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Abstract
Aim: Tidal marsh ecosystems are heavily impacted by human activities, highlighting 
a pressing need to address gaps in our knowledge of their distribution. To better un-
derstand the global distribution and changes in tidal marsh extent, and identify op-
portunities for their conservation and restoration, it is critical to develop a spatial 
knowledge base of their global occurrence. Here, we develop a globally consistent 
tidal marsh distribution map for the year 2020 at 10-m resolution.
Location: Global.
Time period: 2020.
Major taxa studied: Tidal marshes.
Methods: To map the location of the world's tidal marshes at 10-m resolution, we 
applied a random forest classification model to Earth observation data from the year 
2020. We trained the classification model with a reference dataset developed to sup-
port distribution mapping of coastal ecosystems, and predicted the spatial distribu-
tion of tidal marshes between 60° N and 60° S. We validated the tidal marsh map 
using standard accuracy assessment methods, with our final map having an overall 
accuracy score of 0.85.
Results: We estimate the global extent of tidal marshes in 2020 to be 52,880 km2 
(95% CI: 32,030 to 59,780 km2) distributed across 120 countries and territories. Tidal 
marsh distribution is centred in temperate and Arctic regions, with nearly half of the 
global extent of tidal marshes occurring in the temperate Northern Atlantic (45%) 
region. At the national scale, over a third of the global extent (18,510 km2; CI: 11,200–
20,900) occurs within the USA.
Main conclusions: Our analysis provides the most detailed spatial data on global tidal 
marsh distribution to date and shows that tidal marshes occur in more countries and 
across a greater proportion of the world's coastline than previous mapping studies. 
Our map fills a major knowledge gap regarding the distribution of the world's coastal 
ecosystems and provides the baseline needed for measuring changes in tidal marsh 
extent and estimating their value in terms of ecosystem services.
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1  |  INTRODUC TION

Tidal marsh ecosystems are vegetated coastal wetlands located in 
areas of regular to occasional tidal inundation, formed by a broad 
variety of herbaceous and woody vascular plants (Adam,  2002). 
Whilst dominated by saline and brackish marshes, they include 
areas of freshwater tidal marsh (Barendregt,  2018; Mitsch & 
Gosselink, 2015). They occur along many of the world's sheltered, 
sediment-dominated coastlines, particularly in temperate and arc-
tic regions (Tiner & Milton, 2018). They are also an important, yet 
frequently overlooked, coastal ecosystem in many arid and tropical 
regions (Viswanathan et  al., 2020). Tidal marsh vegetation occurs 
between mean high water neaps up to the limits of the highest astro-
nomical tide (Adam, 2002), often with distinct zonation across the 
tidal frame (Mitsch & Gosselink, 2015; Scott et  al., 2014a, 2014b; 
Tiner & Milton,  2018). Tidal marshes show close ecological and 
physical linkages with adjacent coastal ecosystems, including un-
vegetated intertidal flats, shellfish beds and reefs and seagrass beds 
lower in the tidal frame (Adam, 2002). The term salt marsh is also 
widely used and broadly overlaps with tidal marsh; however, the for-
mer may include non-tidal and inland marshes, while tidal marshes, 
in some places can be freshwater systems. Tidal marshes often 
form part of mosaicked environments together with mangroves or 
salt pans, particularly in warm temperate to tropical regions (Lopez-
Portillo & Ezcurra, 1989; Rodriguez et al., 2016).

Tidal marshes are subject to a multitude of anthropogenic 
pressures, primarily because they are often located close to the 
most densely populated coastal areas of the planet (Neumann 
et al., 2015). Their loss and degradation have been caused by a range 
of factors, tracing back over centuries and even millennia (Airoldi & 
Beck, 2007; Allen, 2000). These include land reclamation for con-
version to agriculture and coastal infrastructure (Davy et al., 2009; 
Gedan & Silliman, 2009; Gu et al., 2018; Melville et al., 2016; Shi-lun 
& Ji-yu, 1995), aquaculture and salt production (Almeida et al., 2014) 
and invasion of Spartina alterniflora outside its native range (Zheng 
et al., 2018). In addition, tidal marshes are likely to be impacted by 
the multifaceted threats linked to climate change, including sea 
level rise and associated coastal squeeze, increased magnitude and 
frequency of extreme weather events and changes in precipitation 
and temperature (Adams, 2020; Silliman et al., 2005). The evidence 
of climate change impacts has already been detected with the re-
duction in extreme cold events allowing the poleward expansion of 
mangroves into tidal marsh habitat (Cavanaugh et al., 2014, 2019).

Recently, tidal marshes, alongside other coastal wetlands such 
as mangroves and seagrass, have garnered significant attention for 
their conservation value and restoration potential. In addition to 
their significance for biodiversity, tidal marshes have been recog-
nized as supporting multiple ecosystem services, including carbon 

sequestration (Friess et al., 2020; zu Ermgassen et al., 2021). Tidal 
marshes are highly productive, with sequestration rates greater than 
some other terrestrial ecosystems (on average, 210 g CO2 m−2 yr−1) 
(Chmura et al., 2003; Hopkinson et al., 2012), with potential global 
carbon stocks in the top metre of tidal marsh soil estimated at 
1.22 ± 0.20 Pg C (Maxwell et al., 2023). Tidal marsh vegetation also 
helps attenuate wave energy (Möller et  al., 2014), therefore, pro-
viding storm protection benefits to coastal communities (Costanza 
et al., 2008; Shepard et al., 2011). For example, wetlands are esti-
mated to have avoided $625 Million in property damage during 
Hurricane Sandy (Narayan et  al.,  2017). They are important areas 
for tourism and recreation (Barbier et al., 2011) and they help sup-
port healthy fisheries that provide food and income for millions of 
people (Baker et al., 2020; Jänes et al., 2020). However, our ability 
to comprehensively estimate the value of tidal marshes and develop 
coordinated strategies for their protection and restoration at large 
scales is hindered by limited knowledge of their global distribution.

Tidal marshes can be identified from satellite images (Tiner & 
Milton,  2018); however, unlike other coastal ecosystems such as 
coral reefs (Li et  al.,  2020), mangroves (Bunting et  al.,  2022; Giri 
et  al.,  2011) and tidal flats (Murray et  al.,  2019), spatial mapping 
of tidal marshes has generally been conducted at local or regional 
scales. Until now, there has been no globally consistent map of tidal 
marshes, and their total extent has been poorly quantified as a result 
(McLeod et al., 2011; Pendleton et al., 2012).

Efforts to map tidal marshes have utilized different methods, 
across different time periods, making comparisons across time and 
space unreliable. Where larger scale assessments exist, they tend 
to focus on well-studied regions such as the U.S.A. (U.S. Fish and 
Wildlife Service, 2021), China (Hu et al., 2021), Australia and parts 
of South America (Isacch et al., 2006). The most recent global as-
sessment of tidal marsh spatial distribution collated Geographic 
Information System (GIS) data from peer-reviewed articles and grey 
literature, including spatial data from government agencies, non-
governmental organizations and research institutions (Mcowen 
et  al., 2017). In total, the authors identified almost 55,000 km2 of 
tidal marshes across 43 countries and territories, although they 
also identified several large regions—Canada, Northern Russia, 
South America and Africa—for which data were lacking (Mcowen 
et al., 2017). In a global assessment of all wetlands, Zhang et al. (2023) 
also included a category of tidal salt marsh, mapping approximately 
75,000 km2, with other estimates from the literature ranging from 
22,000 to 400,000 km2 (McLeod et al., 2011; Pendleton et al., 2012). 
Other efforts to characterize tidal marsh dynamics globally have 
typically focused on change analyses (Campbell et al., 2022; Murray, 
Worthington, et al., 2022) or simulation (Schuerch et al., 2018); how-
ever, a consistent medium-resolution map baseline has yet to be 
established.

K E Y W O R D S
coastal ecosystems, Earth observation, global distribution, remote sensing, salt marsh, tidal 
marsh
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Here, we create a globally consistent tidal marsh distribution map 
for the year 2020 at 10-m resolution. To do this, we leverage the ex-
tensive archive of analysis-ready, publicly available remote-sensing 
imagery, combining optical and radar images from the European 
Space Agency's Sentinel missions (Berger et al., 2012). This is cou-
pled with an open-access global repository of global training and val-
idation data (Murray, Bunting, et al., 2022). This wealth of data was 
analysed using the high-performance processing capabilities of the 
Google Earth Engine platform, which supports rapid planetary-scale 
remote-sensing data analyses (Gorelick et al., 2017). The tidal marsh 
distribution dataset provides a critical baseline for future analyses of 
changes in tidal marsh distribution and condition, and valuation of 
tidal marsh ecosystem services.

2  |  MATERIAL S AND METHODS

To map the distribution of the world's tidal marshes facilitat-
ing more accurate estimates of extent and underpinning future 
analyses of tidal marsh change, we developed a supervised clas-
sification of globally comprehensive Earth observation data 
(Supporting Information Figure  S1). We used 10-m resolution 
active (Sentinel 1) and passive (Sentinel 2) data acquired in 2020 
(Berger et al., 2012) and an open access reference dataset (Murray, 
Bunting, et al., 2022) to parameterize a random forest classifica-
tion model that enabled the prediction of tidal marsh occurrence 
over the study area.

