suggest that investments in medical

innovation raise economic growth only for countries in intermediate stages of development that

have surpassed the 2nd stage of the epidemiological transition but have not yet entered the 4th

stage. This could have implications for economic and health policies that take the growth effect

of medical innovation into account but should, of course, not be understood as an indication

against medical innovation if assessed on welfare grounds (Kuhn and Prettner, 2016; Jones, 2016;

Frankovic and Kuhn, 2023). Second, where medical innovation is beneficial for economic growth

in intermediate stages of development, the crucial transmission channel operates through rising

life expectancy (with all the positive repercussions on individual and social well-being). Third,

there are spillover effects between medical innovation and industrial innovation such that the

long-run dynamic benefits that arise from investments in medical innovation are greater than

what static cost-benefit considerations would suggest.

For future research, the following avenues seem promising: i) While, for analyzing the research

questions in our setting, we do not need an endogenous utilization of health care in the theoret-

ical model, endogenizing health care and exploring in greater detail its role in the innovation –

longevity – growth nexus represents a significant advance. ii) Similarly, endogenizing the process

of medical progress should provide additional understanding, especially of the allocation of R&D

resources. iii) Exploring the role of institutions, such as the nature of the health care system, and

the scope for accompanying policies, such as more flexible retirement policies allowing people to

work to higher ages, in shaping and possibly enhancing the growth effect of medical innovations.

iv) Considering the role of radical versus incremental innovations may help to understand whether

decreasing returns to innovation are a result of a long-lasting lack of breakthroughs.
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A Derivations

A.1 Population size

We get the population size at time t by integrating over the dates of birth for all cohorts that are

alive, namely

N(t) =

∫ t

−∞
N(v, t)dv =

∫ t

−∞
N(0)envβe−µ(t−v)dv = N(0)βe−µt

∫ t

−∞
e(n+µ)vdv =

= N(0)β
e−µte(n+µ)t

β
= N(0)ent. (A.1)

A.2 The individual Euler equation

The current-value Hamiltonian is

H = log(c) + λ [(r + µ)a+ w(1− h)− c] .

The first-order conditions are
1

c
= λ, (A.2)

λ̇ = (ρ− r)λ. (A.3)

Taking the time derivative of Eq. (A.2) and plugging it into Eq. (A.3) yields

ċ

c
= r − ρ,

which is the familiar individual Euler equation.

A.3 Aggregation

Differentiating aggregate wealth with respect to time, we get

Ω̇(t) = −µΩ(t) + e−µtβN(0)a(t, t)eβt + eµtβN(0)

∫ t

−∞
ȧ(t0, t)e

βt0dt0

= −µΩ(t) + eµtβN(0)

∫ t

−∞
ȧ(t0, t)e

βt0dt0,

where the second equality uses the fact that a(t, t) = 0. Using the flow budget constraint (2), it

follows that:

Ω̇(t) = −µΩ(t) + e−µtβN(0)

∫ t

−∞
(r + µ)a(t0, t)e

βt0dt0 + e−µtN(0)w(t)[1− h(t)]eβt

− e−µtβN(0)

∫ t

−∞
c(t0, t)e

βt0dt0 = rΩ(t) + w(t)[1− h(t)]N(0)ent − C(t)

= rΩ(t) + w(t)[1− h(t)]N(t)− C(t),
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which is the aggregate law of motion for assets. Differentiating aggregate consumption with

respect to time, we get

Ċ(t) = −µC(t) + e−µtβN(0)c(t, t)eβt + e−µtβN(0)

∫ t

−∞
ċ(t0, t)e

βt0dt0

= −µC(t) + βN(0)entc(t, t) + e−µtβN(0)

∫ t

−∞
ċ(t0, t)e

βt0dt0

= −µC(t) + βN(t)c(t, t) + e−µtβN(0)

∫ t

−∞
ċ(t0, t)e

βt0dt0.