2.1  |  Covariate data

To develop a covariate set suitable to support the classification 
model, we filtered all images in the Sentinel 1 and 2 archives for the 
year 2020, retaining all images within our mapping area. The mapped 
area was confined between 60° N and 60° S, and within a coastal 
zone data mask (after Murray, Worthington, et  al., 2022). In total, 
287,320 optical and 143,067 radar images were processed.

Sentinel 2 Level 2 data from the Google Earth Engine Data 
Catalogue were used and represent atmospherically corrected sur-
face reflectance processed using sen2cor (Main-Korn et al., 2017). 
Sentinel 2 imagery contains 12 spectral bands, with pixel resolu-
tions between 10 and 60 m, and band data values ranging from 0 
to 1 (albeit with a scale factor of 0.0001 in Google Earth Engine). 
Global scale remote sensing necessitates automated methods for 
addressing known sources of map commission and omission error. 
As a prime source of these errors and to promote computational ef-
ficiency, we opted to remove images where metadata indicated a 
high proportion of cloudy pixels (≥20%). Further masks were applied 
to remove pixels flagged in image metadata as clouds, cloud shadow 
or snow. Three spectral indices that represent either vegetation 
or water dynamics, and are, therefore, useful to discriminate tidal 
marshes from other land classes in a classification model, were cal-
culated for every image. The normalized difference vegetation index 

(NDVI) is the normalized ratio of the near-infrared (NIR) band which 
is reflected by vegetation and the red band which is absorbed by 
vegetation (Pettorelli et al., 2005).

Values range between −1 and +1, with values closer to +1 repre-
senting areas of dense green vegetation. The enhanced vegetation 
index (EVI) was developed to reduce the influence of atmospheric 
conditions and decouple the canopy background signal (Huete 
et  al.,  2002). In addition to the NIR and red bands used in NDVI, 
EVI uses the blue band to reduce the impact of atmospheric effects 
(Schultz et al., 2016).

The coefficient L is the canopy background adjustment and C1 
and C2 are used with the blue band to reduce aerosol influences 
on the red band (Huete et al., 2002). Values of L = 1, C1 = 6, C2 = 7.5 
and G = 2.5 were used (Huete et  al., 2002). The automated water 
extraction index (AWEI) combines the green, NIR and short-wave 
infrared (SWIR) bands to identify areas of water (Feyisa et al., 2014).

An annual composite of the optical images was created by 
taking the median, the 10th, 25th, 75th and 90th percentiles, the 
standard deviation and the 5th–95th, 10th–90th and 25th–75th in-
terval means of the NDVI, EVI and AWEI spectral indices and the 
raw NIR band, resulting in an initial set of 36 covariates. Composite 
indices were developed from five of the 12 bands of the Sentinel 
2 data. Annual composite indices were used to reduce the impact 
of clouds, cloud shadow or snow on the indices, as they represent 
complex spectral dynamics in a manner suitable for a pixel-based 
classification model, and have been shown to be effective in esti-
mating the distribution of a range of other coastal ecosystem types 
(Murray et al., 2019; Murray, Worthington, et al., 2022). These indi-
ces were used to discriminate between vegetated areas (NDVI, EVI) 
and water (AWEI), while the NIR band has been used extensively 
to identify mangroves (Kuenzer et  al.,  2011), a closely associated 
coastal ecosystem.

Exploratory analysis of 41,138 training points annotated with 
data values from the 36 predictors revealed high collinearity be-
tween the covariates derived from the optical data. A priori we re-
tained the median and standard deviation covariates, and used the 
findCorrelation function from the ‘caret’ R package (Kuhn, 2021) in 
R to remove highly correlated covariates from the remaining 28 co-
variates. Based on a threshold of r < 0.9, we removed 17 highly cor-
related covariates from the covariate set, resulting in a final set of 
19 covariates for the classification model (Supporting Information 
Table S1). While the inclusion of highly correlated predictor variables 
can impact the identification of variables of importance within ma-
chine learning models (Nicodemus & Malley, 2009), as the focus of 

(1)NDVI =
(NIR − Red)

(NIR + Red)

(2)EVI = G ×
(NIR − Red)

(
NIR + C1 × Red − C2 × Blue + L

)

(3)AWEI = 4∗
(Green − SWIR)

(0.25∗NIR + 2.75∗SWIR)
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this analysis was developing the most accurate tidal marsh map, we 
allowed a less stringent correlation coefficient threshold than has 
been previously advocated (e.g. Dormann et al., 2013).

Each Sentinel 1 scene in Google Earth Engine is pre-processed 
using the Sentinel-1 Toolbox (Veci et al., 2014). This pre-processing 
consists of the following steps: removal of discontinuities between 
sub-swaths for scenes in multi-swath acquisition mode using ther-
mal noise removal, application of radiometric calibration values and 
application of terrain correction in high latitudes using the SRTM 
or ASTER DEMs. The Sentinel 1 radar data were filtered to those 
images with VV and VH polarizations, and indices that represented 
the span and total of the scattering power, the difference between 
co-  and cross-polarized observations and the ratio of the VV and 
VH polarizations (Mahdianpari et al., 2019), were calculated for each 
image. An annual composite of the radar images was created by tak-
ing the median of the raw VV and VH polarizations and the span, 
difference and ratio indices, resulting in five covariates (Supporting 
Information Table S1).

In addition to the radar and optical data, three covariates were 
included to assist in differentiating tidal marshes from other land 
classes that occur in coastal environments. Firstly, a global map of 
the probability of occurrence of tidal wetlands derived from over 
1.1 million satellite images acquired by Landsat 5 to 8 (Murray, 
Worthington, et al., 2022) was used to inform the potential distri-
bution of tidal marsh ecosystems. A global elevation model that 
combines land topography and ocean bathymetry (Amante & 
Eakins, 2009) was used to inform the classification model about real 
features of coastal environments that influence the distribution of 
tidal marshes, while an annual composite of monthly nightlight data 
from the year 2020 (Elvidge et al., 2017) was included to assist dif-
ferentiation of urban and industrial areas.

The optical and radar data and the three additional covariates 
(Supporting Information Table S1) were combined into a single com-
posite image. Within Google Earth Engine, superpixel clustering 
based on the Simple Non-Iterative Clustering image segmentation 
algorithm was then applied to the composite image (Achanta & 
Süsstrunk, 2017). The image segmentation clusters areas of homog-
enous pixels and helps to reduce false positives in terms of individual 
pixels of the prediction class being predicted across the image. The 
pixel values for each band within a cluster are converted into the 
mean value of the band across the cluster, and as such the predic-
tion of each pixel within a cluster results in the same classification. 
Such object-based approaches have been shown to have a superior 
predictive power to pixel-based classification when mapping coastal 
environments (Lyons et al., 2020; Mahdianpari et al., 2019).

2.2  |  Training data

To parametrize the random forest classification model, we collated 
a training dataset consisting of the known locations of five classes: 
tidal wetland ecosystems (tidal marshes, mangroves and tidal flats) 
and non-tidal wetland types (permanent water and other terres-
trial areas). The training set was assembled from three sources. 
Firstly, 136,404 points from the coastTrain dataset (Murray, Bunting, 
et al., 2022), which was created to provide reference data for coastal 
ecosystem remote-sensing classification models. Secondly, a further 
8789 points were developed to map coastal ecosystems in Australia 
(A. Navarro, personal communication). Finally, 754 tidal marsh loca-
tions were collected specifically for this analysis. The 754 tidal marsh 
points were targeted at regions that had reduced coverage in the 
coastTrain dataset, such as South Africa, East Asia (outside China), 
the Middle East and the Pacific coast of South America. Potential 
locations of tidal marshes in these regions were identified from pub-
lished literature and online sources. Visual interpretation of high-
resolution satellite images available from Google Earth, alongside 
NIR and false colour composites from Landsat imagery were used to 
select pixels that represented tidal marshes. The combined training 
dataset consisted of a high number of mangrove locations from the 
coastTrain dataset; therefore, a random sample of only 10,000 of the 
mangrove points was used to balance the training data. This resulted 
in a final training dataset of 41,762 points, including 9811 tidal marsh 
locations (Supporting Information Figure S2).

2.3  |  Tidal marsh distribution model

To map the global distribution of tidal marshes, we developed a 
random forest classification model. Machine learning approaches 
such as random forest have been applied to a variety of ecological 
and remote-sensing topics due to their high classification accuracy 
and ability to rapidly model large datasets with complex interac-
tions between predictor variables (Belgiu & Drăgu,  2016; Cutler 
et  al.,  2007). Machine learning approaches have been effectively 
applied to mapping coastal ecosystems such as intertidal wetlands 
(Murray, Worthington, et al., 2022), tidal flats (Murray et al., 2019), 
mangroves (Bunting et al., 2018) and coral reefs (Lyons et al., 2020). 
Future application of more complex deep learning or neural network 
models, or classifiers such as XGBoost which have been shown to be 
effective at detecting coastal vegetated ecosystems (Fu et al., 2022) 
may further increase prediction accuracy.

2.3.1  | Model tuning

The training data were combined into two classes, tidal marshes and 
non-tidal marshes (permanent water, other terrestrial areas, man-
groves and tidal flats). Before parametrizing the model in Google 
Earth Engine, we firstly tuned the random forest hyper-parameters 
using iterative testing of a hypergrid of potential values. Models 

(4)Span = ||SVV||
2
+ ||SVH||

2

(5)Difference = ||SVV||
2
− ||SVH||

2

(6)Ratio =
||SVV||

2

||SVH||
2
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were fitted using the training data and R package ‘ranger’ (Wright & 
Ziegler, 2017). The hypergrid consisted of 375 potential model pa-
rameterizations with differing values for the number of trees grown, 
the number of covariates sampled at each split, the fraction of ob-
servations sampled at each split and the minimum node size. To ac-
count for minimal differences in the model fits (based on out-of-bag 
error rate) between the best fitting parametrizations, the median of 
the top 10 models based on the hypergrid search was used in Google 
Earth Engine.

An initial model was fitted to the training data in Google Earth 
Engine with a random 80:20% training: validation split. Exploratory 
analysis suggested high overall accuracy (96.4%) on the validation 
dataset, with a Kappa coefficient of 0.90, and an omission error 
for the different classes of 0.02 non-tidal marsh, 0.09 tidal marsh 
and a commission error for the different classes of 0.03 non-tidal 
marsh, 0.06 tidal marsh. Owing to this high initial model accuracy, 
a final random forest classification model was then fitted in Google 
Earth Engine using all the training data. The final random forest 
classification model was then applied to the segmented composite 
image (containing the optical, radar and three additional covariates, 
Supporting Information Table S1), and each pixel was classified as 
either tidal marsh or not.

2.3.2  |  Post-processing

The initial predicted distribution of tidal marshes was then refined 
using a post-processing procedure consisting of several steps. 
Areas that were predicted to have a low probability (<50%) of 
being a coastal wetland based on the work of Murray, Worthington 
et al. (2022) were removed, as were areas greater than 10 m in eleva-
tion using the MERIT Digital Elevation Model (Yamazaki et al., 2017) 
and those areas that overlapped with the predicted 2020 mangrove 
distribution (Bunting et al., 2022). The minimum mapping unit of the 
global tidal marsh map was tested for two areas (1 ha vs. 10 ha) by 
identifying areas that had a minimum of either 100 or 1000 con-
nected pixels.

2.3.3  |  Validation

This post-processed model prediction was validated using 2300 
randomly sampled points developed using the following stratified 
sampling procedure. Points were sampled equally across 10 of the 
11 biogeographical realms in the Marine Ecoregions of the World 
(Spalding et al., 2007). One hundred points were sampled from the 
non-tidal marsh class, as were a further 100 points classified as 
tidal marsh in both the 1-hectare and 10-hectare minimum map-
ping unit map versions. Finally, an additional 30 points classified 
as tidal marsh only in the 1-hectare minimum mapping unit version 
were sampled. A single image analyst used Google Satellite, Bing 

Maps and Google Earth Pro imagery to assess each point of the 
validation set and assign it to one of three groups, ‘tidal marsh’, 
‘other’ or ‘unknown’ using the Class Accuracy plugin in QGIS 
(Bunting, 2020). The model prediction for the point was concealed 
from the reviewer during the validation process. The ‘unknown’ 
assignment in the validation set was used for points where no con-
fident assignment of the ecosystem type was possible, primarily 
due to poor reference imagery or a lack of information available 
about tidal marshes in particular regions, predominantly in parts 
of the tropics.

Accuracy statistics were calculated for the different realms 
using the ‘caret’ R package (Kuhn, 2021) in R (R Core Team, 2023). 
Only validation points assigned to the groups ‘tidal marsh’ and 
‘other’ were used to calculate the accuracy statistics (n = 1708). 
For overall and commission errors, the validation statistics for the 
vast majority of realms were higher for the 10-hectare minimum 
mapping unit version (Supporting Information Table S2) in compar-
ison to the 1-hectare minimum mapping unit version (Supporting 
Information Table  S3), and this was, therefore, the version used 
for the final mapping product. Accuracy was very variable across 
the realms, with temperate regions generally achieving higher 
overall map accuracy. The commission errors were always higher 
than the omission errors, which in the tropics was very high. To 
address the issues identified during the map validation, we under-
took two final post-processing procedures. We removed areas of 
tidal marsh that had been identified as aquaculture ponds in 10 
countries in Asia, following Murray, Worthington, et  al.  (2022), 
and manually corrected misclassifications. Manual correction was 
carried out by visually assessing the map outputs and removing 
obvious misclassifications. Misclassifications were generally re-
lated to areas of aquaculture and flooded agriculture such as rice 
fields and rocky shorelines.

The 1708 previously classified validation points were then com-
pared to the final version of the map, and accuracy statistics were 
again calculated. The manual corrections greatly improved the over-
all accuracy across the realms, with the largest improvements in 
tropical regions, although commission errors remained much greater 
in those regions (Table 1). We used resampling procedures to cal-
culate the confidence intervals around our global accuracy statis-
tics (Lyons et al., 2018), which were used to propagate uncertainty 
around derived estimates of global and regional tidal marsh extent. 
We resampled (n = 1000 iterations) the validation points using the 
mean of the samples as our estimates of accuracy, and the 0.025 and 
0.975 percentiles to create the 95% confidence intervals (Supporting 
Information Table S4). Our final map had an overall accuracy of 0.85 
(95% confidence interval (CI): 0.84–0.87). The resampling proce-
dure allowed for asymmetry in the confidence intervals around our 
tidal marsh extent estimates, which better represent the uneven-
ness in the omission and commission errors identified in our map 
(Supporting Information Tables S4 and S5). We used the 0.05 per-
centile of the commission and omission error estimates from the 
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6 of 13  |     WORTHINGTON et al.

resampled distribution to calculate the upper and lower bounds of 
all area estimates using the formulas:

where areaTM is the area of tidal marsh, commission5 and omission5 are 
the 0.05 percentile of the commission and omission error estimates 
respectively.

2.3.4  |  Extent statistics

Tidal marsh area was summarized at the marine ecoregion realm 
level (Spalding et  al.,  2007) and for countries and territories using 
the union of the ESRI world country database and the Exclusive 
Economic Zones version 11 (Flanders Marine Institute, 2020). The 
percentage of the tidal marsh contained within protected areas in 
each country was calculated using The World Database on Protected 
Areas (WDPA; UNEP-WCMC and IUCN,  2023). The WDPA was 
cleaned following standard procedures (Hanson,  2022), which in-
cluded removing polygon vertices, removing protected areas where 
the status was proposed or unknown and dissolving protected area 
polygons to prevent double counting of overlapping protected areas.

3  |  RESULTS AND DISCUSSION

Knowledge of the distribution of tidal marsh ecosystems is essen-
tial to understand fundamental drivers of their dynamics, estimate 
risks to their persistence, establish baselines for assessing a range of 
national-to-global conservation targets and to provide a basis for ac-
counting for their ecosystem service provisioning. Our study reports 
the development of the first global, 10-m resolution thematic map of 
tidal marsh distribution, and allows a range of analyses that can fill 
these important knowledge gaps.

3.1  |  Global and regional estimates

We estimate the global extent of tidal marshes in 2020 to be 
52,880 km2 (CI: 32,020 to 59,780 km2). This estimate is lower than 
many earlier estimates generated by diverse mapping approaches 
and confirms that tidal marshes occupy a considerably smaller 
area than other coastal ecosystems such as, for example, man-
groves 147,359 km2 (Bunting et al., 2022) and tidal flats 127,921 km2 
(Murray et al., 2019).

Table 2 shows the estimates of tidal marsh extent by biogeographic 
realm (Spalding et al., 2007). The findings highlight the predominance 
of these ecosystems in the temperate and Arctic realms, and the par-
ticular importance of the temperate Northern Atlantic. This single 
realm hosts 45% of the world's tidal marshes, with extensive areas 
along the Atlantic and Gulf of Mexico coasts of the U.S.A and in the 
Northern European Seas province (Figure 1). The widespread distri-
bution of marshes in this region is likely to be a product of multiple 
geological and geomorphological factors influencing the abundance 
of extensive, protected and low-elevation coastal sediments. Climate 
too is important—it is too cold for mangroves, but not influenced by 
ice scour. (Scott et al., 2014a). As noted by previous authors, this realm 
is also the centre of floristic diversity for tidal marshes (Adam, 1990; 
Chapman, 1974). We estimate that the temperate Northern Pacific 
Realm also has significant areas of tidal marshes, especially around 
the coasts of southern Alaska and the Russian coasts of the Sea of 
Okhotsk, an area that was unmapped by Mcowen et al. (2017).