Reformulating an agent’s optimization problem subject to its lifetime budget restriction, stating

that the present value of lifetime consumption expenditures has to be equal to the present value

of lifetime non-interest income plus initial assets, yields the optimization problem:

max
c(t0,v)

U =

∫ ∞
t

e(ρ+µ)(t−v) log(c(t0, v))dv

s.t. a(t0, t) +

∫ ∞
t

w(v) [1− h(v)] e−R(t,v)dv =

∫ ∞
t

c(t0, v)e−R(t,v)dv,

where R(t, v) =
∫ v
t

[r(s) + µ] ds. The first-order condition for optimal consumption is

e(ρ+µ)(t−v)

c(t0, v)
= λ(t)e−R(t,v).

In period v = t, the previous equation becomes 1/c(t0, t) = λ(t). Therefore, we can write

e(ρ+µ)(t−v)

c(t0, v)
=

e−R(t,v)

c(t0, t)
,

c(t0, t)e
(ρ+µ)(t−v) = c(t0, v)e−R(t,v).

Integrating the previous equation, we get∫ ∞
t

c(t0, t)e
(ρ+µ)(t−v)dv =

∫ ∞
t

c(t0, v)e−R(t,v)dv

⇔ c(t0, t)

ρ+ µ
= a(t0, t) +

∫ ∞
t

w(v) [1− h(v)] e−R(t,v)dv

⇔ c(t0, t)

ρ+ µ
= a(t0, t) + Λ(t),

where Λ(t) refers to human wealth that does not depend on the date of birth. The previous

derivations imply that individuals consume a constant fraction of their total wealth at each point

in time, that is

c(t0, t) = (ρ+ µ)[a(t0, t) + Λ(t)], (A.4)
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where the marginal propensity to consume out of total wealth is given by the “effective” discount

rate ρ+ µ. Using Eq. (A.4) and integrating yields aggregate consumption

C(t) =

∫ t

−∞
c(t0, t)N(t0, t)dt = e−µtbN(0)

∫ t

−∞
c(t0, t)e

btdt0

= e−µtβN(0)(ρ+ µ)

[∫ t

−∞
a(t0, t)e

βtdt0 +
eβt

β
Λ(t)

]
= (ρ+ µ)Ω(t) + (ρ+ µ)N(t)Λ(t).

Since newborns do not own any financial assets, their consumption follows directly from Eq. (A.4)

as

c(t, t) = (ρ+ µ)Λ(t).

Now, we take the derivative of aggregate consumption with respect to time, that is

Ċ(t) = −µ [(ρ+ µ)Ω(t) + (ρ+ µ)N(t)Λ(t)]

+ βN(t)(ρ+ µ)Λ(t) + e−µ·tβN(0)

∫ t

−∞
c(t0, t)e

βt0(r − ρ)dt0

= −µ(ρ+ µ)Ω(t) + (ρ+ µ)N(t)Λ(t)(β − µ) + C(t)(r − ρ)

= −µ(ρ+ µ)Ω(t) + µ(ρ+ µ)N(t)Λ(t)C(t)(r − ρ).

Thus, we get

Ċ(t)

C(t)
= (r − ρ)− µ(ρ+ µ)

Ω(t)

C(t)
+ µ(ρ+ µ)

N(t)Λ(t)

C(t)

= (r − ρ)− µ(ρ+ µ)
Ω(t)

C(t)
+ µ

[C(t)− (ρ+ µ)Ω(t)]

C(t)

= r − ρ+ µ− (n+ µ)(ρ+ µ)
Ω(t)

C(t)
.

Finally, we rewrite the expressions for the law of motion of aggregate assets and the aggregate

Euler equation

Ω̇(t) = rΩ(t) + w(t)[1− h(t)]N(t)− C(t), (A.5)

Ċ(t)

C(t)
= r − ρ+ µ− (n+ µ)(ρ+ µ)

Ω(t)

C(t)
. (A.6)

A.4 Expressing the interest rate in terms of output and capital

We can rewrite r(t) as

r(t) = αp(t) = α2LY (t)1−αx(t)α−1 = α2LY (t)
x(t)α

x(t)
= α2LY (t)

A(t)x(t)α

A(t)x(t)
= α2 Y (t)

K(t)
.
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A.5 Expressing output in terms of aggregate capital

We can rewrite Y (t) as

Y (t) = LY (t)1−αA(t)x(t)α = LY (t)1−αA(t)

(
K(t)

A(t)

)α
= [A(t)LY (t)]1−αK(t)α.