The area of tidal marshes in the southern hemisphere is 
8380 km2 (CI: 5080 to 9480 km2) representing only 16% of the full 
extent of coastal tidal marsh we detected in our analysis. However, 
the Atlantic coast of South America in particular supports extensive 
tidal marshes on estuaries with large discharges (Hatje et al., 2023). 
Isacch et al. (2006) estimated some 2133 km2 of tidal marshes in the 
area between southern Brazil and central Argentina, which is lower 
than our estimate of 3060 km2 for that region. Our prediction for 
Temperate Southern Africa confirms prior observations that these 
are indeed scarce habitats in this realm (Adams, 2020).

areaTMlower = areaTM −
(
areaTM ∗commission5

)

areaTMupper = areaTM +
(
areaTM ∗omission5

)

Realm
Overall 
accuracy Kappa

Omission 
error

Commission 
error N

Temperate Northern Atlantic 0.88 0.76 0.05 0.20 200

Temperate Northern Pacific 0.81 0.60 0.12 0.36 171

Tropical Atlantic 0.80 0.38 0.20 0.66 129

Western Indo-Pacific 0.73 0.13 0.29 0.89 151

Central Indo-Pacific 0.91 0.69 0.23 0.27 171

Eastern Indo-Pacific 0.93 0.43 0.14 0.68 190

Tropical Eastern Pacific 0.85 0.09 0.00 0.94 114

Temperate South America 0.80 0.59 0.10 0.37 188

Temperate Southern Africa 0.89 0.78 0.11 0.16 197

Temperate Australasia 0.88 0.75 0.08 0.18 197

Note: Omission and commission error statistics given for tidal marsh class only. The number of 
sample points (N) within each realm is the maximum number assessed (n = 200) minus those 
classified as unknown during the validation assessment.

TA B L E  1 Realm level accuracy 
statistics for the final tidal marsh map.
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    |  7 of 13WORTHINGTON et al.

Our map indicated tropical realms support 7410 km2 (CI: 4450 
to 8380 km2) of tidal marshes. In the tropics, coastal wetlands are 
typically dominated by mangroves; however, tidal marshes are still 
found in most areas (e.g. Almahasheer,  2021; Hena et  al.,  2007; 
Viswanathan et  al.,  2020), albeit often within spatially confined 
areas. Viswanathan et al.  (2020) estimated 290 km2 of ‘salt marsh’ 
around the coast of India, considerably more than the 50 km2 from 
our analysis; however, the density of salt marsh vegetation in the 
Indian study (19 ± 1 plants per m2) was lower than the average den-
sity of tidal marshes in temperate regions, highlighting the challenge 
of identifying tidal marshes with different structures in different re-
gions of the world. Within the Indo-Pacific Realms, our maps show a 
larger distribution of tidal marsh around the coasts of Mozambique, 
Madagascar and northern Australia. These are somewhat arid 

macrotidal regions where tidal marshes typically occur behind 
mangroves, high in the tidal frame (Saintilan, 2009). In the Tropical 
Atlantic, tidal marshes are widespread—notably in Central America 
and Cuba—again in close proximity to mangroves, and usually in the 
upper reaches of the tidal frame.

3.2  |  National estimates

Political contexts set the scene for conservation action and hence 
understanding distribution and spatial statistics at national levels is 
important. Such information also serves to provide data for National 
Biodiversity Strategies and Action Plans and the United Nations' 
System of Environmental-Economic Accounting. Our map identifies 

Realm Area (km2) 95% confidence interval
% of global 
Total

Arctica 9210 5580–10,410 17.4

Central Indo-Pacific 600 360–670 1.1

Eastern Indo-Pacific <10 – <0.01

Southern Ocean – – –

Temperate Australasia 2040 1230–2300 3.9

Temperate Northern Atlantic 23,760 14,390–26,860 44.9

Temperate Northern Pacific 6580 3980–7440 12.4

Temperate South America 3790 2300–4290 7.2

Temperate Southern Africa 80 50–100 0.2

Tropical Atlantic 4810 2920–5440 9.1

Tropical Eastern Pacific 80 50–90 0.2

Western Indo-Pacific 1920 1170–2180 3.6

Total 52,880 32,020–59,780

Note: 95% confidence intervals created by resampling (n = 1000) the validation points and using the 
0.05 percentile of the commission and omission error estimates.
aN.B. our map does not extend beyond 60° N and 60° S; therefore, the total area for the Arctic 
realm is an underestimate. For the Southern Ocean, there are no records of tidal marshes on 
mainland Antarctica (Greenberg et al., 2006), and our map does not classify any of the limited 
coastal wetlands on the sub-Antarctic islands as tidal marshes.

TA B L E  2 The extent of tidal marshes 
by biogeographic realm (Spalding 
et al., 2007).

F I G U R E  1 The 2020 distribution of tidal marshes, with darker colours representing greater extents of tidal marshes (km2) within a 0.5° 
grid cell.
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8 of 13  |     WORTHINGTON et al.

tidal marsh ecosystems in 120 countries, and Figure  2 shows the 
extents for the 20 countries with the largest areas of tidal marsh. At 
the national scale, over a third of the global extent (18,510 km2; CI: 
11,210–20,930) is estimated to be found within the U.S.A. (Figure 2), 
with tidal marshes across all coastlines, but most extensive on the 
Atlantic and Gulf of Mexico coasts. Canada (8530 km2; CI: 5170–
9650) and Russia (5140 km2; CI: 3110–5810) are also important, and 
the combined extent of just these three countries makes up over 
60% of global tidal marsh extent. Any future inclusion of data from 
above 60° N would further highlight this dominance. An additional 
six countries are estimated to have tidal marsh extents in excess of 
1000 km2 (Supporting Information Table S6).

In Europe, tidal marshes are extensive, with a combined total of 
~5000 km2, concentrated along the Atlantic coasts, the North and 
Baltic Seas. With its microtidal regime, and influenced by millennia 
of human conversion (Airoldi & Beck, 2007), the Mediterranean has 
only limited tidal marsh areas and many are fragmented. Our maps 
also show tidal marsh in the northern Black Sea, particularly in the 
major river deltas of the Danube and Dnepr and along the eastern 
shore of the Azov Sea (Figure 1).

3.3  |  Comparison to other global estimates

While our total extent closely matches the global estimate of 
Mcowen et al. (2017; 54,951 km2), there are notable differences in 

the distribution between the two maps. We identify tidal marshes 
in an extra 17 countries, while our maps include spatial extents for 
a further 71 countries where Mcowen et  al.  (2017) provide only 
point locations. Our extent is also in line with a 45,000 km2 estimate 
for non-arctic tidal marshes (Greenberg et al., 2006). However, our 
extent is 58–71% of the estimates of Murray, Worthington, et  al. 
(90,800 km2; 2022) and Zhang et  al. (74,910 km2;  2023) respec-
tively. The former was a more broadly based study of intertidal wet-
land dynamics and thus not directly comparable. Zhang et al. (2023) 
is a lower resolution (30 m) global assessment of all wetlands, which 
includes “coastal saltmarsh”. The larger extent predicted is some-
what explained by the inclusion of 4800 km2 along Arctic coast-
lines which were precluded from our study (see below). In addition, 
the study of Zhang et al.  (2023) predicts the presence of “coastal 
saltmarsh” over a far greater proportion of the global coastline; 
however, this is partly explained by the fact that it does not apply 
an area filter to remove the noise (predictions of wetland distribu-
tion confined to single pixels) in their maps. No recent maps have 
come close to the highest previous global estimates of 400,000 km2 
(Duarte et al., 2005).

The strength of our approach is that it was targeted to the map-
ping of tidal marshes using training sets that conform to a single class 
definition (e.g. Keith et al., 2022) and was developed via deep liter-
ature review and image interpretation. The image covariates were 
designed for the purpose of mapping tidal marshes (not all wetlands), 
and underpin a classification approach shown to perform well in 

F I G U R E  2 The area of tidal marsh in the countries with the largest extents. 95% confidence intervals were estimated by resampling the 
validation set (n = 1000) and using the 0.05 percentile of the commission and omission error estimates. The resampling procedure allowed 
for asymmetry in the confidence intervals around our tidal marsh extent estimates, which better represent the unevenness in the omission 
and commission errors identified in our map.
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    |  9 of 13WORTHINGTON et al.

coastal environments which is essential for resolving the uncertainty 
in tidal marsh distribution.

3.4  |  Protected areas

We estimate that over 45% (24,200 km2) of the world's 52,880 km2 
of tidal marshes are found within the boundaries of protected areas. 
This is approximately equivalent to the extent of mangroves that 
occur within protected areas (42%; Leal & Spalding, 2022) and greater 
than the current area of coral reefs (32%; Marine Conservation 
Institute, 2018) or tidal flats (31%; Hill et al., 2021). Such extensive 
protection of coastal ecosystems likely reflects a growing percep-
tion of their immense value for biodiversity and for people. In this 
regard, tidal marshes are among the few ecosystem types globally 
that already met the 30% protection threshold of Target 3 of the 
Kunming–Montreal Global Biodiversity Framework; however, other 
aspects of Target 3 such as protected areas being effectively man-
aged, well-connected and equitably governed are yet to be fully 
assessed (CBD, 2022). Further, it is important to be aware that if 
we could measure original tidal marsh extent, this figure would be 
considerably lower. The USA and Canada are critical in securing 
these levels of coverage with some 6600 and 3500 km2 in protected 
areas, or 35% and 41% of their national tidal marsh extent respec-
tively (Figure 3). In Europe, the proportional coverage is particularly 
high, with 14 European countries having >90% of their extant tidal 
marshes within their protected area network (Figure 3; Supporting 
Information Table S6), although it is noteworthy that our knowledge 
of losses in this region suggests that most countries have lost be-
tween 50% and 90% of historical cover (Airoldi & Beck, 2007).