A.6 Calculating the ratio wN/Ω

Since the free-entry condition in the R&D sector implies that w(t) = VA(t)νA(t)/N(t) and ag-

gregate assets amount to Ω(t) = K(t) + VA(t)A(t), we can express the ratio w(t)N(t)/Ω(t) as

w(t)N(t)

Ω(t)
=

VA(t)νA(t)

K(t) + VA(t)A(t)
=

VA(t)ν A(t)
Y (t)

K(t)
Y (t)

+ VA(t)A(t)
Y (t)

=
r(t)ν(1− α)

r(t)− αn
,

where the last equality of this equation follows from

VA(t) =
α(1− α)Y (t)/A(t)

r − n

and K(t)/Y (t) = α2/r(t).

A.7 The rd locus

The rd locus is obtained by setting Eq. (5) equal to Eq. (6). Denoting the ratio C/Ω as ξ, we can

express the interest rate as a function of ξ, µ, and h, that is

r =
α [(1− h)νξ + µ2 + ρ(µ+ ξ)] + n [α(µ+ ρ) + ξ]

(α + 1)ξ
.

Since the partial derivative of r with respect to ξ is negative, the rd locus is a downward-sloping

relationship between r and C/Ω. The effects of increased ν, µ, n, and h can be calculated through

simple comparative statics. The partial derivatives of r with respect to ν, µ and n are positive,

whereas the one with respect to h is negative. Therefore, this equilibrium locus shifts up if either

research productivity, ν, the mortality rate, µ, or the population growth rate, n, increases, and

down if the per capita level of medical treatment, h, increases.

A.8 The ru locus

The ru locus is obtained by setting Eq. (5) equal to Eq. (7) and solving for r, that is

r =
n(1 + α)2 + α[αν(1− h) + ξ] +

√
α2[ξ + αν(1− h)]2 + 2αn (1− α2) [ξ − αν(1− h)] + n2 (1− α2)2

2(1 + α)
.
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Since the partial derivative of r with respect to ξ is positive, the ru locus is an upward-sloping

relationship between r and C/Ω. As can be easily ascertained, this equilibrium locus does not

depend on the mortality rate, µ. The partial derivatives of r with respect to ν and n are positive,

while the derivative with respect to h is negative. Therefore, this equilibrium locus shifts up if

either research productivity, ν, the population growth rate, n, increases, or if the per capita level

of healthcare, h, decreases.
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B Empirical appendix

B.1 Summary statistics

In this section, we provide descriptive statistics for the entire sample and by country.

Table B1: Summary statistics for the total sample (1890-2018)

Mean SD Min Max

Income per capita 20,222 15,891 1,965 85,183

Medical patent stock p.c. 11.2 27.5 0.0 261.2

Industrial patent stock p.c. 181.9 317.2 0.0 1860.6

Life expectancy 66.4 12.3 25.8 84.5

Table B2: Summary statistics by country (1890-2018)

Income per capita
Medical patent stock per

capita

Industrial patent stock per

capita
Life expectancy

Mean Min Max Mean Min Max Mean Min Max Mean Min Max

Australia 20,719 6,731 49,654 5.1 0.0 33.0 45.8 0.6 244.8 69.4 53.0 83.3

Austria 18,958 3,539 51,304 3.2 0.0 21.3 59.8 0.2 261.0 63.0 37.3 81.4

Belgium 17,217 3,008 44,334 4.4 0.0 32.4 67.2 1.6 248.7 64.8 43.1 81.5

Canada 20,228 4,350 47,909 7.1 0.1 35.6 135.4 38.6 449.1 66.7 45.2 82.3

Chile 7,531 2,124 24,329 0.2 0.0 2.5 1.5 0.1 4.6 55.1 29.0 80.0

Germany 19,408 4,358 50,759 9.2 0.1 47.2 203.5 9.3 744.0 64.7 40.5 81.2

Denmark 20,354 4,596 49,899 15.3 0.0 106.5 90.3 1.8 427.8 67.6 46.8 80.8

Finland 15,487 2,213 44,851 6.3 0.0 44.1 175.4 0.2 1186.2 62.9 32.8 81.7

France 16,999 3,941 42,833 7.3 0.0 36.3 102.8 0.9 344.8 64.1 34.8 82.5

Ireland 18,357 3,521 85,183 9.1 0.0 69.2 40.2 1.5 367.7 66.8 49.4 82.1

Italy 16,470 3,314 41,783 2.1 0.0 10.1 32.3 0.2 126.5 62.7 25.8 83.4

Japan 14,784 1,664 43,340 8.6 0.0 47.2 328.9 0.0 1860.6 60.0 30.5 84.5

Mexico 9,007 2,821 19,655 0.1 0.0 0.6 1.6 0.5 5.3 51.8 23.3 75.3

Netherlands 21,102 5,229 53,901 8.0 0.0 56.4 136.2 0.8 725.4 67.8 43.9 82.1

Norway 26,218 4,290 71,917 5.4 0.0 33.7 62.6 1.0 255.8 68.9 48.6 82.3

New Zealand 18,123 6,505 40,230 3.9 0.1 25.1 29.6 3.9 110.9 74.8 68.8 82.1

Switzerland 32,757 7,784 70,923 38.2 0.2 261.2 476.2 16.0 1292.4 67.1 44.7 83.6

Sweden 18,022 3,024 47,844 20.8 0.0 118.4 260.3 5.1 1007.0 69.0 49.8 82.7

UK 17,410 5,594 43,181 5.2 0.1 23.2 109.1 10.6 236.8 65.8 44.1 81.2

USA 22,950 4,513 59,849 40.7 3.6 179.9 908.1 279.3 1832.7 65.6 45.2 78.9
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B.2 Additional results

In this section, we provide a number of robustness checks and extensions of our primary analysis.

Table B3: Medical innovation and income levels (1890-2018): long-run estimates with controls

(CS-ARDL)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Medical innovation 0.004*** 0.014*** 0.008*** 0.019*** 0.005** 0.005** 0.006*** 0.005*** 0.005*** 0.003*

(0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001)

Industrial innovation 0.089*** 0.096*** 0.110*** 0.054*** 0.048*** 0.064*** 0.096*** 0.100*** 0.097*** 0.092***

(0.004) (0.004) (0.005) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Longevity 1.600*** 1.105*** 1.070*** 0.257*** 1.868*** 1.462*** 1.557*** 1.478*** 1.545*** 1.611***

(0.058) (0.065) (0.066) (0.075) (0.047) (0.061) (0.059) (0.060) (0.059) (0.059)

Capital stock p.w. 0.059***

(0.021)

Human capital index 0.124***

(0.040)

Public debt/GDP 0.074***

(0.004)

Private credit/GDP -0.282***

(0.008)

Export/GDP 0.338***

(0.009)

Medical innovation spillovers

population-weighted inverse-distance 0.142***

(0.008)

squared population-weighted inverse-distance 0.138***

(0.006)

inverse-distance 0.143***

(0.008)

Industrial innovation

population-weighted inverse-distance -0.049***

(0.012)

Speed of adjustment -0.133*** -0.175*** -0.184*** -0.101*** -0.123*** -0.149*** -0.139*** -0.143*** -0.139*** -0.133***

(0.017) (0.025) (0.020) (0.015) (0.014) (0.017) (0.018) (0.018) (0.018) (0.017)

Obs. 2,286 2,286 2,286 1,624 1,664 1,692 2,286 2,286 2,286 2,286

R-squared 0.183 0.220 0.233 0.163 0.190 0.203 0.182 0.181 0.181 0.182

Countries 20 20 20 16 16 16 20 20 20 20

Notes: Long-run estimates derived from a panel CS-ARDL regression with homogeneous parameters. Data span from 1890-2018.