3.5  |  Challenges and limitations

One of the main challenges in developing a global map of tidal 
marshes is the considerable variability in an ecosystem that is glob-
ally distributed, ranging from monospecific reedbeds, salt-tolerant 
grasses and low, succulent shrubs, and that exists under highly vari-
able environmental settings (Keith et  al., 2022). The habitats cap-
tured in our analysis maps are highly diverse: many are extensive 
near-continuous areas dominating the upper reaches of wide inter-
tidal frames. Elsewhere they are part of a tight mosaic with other 
habitats such as mangroves in tropical regions, or in complexes of 
dunes, lakes, marshes and drylands in the higher latitudes. In most 
areas, tidal flushing is likely to be regular, but in some settings, such 
as in microtidal regimes, and in intermittently closed and open la-
goons, such inundation may be more seasonal or intermittent.

In large part, the tidal marshes in our maps conform to the defi-
nition of salt marsh developed by Adam (2002), which is close to 
that of Keith et al. (2022) for “Coastal saltmarshes and reedbeds”. 
By contrast, the Ramsar Convention recognizes several habitat 
types within tidal marshes including salt marshes, salt meadows, 
saltings, tidal brackish and freshwater marshes (Department of 
Climate Change Energy the Environment and Water, 2021). Even 
so, any mapping practice of this sort is, in part, constrained by 
what can be distinguished remotely from imagery or associated 
interpretation. In this study, our mapped distribution includes a 
considerable number of brackish to freshwater tidal marshes 
alongside the more strongly halophytic communities that have 
been described by others. This is a potential limitation of the 
research as it is currently not possible to differentiate such sys-
tems based on salinity using remote sensing methods; however, 

F I G U R E  3 The percentage of the country or territory's tidal marsh extent within the boundaries of a protected area.
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10 of 13  |     WORTHINGTON et al.

it ensures that we incorporate the entirety of an ecotone that is 
rarely, if ever, a sharp boundary (Maltby & Barker, 2009; Phelan 
et al., 2011).

The use of a global training dataset (Murray, Bunting, et al., 2022) 
was intended to include tidal marsh ecosystems present across all 
latitudes and representing very different tidal and climatic regimes; 
however, training data for the model were most comprehensive 
in areas where more tidal marshes occur, primarily temperate re-
gions. This resulted in a potential bias in our prediction towards tidal 
marshes with physical features reflected by the training set and, 
aside from showing the distributional range of tidal marshes, it is 
noteworthy that our map also shows gaps—stretches of coastlines or 
regions where tidal marshes are rare to absent. These include many 
oceanic islands, but also some wet tropical regions in Southeast 
Asia. Gaps associated with hypersaline flats of northern Australia 
and the Middle East are also notable—these areas may have sparse 
salt marsh plants fringing the margins of sabkha ecosystems (Barth 
& Böer, 2002), but these areas of very sparse fringing marsh vegeta-
tion were specifically not included in the training set.

Assessment of the accuracy of our map indicated greater com-
mission errors in comparison to omissions errors (see also Murray, 
Worthington, et al., 2022), with high values in many tropical regions 
(Table  1). This highlights that our analysis is overpredicting tidal 
marsh presence (false positives), with the errors particularly prev-
alent in those areas lacking extensive data for model training (see 
above). Visual assessment of the map identified the chief causes of 
these false positives were human modification of the coastal zone 
for aquaculture and flooded agriculture such as rice fields, while in 
northern latitudes rocky shorelines proved challenging for the clas-
sifier. While manual correction removed many of these misclassifica-
tions, errors will still persist in the final product.

The latitudinal limits to our study do not affect the south-
ern hemisphere where tidal marsh is thought not to occur on the 
Antarctic continent (Greenberg et  al., 2006); however, they mean 
we underestimate the overall tidal marsh extent in the Arctic. Our 
map covers the southern parts of the Arctic realm in Canada, USA 
and Russia, the areas that are likely to host a large proportion of 
arctic tidal marshes because they are less impacted by extreme 
conditions of temperature, snow and ice cover, ice scour, high wave 
energy and isostatic uplift compared to the higher latitude coasts. 
Despite the gap in our coverage, the very large areas we show, no-
tably in southern Baffin Bay in Canada, mean that this realm has 
the second highest tidal marsh coverage, globally. Moving north, 
beyond the reach of our maps, it is likely that tidal marshes will be 
less extensive owing to the impact of ice abrasion and the harsh 
climate (Adam, 2002; Scott et al., 2014a). Zhang et al.  (2023) map 
4800 km2 in the high Arctic area; however, given the differences in 
our mapping approaches, we would predict a much smaller extent 
than this in these high latitudes. It is important to note that while 
the tidal marshes in these high northern latitudes tend to be limited 
in distribution with low diversity, they are extremely vulnerable to 
environmental change (Adam, 1990, 2002; Chapman, 1974; Martini 
et al., 2019; Sergienko, 2013).

4  |  CONCLUSIONS

This research presents the first consistent medium-resolution tidal 
marsh distribution map for the world. Compared to previous stud-
ies, it identifies tidal marshes in more countries and across a greater 
proportion of the world's coastline and provides the higher reso-
lution view of the extant distribution of this globally widespread 
coastal ecosystem. While there are opportunities to improve the 
map, particularly in the high Arctic and some tropical and arid re-
gions, it already provides an invaluable baseline against which to 
measure change and to quantify the value of important ecosystem 
services.

Historic losses of tidal marshes have been considerable, with 
some areas continuing to experience land use conversion and tidal 
marsh degradation. With a globally consistent method that focuses 
solely on tidal marshes to develop a strong baseline, it should be 
possible to use our map to identify recent losses, following the 
methods established for wetland ecosystems (Bunting et al., 2022; 
Campbell et  al.,  2022; Murray, Worthington, et  al.,  2022). Our 
map will, therefore, enable better tracking of ongoing changes, 
which may represent natural dynamics, the impacts of sea level 
rise (Saintilan et  al., 2022) or direct human modifications includ-
ing tidal marsh conversion or the impact of marsh restoration ef-
forts (Murray, Worthington, et al., 2022). Other work is ongoing to 
better quantify the carbon stocks in tidal marsh soils (e.g. Maxwell 
et al., 2023) and coastal protection functions, while it is hoped that 
others may be able to develop improved maps of fisheries enhance-
ment and other benefits. Tidal marshes, although spatially limited, 
represent ecosystems of critical importance to biodiversity and to 
people. By establishing an open-access, global baseline, we hope 
to encourage greater efforts to secure a long-term future for these 
ecosystems, and indeed for the millions of people who depend 
upon them.

ACKNOWLEDG EMENTS
This project benefited from funding from the Bezos Earth Fund and 
other donors supporting the Nature Conservancy. N.J.M. was sup-
ported by an Australian Research Council Discovery Early Career 
Research Award DE190100101. For the purpose of open access, 
the author has applied a Creative Commons Attribution (CC BY) li-
cence to any Author Accepted Manuscript version arising from this 
submission.

CONFLIC T OF INTERE S T S TATEMENT
The authors declare that they have no conflict of interest.

DATA AVAIL ABILIT Y S TATEMENT
The tidal marsh distribution data are viewable at https://​tomwo​rthin​
gton81.​users.​earth​engine.​app/​view/​globa​l-​tidal​-​marsh​-​distr​ibu-
tion and made available directly via Google Earth Engine (Asset ID: 
users/tomworthington81/SM_Global_2020/global_export_v2_6/
saltmarsh_v2_6). Raster tiles of the entire tidal marsh extent can be 
downloaded from https://​doi.​org/​10.​5281/​zenodo.​8420753.

 14668238, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/geb.13852 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [17/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://tomworthington81.users.earthengine.app/view/global-tidal-marsh-distribution
https://tomworthington81.users.earthengine.app/view/global-tidal-marsh-distribution
https://tomworthington81.users.earthengine.app/view/global-tidal-marsh-distribution
https://doi.org/10.5281/zenodo.8420753


    |  11 of 13WORTHINGTON et al.

ORCID
Thomas A. Worthington   https://orcid.org/0000-0002-8138-9075 

R E FE R E N C E S
Achanta, R., & Süsstrunk, S. (2017). Superpixels and polygons using sim-

ple non-iterative clustering. In 2017 IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR) (pp. 4895–4904). IEEE.

Adam, P. (1990). Saltmarsh ecology. In Cambridge studies in ecology: 
Saltmarsh ecology. Cambridge University Press.

Adam, P. (2002). Saltmarshes in a time of change. Environmental 
Conservation, 29(1), 39–61.

Adams, J. B. (2020). Salt marsh at the tip of Africa: Patterns, processes 
and changes in response to climate change. Estuarine, Coastal and 
Shelf Science, 237, 106650.

Airoldi, L., & Beck, M. W. (2007). Loss, status and trends for coastal 
marine habitats of Europe. Oceanography and Marine Biology: An 
Annual Review, 45, 345–405.

Allen, J. R. L. (2000). Morphodynamics of Holocene salt marshes: A re-
view sketch from the Atlantic and Southern North Sea coasts of 
Europe. Quaternary Science Reviews, 19(12), 1155–1231.