All variables are expressed in logs. Estimates include country-specific fixed effects and common correlated effects. Newey-West

standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table B4: Medical innovation and income levels (1981-2018): long-run estimates with controls

(CS-ARDL)

(1) (2) (3) (4) (5) (6) (7) (8)

Medical innovation 0.015*** 0.195*** 0.097*** 0.018*** -0.003 0.108***

(0.003) (0.006) (0.004) (0.003) (0.003) (0.004)

Longevity 3.295*** 3.083*** 9.261***

(0.359) (0.584) (0.625)

Industrial innovation 0.033*** 0.047*** 0.010

(0.009) (0.015) (0.010)

Total medical exp./GDP -0.747***

(0.029)

Speed of adjustment -0.197*** -0.159*** -0.140*** -0.181*** -0.185*** -0.206*** -0.406*** -0.097***

(0.032) (0.041) (0.043) (0.030) (0.025) (0.032) (0.051) (0.037)

Innovation indicator Patents Patents Patents R&D Patents Patents Patents Patents

Source USPTO EPO PCT OECD USPTO USPTO USPTO USPTO

Obs. 700 700 700 700 700 700 720 720

R-squared 0.227 0.153 0.205 0.239 0.218 0.237 0.349 0.205

Number of groups 20 20 20 20 20 20 20 20

Notes: Long-run estimates derived from a panel CS-ARDL regression with homogeneous parameters. Data span from 1981-2018.

All innovation variables are expressed as per capita stocks. All variables are expressed in logs. Estimates include country-specific

fixed effects and common correlated effects. Newey-West standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table B5: Medical innovation and income levels (1890-2018): static estimates based on non-

overlapping five-year intervals

(1) (2) (3) (4) (5) (6)

Medical innovation 0.259*** 0.142*** 0.113***

(0.011) (0.008) (0.010)

Medical equip. 0.165*** 0.043***

(0.023) (0.008)

Drugs 0.069*** 0.061***

(0.018) (0.006)

Longevity 3.384*** 2.345*** 1.944*** 2.113***

(0.146) (0.122) (0.134) (0.124)

Industrial innovation 0.098*** 0.094***

(0.019) (0.018)

Obs. 540 540 518 518 518 518

R-squared 0.384 0.496 0.235 0.125 0.117 0.103

Notes: Estimates derived from a panel static regression with homogeneous parameters. Data span from 1890-2018. All innovation

variables are expressed as per capita stocks. All variables are expressed in logs. Estimates include country-specific fixed effects and

common correlated effects. Newey-West standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table B6: Medical innovation and income levels (1890-2018): dynamic estimates based on non-

overlapping five-year intervals

(1) (2) (3) (4) (5) (6)

Medical innovation 0.243*** 0.127*** 0.108***

(0.022) (0.015) (0.016)

Medical equip. 0.107*** 0.044***

(0.035) (0.014)

Drugs 0.103*** 0.054***

(0.021) (0.009)

Longevity 3.401*** 2.411*** 2.187*** 2.128***

(0.270) (0.197) (0.242) (0.201)

Industrial innovation 0.061* 0.080**

(0.037) (0.031)

Speed of adjustment -0.920*** -0.941*** -1.193*** -1.033*** -1.021*** -0.972***

(0.054) (0.053) (0.054) (0.059) (0.057) (0.055)

Obs. 500 500 455 450 450 450

R-squared 0.391 0.505 0.233 0.120 0.103 0.096

Notes: Long-run estimates derived from a panel dynamic ARDL(1,1) regression with homogeneous parameters. Data span from

1890-2018. All innovation variables are expressed as per capita stocks. All variables are expressed in logs. Estimates include

country-specific fixed effects and common correlated effects. Newey-West standard errors in parentheses. *** p < 0.01, ** p < 0.05,

* p < 0.1.
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Table B7: Medical innovation and income levels: long-run estimates with heterogeneous

(country-by-country) parameters (CS-ARDL, Mean Group regression)

(1) (2) (3) (4) (5) (6) (7) (8)

Simple mean Robust mean

Medical innovation 0.039*** 0.003 0.037*** 0.021***

(0.011) (0.029) (0.012) (0.009)

Industrial innovation 0.084** 0.112** 0.073* 0.083*

(0.038) (0.048) (0.040) (0.040)

Longevity 0.560** 0.813** 0.558** 0.806**

(0.260) (0.341) (0.280) (0.375)

MRSE 0.103 0.099 0.094 0.065 0.103 0.099 0.094 0.065

Obs. 2,480 2,480 2,480 2,480 2,480 2,480 2,480 2,480

Notes: Long-run estimates derived from a panel CS-ARDL regression with heterogeneous parameters. Data span from 1890-2018.

All variables are expressed in logs. Estimates include country-specific fixed effects and common correlated effects. Columns (1)-

(3) report the simple mean of country-specific coefficients. Columns (4)-(6) report the robust regression mean of country-specific

coefficients. *** p < 0.01, ** p < 0.05, * p < 0.1.
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B.3 Unit roots, Weak causality and Cross-sectional Dependence test-

ing

Table B8: Unit root testing (Pesaran et al., 2013)

Income

per capita

Medical

innovation

General

innovation
Longevity

Simple mean -2.12 -2.64(*) -2.60 -2.29

Robust mean -2.11 -2.64(*) -2.07 -2.26

Critical values 1% 5% 10%

t=100 -2.84 -2.65 -2.54

t=200 -2.98 -2.78 -2.69

Notes: The table reports the unit root test robust to cross-sectional dependence induced by multiple un-observable factors (Pe-

saran et al., 2013). Critical Values. (a) t = 100 1%: -2.97; 5%: -2.77; 10%: -2.65. (b) t = 200. 1%: -3.16; 5%: -2.94; 10%: -2.86.

To assess the direction of causality among the variables of our (long-run) cointegration rela-

tionship (Eq. 11), we perform a battery of weak causality tests. We estimate one equation with

an Error Correction Mechanism (ECM) representation for each potentially endogenous variable

(z = y, x), including the error correction (disequilibrium) term of Eq. (11) as well as the first

differences (and their lags, denoted by p) of the variables in the vector z:

∆yit = dy ε̂it−1 +
P∑
p=1

ηyp∆yit−p +
P∑
p=1

ηxp∆xit−p + αy,i + λy,ifyt + εy,it,

∆xit = dx ε̂it−1 +
P∑
p=1

ηxp∆xit−p +
P∑
p=1

ηyp∆yit−p + αx,i + λx,ifxt + εx,it,

where ε̂it = yit− β̂i− β̂1xit− λ̂i ft. Based on the Granger Representation Theorem, if dy < 0 and

dx = 0, causality runs from x to y, whereas it runs in the other direction if dy = 0 and dx < 0.

The table indicates that GDP per capita is endogenous to the other variables of the model, whilst

evidence for industrial innovation remains somewhat ambiguous.

52

Electronic copy available at: https://ssrn.com/abstract=4491818



Table B9: Cointegration and Weak exogeneity testing

Income p.c. Medical innovation Industrial innovation Longevity

1 lag -0.106*** 0.076 0.101*** 0.009

(0.017) (0.114) (0.031) (0.006)

3 lags -0.125*** 0.142 0.050* 0.002

(0.017) (0.128) (0.030) (0.006)

Notes: The table reports the test for weak exogeneity in the long-run errors derived from estimates in col. (5), Table 4. The co-

efficients refer to the disequilibrium term (ε̂it) entering the regression having the variable reported by column as dependent vari-

able. Regressions by rows use one- and three-year lags of first differenced variables and common correlated effects, respectively. ***

p < 0.01, ** p < 0.05, * p < 0.1.

Table B10: Cross-sectional dependence testing (1920-2019)

(1) (2) (3) (4) (5) (6)

CD test statistic -6.52*** -6.64*** -6.28*** -4.05*** -4.43*** -4.48***

P -value [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

Notes: The table reports the value of the CD statistic test (Pesaran, 2015) on the residuals of the regressions in Table 4. H0: panel

units are cross-sectional dependent. *** p < 0.01, ** p < 0.05, * p < 0.1.
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