Almahasheer, H. (2021). Assessment of coastal salt marsh plants on the 
Arabian Gulf region. Saudi Journal of Biological Sciences, 28(10), 
5640–5646.

Almeida, D., Neto, C., Esteves, L. S., & Costa, J. C. (2014). The impacts of 
land-use changes on the recovery of saltmarshes in Portugal. Ocean 
and Coastal Management, 92, 40–49.

Amante, C., & Eakins, B. W. (2009). ETOPO1 1 arc-minute global relief 
model: Procedures, data sources and analysis. In NOAA Technical 
Memorandum NESDIS NGDC-24. National Ocean and Atmospheric 
Administration.

Baker, R., Taylor, M. D., Able, K. W., Beck, M. W., Cebrian, J., Colombano, 
D. D., Connolly, R. M., Currin, C., Deegan, L. A., Feller, I. C., Gilby, B. 
L., Kimball, M. E., Minello, T. J., Rozas, L. P., Simenstad, C., Eugene 
Turner, R., Waltham, N. J., Weinstein, M. P., Ziegler, S. L., … Staver, 
L. W. (2020). Fisheries rely on threatened salt marshes. Science, 
370(6517), 670–671.

Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., & 
Silliman, B. R. (2011). The value of estuarine and coastal ecosystem 
services. Ecological Monographs, 81(2), 169–193.

Barendregt, A. (2018). Tidal freshwater wetlands: The fresh dimension 
of the estuary. In C. M. Finlayson, G. R. Milton, R. C. Prentice, & N. 
C. Davidson (Eds.), The wetland book: II: Distribution, description, and 
conservation (pp. 155–168). Springer.

Barth, H.-J., & Böer, B. (Eds.). (2002). Sabkha ecosystems. Volume I: The 
Arabian Peninsula and adjacent countries. Springer.

Belgiu, M., & Drăgu, L. (2016). Random forest in remote sensing: A 
review of applications and future directions. ISPRS Journal of 
Photogrammetry and Remote Sensing, 114, 24–31.

Berger, M., Moreno, J., Johannessen, J. A., Levelt, P. F., & Hanssen, R. F. 
(2012). ESA's sentinel missions in support of Earth system science. 
Remote Sensing of Environment, 120, 84–90.

Bunting, P. (2020). Class accuracy. https://​github.​com/​remot​esens​ingin​
fo/​class​accuracy

Bunting, P., Rosenqvist, A., Hilarides, L., Lucas, R. M., Thomas, N., 
Tadono, T., Worthington, T. A., Spalding, M., Murray, N. J., & 
Rebelo, L.-M. (2022). Global mangrove extent change 1996-2020: 
Global Mangrove Watch version 3.0. Remote Sensing, 14(15), 3657.

Bunting, P., Rosenqvist, A., Lucas, R., Rebelo, L.-M., Hilarides, L., Thomas, 
N., Hardy, A., Itoh, T., Shimada, M., & Finlayson, C. (2018). The 
Global Mangrove Watch—A new 2010 global baseline of mangrove 
extent. Remote Sensing, 10(10), 1669.

Campbell, A. D., Fatoyinbo, L., Goldberg, L., & Lagomasino, D. (2022). 
Global hotspots of salt marsh change and carbon emissions. Nature, 
612(7941), 701–706.

Cavanaugh, K. C., Dangremond, E. M., Doughty, C. L., Williams, A. P., 
Parker, J. D., Hayes, M. A., Rodriguez, W., & Feller, I. C. (2019). 
Climate-driven regime shifts in a mangrove–salt marsh ecotone 
over the past 250 years. Proceedings of the National Academy of 
Sciences, 116(43), 21602–21608.

Cavanaugh, K. C., Kellner, J. R., Forde, A. J., Gruner, D. S., Parker, J. D., 
Rodriguez, W., & Feller, I. C. (2014). Poleward expansion of man-
groves is a threshold response to decreased frequency of extreme 
cold events. Proceedings of the National Academy of Sciences of the 
United States of America, 111(2), 723–727.

CBD. (2022). The Kunming-Montreal global biodiversity framework. 
https://​www.​cbd.​int/​doc/c/​e6d3/​cd1d/​daf66​3719a​03902​a9b11​
6c34/​cop-​15-​l-​25-​en.​pdf

Chapman, V. J. (1974). Salt marshes and salt deserts of the world. Verlag 
von J Cramer.

Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., & Lynch, J. C. (2003). 
Global carbon sequestration in tidal, saline wetland soils. Global 
Biogeochemical Cycles, 17(4), 1111.

Costanza, R., Pérez-Maqueo, O., Martinez, M. L., Sutton, P., Anderson, S. 
J., & Mulder, K. (2008). The value of coastal wetlands for hurricane 
protection. Ambio, 37(4), 241–248.

Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., 
& Lawler, J. J. (2007). Random forests for classification in ecology. 
Ecology, 88(11), 2783–2792.

Davy, A. J., Bakker, J. P., & Figueroa, M. E. (2009). Human modification 
of European salt marshes. In B. R. Silliman, T. Grosholzand, & M. D. 
Bertness (Eds.), Human impacts on salt marshes: A global perspective 
(pp. 311–336). University of California Press.

Department of Climate Change Energy the Environment and Water. 
(2021). Ramsar wetland type classification. https://​www.​envir​on-
ment.​gov.​au/​water/​​wetla​nds/​ramsar/​wetla​nd-​type-​class​ifica​tion

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, 
G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., 
Münkemüller, T., Mcclean, C., Osborne, P. E., Reineking, B., 
Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. (2013). 
Collinearity: A review of methods to deal with it and a simulation 
study evaluating their performance. Ecography, 36(1), 27–46.

Duarte, C. M., Middelburg, J. J., & Caraco, N. (2005). Major role of marine 
vegetation on the oceanic carbon cycle. Biogeosciences, 2, 1–8.

Elvidge, C. D., Baugh, K., Zhizhin, M., Hsu, F. C., & Ghosh, T. (2017). VIIRS 
night-time lights. International Journal of Remote Sensing, 38(21), 
5860–5879.

Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated 
Water Extraction Index: A new technique for surface water mapping 
using Landsat imagery. Remote Sensing of Environment, 140, 23–35.

Flanders Marine Institute. (2020). Union of the ESRI Country shapefile 
and the Exclusive Economic Zones (version 3). https://​www.​marin​
eregi​ons.​org/

Friess, D. A., Yando, E. S., Alemu, J. B., Wong, L.-W., Soto, S. D., & Bhatia, 
N. (2020). Ecosystem services and disservices of mangrove forests 
and salt marshes. Oceanography and Marine Biology, 58, 107–142.

Fu, B., He, X., Yao, H., Liang, Y., Deng, T., He, H., Fan, D., Lan, G., & He, 
W. (2022). Comparison of RFE-DL and stacking ensemble learning 
algorithms for classifying mangrove species on UAV multispec-
tral images. International Journal of Applied Earth Observation and 
Geoinformation, 112, 102890.

Gedan, K. B., & Silliman, B. R. (2009). Patterns of salt marsh loss within 
coastal regions of North America: Presettlement to present. In B. 
R. Silliman, T. Grosholzand, & M. D. Bertness (Eds.), Human impacts 
on salt marshes: A global perspective (pp. 253–265). University of 
California Press.

Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., Masek, 
J., & Duke, N. (2011). Status and distribution of mangrove forests of 
the world using Earth observation satellite data. Global Ecology and 
Biogeography, 20(1), 154–159.

 14668238, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/geb.13852 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [17/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-8138-9075
https://orcid.org/0000-0002-8138-9075
https://github.com/remotesensinginfo/classaccuracy
https://github.com/remotesensinginfo/classaccuracy
https://www.cbd.int/doc/c/e6d3/cd1d/daf663719a03902a9b116c34/cop-15-l-25-en.pdf
https://www.cbd.int/doc/c/e6d3/cd1d/daf663719a03902a9b116c34/cop-15-l-25-en.pdf
https://www.environment.gov.au/water/wetlands/ramsar/wetland-type-classification
https://www.environment.gov.au/water/wetlands/ramsar/wetland-type-classification
https://www.marineregions.org/
https://www.marineregions.org/


12 of 13  |     WORTHINGTON et al.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & 
Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial 
analysis for everyone. Remote Sensing of Environment, 202, 18–27.

Greenberg, R., Maldonado, J. E., Droege, S., McDonald, M. V., & Donald, 
M. V. M. C. (2006). Tidal marshes: A global perspective on the evo-
lution and conservation of their terrestrial vertebrates. Bioscience, 
56(8), 675–685.

Gu, J., Luo, M., Zhang, X., Christakos, G., Agusti, S., Duarte, C. M., & Wu, 
J. (2018). Losses of salt marsh in China: Trends, threats and man-
agement. Estuarine, Coastal and Shelf Science, 214, 98–109.

Hanson, J. O. (2022). Wdpar: Interface to the world database on pro-
tected areas. Journal of Open Source Software, 7(78), 4594.

Hatje, V., Copertino, M., Patire, V. F., Ovando, X., Ogbuka, J., Johnson, B. 
J., Kennedy, H., Masque, P., & Creed, J. C. (2023). Vegetated coastal 
ecosystems in the Southwestern Atlantic Ocean are an unexploited 
opportunity for climate change mitigation. Communications Earth & 
Environment, 4(1), 1–10.

Hena, M. K. A., Short, F. T., Sharifuzzaman, S. M., Hasan, M., Rezowan, 
M., & Ali, M. (2007). Salt marsh and seagrass communities of 
Bakkhali Estuary, Cox's Bazar, Bangladesh. Estuarine, Coastal and 
Shelf Science, 75(1–2), 72–78.

Hill, N. K., Woodworth, B. K., Phinn, S. R., Murray, N. J., & Fuller, R. A. 
(2021). Global protected-area coverage and human pressure on 
tidal flats. Conservation Biology, 35(3), 933–943.

Hopkinson, C. S., Cai, W. J., & Hu, X. (2012). Carbon sequestration in 
wetland dominated coastal systems—A global sink of rapidly dimin-
ishing magnitude. Current Opinion in Environmental Sustainability, 
4(2), 186–194.

Hu, Y., Tian, B., Yuan, L., Li, X., Huang, Y., Shi, R., Jiang, X., Wang, L., & 
Sun, C. (2021). Mapping coastal salt marshes in China using time se-
ries of Sentinel-1 SAR. ISPRS Journal of Photogrammetry and Remote 
Sensing, 173, 122–134.

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. 
(2002). Overview of the radiometric and biophysical performance 
of the MODIS vegetation indices. Remote Sensing of Environment, 
83(1–2), 195–213.

Isacch, J. P., Costa, C. S. B., Rodriguez-Gallego, L., Conde, D., Escapa, M., 
Gagliardini, D. A., & Iribarne, O. O. (2006). Distribution of saltmarsh 
plant communities associated with environmental factors along 
a latitudinal gradient on the south-west Atlantic coast. Journal of 
Biogeography, 33, 888–900.

Jänes, H., Macreadie, P. I., Zu Ermgassen, P. S. E., Gair, J. R., Treby, S., 
Reeves, S., Nicholson, E., Ierodiaconou, D., & Carnell, P. (2020). 
Quantifying fisheries enhancement from coastal vegetated ecosys-
tems. Ecosystem Services, 43, 101105.

Keith, D. A., Ferrer-Paris, J. R., Nicholson, E., Bishop, M. J., Polidoro, B. 
A., Ramirez-Llodra, E., Tozer, M. G., Nel, J. L., Mac Nally, R., Gregr, 
E. J., Watermeyer, K. E., Essl, F., Faber-Langendoen, D., Franklin, 
J., Lehmann, C. E. R., Etter, A., Roux, D. J., Stark, J. S., Rowland, J. 
A., … Kingsford, R. T. (2022). A function-based typology for Earth's 
ecosystems. Nature, 610(7932), 513–518.

Kuenzer, C., Bluemel, A., Gebhardt, S., Quoc, T. V., & Dech, S. (2011). 
Remote sensing of mangrove ecosystems: A review. Remote Sensing, 
3(5), 878–928.

Kuhn, M. (2021). caret: Classification and regression training. R package 
version 6.0-88 https://​CRAN.​R-​proje​ct.​org/​packa​ge=​caret​

Leal, M., & Spalding, M. D. (2022). The state of the world's mangroves 2022. 
Global Mangrove Alliance.

Li, J., Knapp, D. E., Fabina, N. S., Kennedy, E. V., Larsen, K., Lyons, M. B., 
Murray, N. J., Phinn, S. R., Roelfsema, C. M., & Asner, G. P. (2020). 
A global coral reef probability map generated using convolutional 
neural networks. Coral Reefs, 39(6), 1805–1815.

Lopez-Portillo, J., & Ezcurra, E. (1989). Zonation in mangrove and salt 
marsh vegetation at Laguna de Mecoacan, Mexico. Biotropica, 
21(2), 107–114.

Lyons, M. B., Keith, D. A., Phinn, S. R., Mason, T. J., & Elith, J. (2018). A 
comparison of resampling methods for remote sensing classifica-
tion and accuracy assessment. Remote Sensing of Environment, 208, 
145–153.

Lyons, M. B., Roelfsema, C. M., Kennedy, E. V., Kovacs, E. M., Borrego-
Acevedo, R., Markey, K., Roe, M., Yuwono, D. M., Harris, D. L., 
Phinn, S. R., Asner, G. P., Li, J., Knapp, D. E., Fabina, N. S., Larsen, 
K., Traganos, D., & Murray, N. J. (2020). Mapping the world's coral 
reefs using a global multiscale Earth observation framework. 
Remote Sensing in Ecology and Conservation, 6(4), 557–568.

Main-Korn, M., Pflug, B., Louis, J., Debaecker, V., Müller-Wilm, U., & 
Gascon, F. (2017). Sen2Cor for Sentinel-2. In Proceedings Volume 
10427, Image and Signal Processing for Remote Sensing XXIII 
(1042704). SPIE Remote Sensing.

Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Homayouni, S., & Gill, E. 
(2019). The first wetland inventory map of Newfoundland at a spatial 
resolution of 10 m using sentinel-1 and sentinel-2 data on the Google 
Earth Engine cloud computing platform. Remote Sensing, 11, 43.

Maltby, E., & Barker, M. T. (2009). The wetlands handbook. Wiley-Blackwell.
Marine Conservation Institute. (2018). Status Watch: How Well Are 

Coral Reefs Protected Around the World? https://​marin​e-​conse​
rvati​on.​org/​on-​the-​tide/​how-​well-​are-​coral​-​reefs​-​prote​cted/

Martini, I. P., Morrison, R. I. G., Abraham, K. F., Sergienko, L. A., & Jefferies, 
R. L. (2019). Northern polar coastal wetlands: Development, struc-
ture, and land use. In G. M. E. Perillo, E. Wolanski, D. R. Cahoon, 
& C. S. Hopkinson (Eds.), Coastal wetlands: An integrated ecosystem 
approach (pp. 153–186). Elsevier.

Maxwell, T. L., Rovai, A. S., Adame, M. F., Adams, J. B., Álvarez-Rogel, J., 
Austin, W. E. N., Beasy, K., Boscutti, F., Böttcher, M. E., Bouma, T. 
J., Bulmer, R. H., Burden, A., Burke, S. A., Camacho, S., Chaudhary, 
D. R., Chmura, G. L., Copertino, M., Cott, G. M., Craft, C., … 
Worthington, T. A. (2023). Global dataset of soil organic carbon in 
tidal marshes. Scientific Data, 10(1), 797.

McLeod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. 
M., Lovelock, C. E., Schlesinger, W. H., & Silliman, B. R. (2011). A 
blueprint for blue carbon: Toward an improved understanding of 
the role of vegetated coastal habitats in sequestering CO2. Frontiers 
in Ecology and the Environment, 9(10), 552–560.

Mcowen, C. J., Weatherdon, L. V., Van Bochove, J. W., Sullivan, E., 
Blyth, S., Zockler, C., Stanwell-Smith, D., Kingston, N., Martin, C. 
S., Spalding, M., & Fletcher, S. (2017). A global map of saltmarshes. 
Biodiversity Data Journal, 5(1), e11764.

Melville, D. S., Chen, Y., & Ma, Z. (2016). Shorebirds along the Yellow Sea 
coast of China face an uncertain future—A review of threats. Emu, 
116(2), 100–110.

Mitsch, W. J., & Gosselink, J. G. (2015). Wetlands. John Wiley & Sons, Inc.
Möller, I., Kudella, M., Rupprecht, F., Spencer, T., Paul, M., Van Wesenbeeck, 

B. K., Wolters, G., Jensen, K., Bouma, T. J., Miranda-Lange, M., & 
Schimmels, S. (2014). Wave attenuation over coastal salt marshes 
under storm surge conditions. Nature Geoscience, 7(10), 727–731.

Murray, N. J., Bunting, P., Canto, R. F., Hilarides, L., Kennedy, E. V., Lucas, 
R. M., Lyons, M. B., Navarro, A., Roelfsema, C. M., Rosenqvist, A., 
Spalding, M. D., Toor, M., & Worthington, T. A. (2022). coastTrain: 
A global reference library for coastal ecosystems. Remote Sensing, 
14(22), 5766.

Murray, N. J., Phinn, S. R., DeWitt, M., Ferrari, R., Johnston, R., Lyons, 
M. B., Clinton, N., Thau, D., & Fuller, R. A. (2019). The global distri-
bution and trajectory of tidal flats. Nature, 565(7738), 222–225.

Murray, N. J., Worthington, T. A., Bunting, P., Duce, S., Hagger, V., Lovelock, 
C. E., Lucas, R., Saunders, M. I., Sheaves, M., Spalding, M., Waltham, 
N. J., & Lyons, M. B. (2022). High-resolution mapping of losses and 
gains of Earth's tidal wetlands. Science, 376(6594), 744–749.

Narayan, S., Beck, M. W., Wilson, P., Thomas, C. J., Guerrero, A., 
Shepard, C. C., Reguero, B. G., Franco, G., Ingram, J. C., & 
Trespalacios, D. (2017). The value of coastal wetlands for flood 

 14668238, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/geb.13852 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [17/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://cran.r-project.org/package=caret
https://marine-conservation.org/on-the-tide/how-well-are-coral-reefs-protected/
https://marine-conservation.org/on-the-tide/how-well-are-coral-reefs-protected/


    |  13 of 13WORTHINGTON et al.

damage reduction in the Northeastern USA. Scientific Reports, 7, 
9463.

Neumann, B., Vafeidis, A. T., Zimmermann, J., & Nicholls, R. J. (2015). 
Future coastal population growth and exposure to sea-level rise and 
coastal flooding—A global assessment. PLoS ONE, 10(6), e0131375.

Nicodemus, K. K., & Malley, J. D. (2009). Predictor correlation impacts 
machine learning algorithms: Implications for genomic studies. 
Bioinformatics, 25(15), 1884–1890.

Pendleton, L., Donato, D. C., Murray, B. C., Crooks, S., Jenkins, W. A., 
Sifleet, S., Craft, C., Fourqurean, J. W., Kauffman, J. B., Marbà, 
N., Megonigal, P., Pidgeon, E., Herr, D., Gordon, D., & Baldera, A. 
(2012). Estimating global “blue carbon” emissions from conversion 
and degradation of vegetated coastal ecosystems. PLoS ONE, 7(9), 
e43542.

Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J.-M. M., Tucker, C. J., & 
Stenseth, N. C. (2005). Using the satellite-derived NDVI to assess 
ecological responses to environmental change. Trends in Ecology & 
Evolution, 20(9), 503–510.

Phelan, N., Shaw, A., & Baylis, A. (2011). The extent of saltmarsh in England 
and Wales: 2006–2009. Environment Agency.

R Core Team. (2023). R: A language and environment for statistical comput-
ing (4.3.2). R Foundation for Statistical Computing. https://​www.​
r-​proje​ct.​org/

Rodriguez, W., Feller, I. C., & Cavanaugh, K. C. (2016). Spatio-temporal 
changes of a mangrove–saltmarsh ecotone in the northeastern 
coast of Florida, USA. Global Ecology and Conservation, 7, 245–261.

Saintilan, N. (2009). Distribution of Australian saltmarsh plants. In N. 
Saintilan (Ed.), Australian saltmarsh ecology (pp. 23–39). CSIRO.

Saintilan, N., Kovalenko, K. E., Guntenspergen, G., Rogers, K., Lynch, J. C., 
Cahoon, D. R., Lovelock, C. E., Friess, D. A., Ashe, E., Krauss, K. W., 
Cormier, N., Spencer, T., Adams, J., Raw, J., Ibanez, C., Scarton, F., 
Temmerman, S., Meire, P., Maris, T., … Khan, N. (2022). Constraints 
on the adjustment of tidal marshes to accelerating sea level rise. 
Science, 377(6605), 523–527.

Schuerch, M., Spencer, T., Temmerman, S., Kirwan, M. L., Wolff, C., Lincke, 
D., McOwen, C. J., Pickering, M. D., Reef, R., Vafeidis, A. T., Hinkel, 
J., Nicholls, R. J., & Brown, S. (2018). Future response of global 
coastal wetlands to sea-level rise. Nature, 561(7722), 231–234.

Schultz, M., Clevers, J. G. P. W., Carter, S., Verbesselt, J., Avitabile, V., 
Quang, H. V., & Herold, M. (2016). Performance of vegetation 
indices from Landsat time series in deforestation monitoring. 
International Journal of Applied Earth Observation and Geoinformation, 
52, 318–327.

Scott, D. B., Frail-Gauthier, J., & Mudie, P. J. (2014a). Coastal wetlands 
worldwide: Climatic zonation, ecosystems and biogeography. In 
Coastal wetlands of the world: Geology, ecology, distribution and appli-
cations (pp. 57–71). Cambridge University Press.

Scott, D. B., Frail-Gauthier, J., & Mudie, P. J. (2014b). Physical aspects: 
Geological, oceanic and climatic conditions. In Coastal wetlands of 
the world: Geology, ecology, distribution and applications (pp. 5–16). 
Cambridge University Press.

Sergienko, L. (2013). Salt marsh flora and vegetation of the Russian 
Arctic coasts. Czech Polar Reports, 3(1), 30–37.

Shepard, C. C., Crain, C. M., & Beck, M. W. (2011). The protective role of 
coastal marshes: A systematic review and meta-analysis. PLoS ONE, 
6(11), e27374.

Shi-lun, Y., & Ji-yu, C. (1995). Coatal salt marshes and mangrove swamps in 
China. Chinese Journal of Oceanology and Limnology, 13(4), 318–324.

Silliman, B. R., Van Koppel, J. D., Bertness, M. D., Stanton, L. E., & 
Mendelssohn, I. A. (2005). Drought, snails, and large-scale die-off 
of Southern U.S. salt marshes. Science, 310(5755), 1803–1806.

Spalding, M. D., Fox, H. E., Allen, G. R., Davidson, N., Ferdaña, Z. 
A., Finlayson, M., Halpern, B. S., Jorge, M. A., Lombana, A., 
Lourie, S. A., Martin, K. D., McManus, E., Molnar, J., Recchia, 
C. A., & Robertson, J. (2007). Marine ecoregions of the world: 

A bioregionalization of coastal and shelf areas. Bioscience, 57(7), 
573–583.

Tiner, R. W., & Milton, G. R. (2018). Estuarine marsh: An overview. In C. 
M. Finlayson, G. R. Milton, R. C. Prentice, & N. C. Davidson (Eds.), 
The wetland book: II: Distribution, description, and conservation (pp. 
55–72). Springer.

U.S. Fish and Wildlife Service. (2021). National Wetlands Inventory web-
site. U.S. Department of the Interior, Fish and Wildlife Service.

UNEP-WCMC and IUCN. (2023). Protected planet: The world database 
on protected areas (WDPA) [Online], May 2023. UNEP-WCMC and 
IUCN. www.​prote​ctedp​lanet.​net

Veci, L., Prats-Iraola, P., Scheiber, R., Collard, F., Fomferra, N., & Engdahl, M. 
(2014). The Sentinel-1 toolbox. In Proceedings of the IEEE International 
Geoscience and Remote Sensing Symposium (IGARSS) (pp. 1–3). IEEE.

Viswanathan, C., Purvaja, R., Jeevamani, J. J., Deepak Samuel, V., Sankar, 
R., Abhilash, K. R., Geevarghese, G. A., Muruganandam, R., Gopi, 
M., Raja, S., Das, R. R., Patro, S., Krishnan, P., & Ramesh, R. (2020). 
Salt marsh vegetation in India: Species composition, distribution, 
zonation pattern and conservation implications. Estuarine, Coastal 
and Shelf Science, 242, 106792.

Wright, M. N., & Ziegler, A. (2017). Ranger: A fast implementation of 
random forests for high dimensional data in C++ and R. Journal of 
Statistical Software, 77(1), 1–17.

Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O'Loughlin, F., 
Neal, J. C., Sampson, C. C., Kanae, S., & Bates, P. D. (2017). A high-
accuracy map of global terrain elevations. Geophysical Research 
Letters, 44(11), 5844–5853.

Zhang, X., Liu, L., Zhao, T., Chen, X., Lin, S., Wang, J., Mi, J., & Liu, 
W. (2023). GWL_FCS30: A global 30 m wetland map with a fine 
classification system using multi-sourced and time-series re-
mote sensing imagery in 2020. Earth System Science Data, 15(1), 
265–293.

Zheng, S., Shao, D., & Sun, T. (2018). Productivity of invasive saltmarsh 
plant Spartina alterniflora along the coast of China: A meta-analysis. 
Ecological Engineering, 117, 104–110.

zu Ermgassen, P. S. E., Baker, R., Beck, M. W., Dodds, K., zu Ermgassen, S. 
O. S. E., Mallick, D., Taylor, M. D., & Turner, R. E. (2021). Ecosystem 
services: Delivering decision-making for salt marshes. Estuaries and 
Coasts, 44(6), 1691–1698.

BIOSKE TCH

The Global Coastal Wetlands Lab's focus is to provide research 
with furthers biodiversity conservation and restoration of 
coastal wetlands, including quantifying their value to people. The 
research is predominately data-driven analyses at landscape and 
global scales.

SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.

How to cite this article: Worthington, T. A., Spalding, M., 
Landis, E., Maxwell, T. L., Navarro, A., Smart, L. S., & Murray, 
N. J. (2024). The distribution of global tidal marshes from 
Earth observation data. Global Ecology and Biogeography, 00, 
e13852. https://doi.org/10.1111/geb.13852

 14668238, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/geb.13852 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [17/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.r-project.org/
https://www.r-project.org/
http://www.protectedplanet.net
https://www.globalcoastalwetlands.com/
https://doi.org/10.1111/geb.13852

	The distribution of global tidal marshes from Earth observation data
	Abstract
	1|INTRODUCTION
	2|MATERIALS AND METHODS
	2.1|Covariate data
	2.2|Training data
	2.3|Tidal marsh distribution model
	2.3.1|Model tuning
	2.3.2|Post-­processing
	2.3.3|Validation
	2.3.4|Extent statistics


	3|RESULTS AND DISCUSSION
	3.1|Global and regional estimates
	3.2|National estimates
	3.3|Comparison to other global estimates
	3.4|Protected areas
	3.5|Challenges and limitations

	4|CONCLUSIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES
	BIOSKETCH


