ENVIRONMENTAL RESEARCH
LETTERS

TOPICAL REVIEW « OPEN ACCESS You may also like

- Ensemble analysis of complex network

Shared pooled mobility: expert review from nine Dloperties—an MGMC approach

Oskar Pfeffer, Nora Molkenthin and Frank

disciplines and implications for an emerging Hellmann
transdisciplinary research agenda *Sdapive soppoping

Charlotte Lotze, Philip Marszal, Malte
Schroder et al.

To cite this article: Felix Creutzig et al 2024 Environ. Res. Lett. 19 053004
- Sufficiency in passenger transport and its
potential for lowering energy demand
M Arnz and A Krumm

View the article online for updates and enhancements.

BREATH

BIOPSY
ﬁ Main talks

confere nce gm’é 6th November

Early career
sessions

Join the conference to explore the latest
challenges and advances in breath research,,\

you could even present your latest work!

@ Posters

Register now for free!

This content was downloaded from IP address 147.125.41.246 on 23/05/2024 at 08:18


https://doi.org/10.1088/1748-9326/ad3cf5
/article/10.1088/1367-2630/aca955
/article/10.1088/1367-2630/aca955
/article/10.1088/2632-072X/ad370a
/article/10.1088/2632-072X/ad370a
/article/10.1088/1748-9326/acea98
/article/10.1088/1748-9326/acea98
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjss08RJUYQBj9R_BBXDw9hiRZ_EIfJWOrxy_i_pf_9-uHiIQAsMzaqV1pJsUZQro-9rZNQB9F3q5cuwUr3pigurZ12McGJ7UYir-tQxUdJVJBSe92QaVe1iQNhOsG9v9wOkDO6dFKPeOZpgW0bXmFEGGqhyk45bcgyhVJrKmV7GInue7mjxurMxQ12LCu5FAbLQK8LM1ehwwK3zp5DRWdsv0Zp7cXc8-XIv6QSBb7rftMImo9RBx1uzMVBn9mpTkQ9aMjIChYRXRjTC53G4KvLNBIhLKCXUoC8-RofY4nMN_7BHba25YKSBsa0vZnnd2HRwUsmn217_1k8cHaAp4-6d70T-g0ZC1&sig=Cg0ArKJSzOg292nIaBrA&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://www.owlstonemedical.com/about/events/breath-biopsy-conference-2024/%3Futm_source%3Diop%26utm_medium%3Dad-lg%26utm_campaign%3Dbbcon-bbcon24-reg%26utm_term%3Diop-journal

I0P Publishing

@ CrossMark

OPEN ACCESS

RECEIVED
24 June 2023

REVISED
20 February 2024

ACCEPTED FOR PUBLICATION
10 April 2024

PUBLISHED
13 May 2024

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOL

Environ. Res. Lett. 19 (2024) 053004

ENVIRONMENTAL RESEARCH
LETTERS

TOPICAL REVIEW

https://doi.org/10.1088/1748-9326/ad3cf5

Shared pooled mobility: expert review from nine disciplines and
implications for an emerging transdisciplinary research agenda

Felix Creutzig">'"*(, Alexander Schmaus™"'**

, Eva Ayaragarnchanakul'?, Sophia Becker’,

Giacomo Falchetta”, Jiawei Hu'?, Mirko Goletz’, Adeline Guéret’, Kai Nagel’, Jonas Schild’®,

Wolf-Peter Schill’, Tilmann Schlenther’

Technical University Berlin, Berlin, Germany

Technische Hochschule K6In, Cologne, Germany

C ® N U A W N~

10 Equal contributions as first authors.
* Authors to whom any correspondence should be addressed.

Potsdam Institute for Climate Impact Research, Potsdam, Germany
German Institute for Economic Research (DIW Berlin), Berlin, Germany
Institute of Transport Research, German Aerospace Center, Berlin, Germany

and Nora Molkenthin’

Mercator Research Institute on Global Commons and Climate Change, Berlin, Germany

Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Venice, Italy
International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
Research Institute for Sustainability—Helmholtz Centre Potsdam, Potsdam, Germany

E-mail: creutzig@mcc-berlin.net and alexander.schmaus@pik-potsdam.de

Keywords: ride-pooling, shared pooled mobility, sustainable mobility, transdisciplinary approach, climate change mitigation

Abstract

Shared pooled mobility has been hailed as a sustainable mobility solution that uses digital
innovation to efficiently bundle rides. Multiple disciplines have started investigating and analyzing
shared pooled mobility systems. However, there is a lack of cross-community communication
making it hard to build upon knowledge from other fields or know which open questions may be
of interest to other fields. Here, we identify and review 9 perspectives: transdisciplinary social
sciences, social physics, transport simulations, urban and energy economics, psychology, climate
change solutions, and the Global South research and provide a common terminology. We identify
more than 25 000 papers, with more than 100 fold variation in terms of literature count between
research perspectives. Our review demonstrates the intellectual attractivity of this as a novel
perceived mode of transportation, but also highlights that real world economics may limit its
viability, if not supported with concordant incentives and regulation. We then sketch out
cross-disciplinary open questions centered around (1) optimal configuration of ride-pooling
systems, (2) empirical studies, and (3) market drivers and implications for the economics of
ride-pooling. We call for researchers of different disciplines to actively exchange results and views

to advance a transdisciplinary research agenda.

1. Introduction

Low-energy demand has been suggested as a key
strategy to achieve climate change mitigation while
avoiding risking high risk technologies such as
BECCS (Grubler et al 2018). A central thought of this
approach is to reduce primary energy while main-
taining or improving service levels. This requires
redesigning systems to increase the maximum
useful energy that is extracted from the system
(exergy). This is particularly relevant for land trans-
port, where low motor efficiencies (of the internal

© 2024 The Author(s). Published by IOP Publishing Ltd

combustion engine) meet low exergy (less than 100 kg
human transported by often more than 2 t of steel).
Increasing the occupancy of cars and encouraging
individuals to transition from their private vehicles
to shared mobility options are hence central tenets of
low-energy demand worlds.

In this sense, shared pooled mobility, which
refers to the sharing of vehicles among multiple pas-
sengers, has the potential to significantly contrib-
ute to low-carbon and sustainable mobility (Wilson
et al 2020, Creutzig et al 2022). It can also help
make transportation more affordable, accessible, and
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convenient for people who do not own a car or
prefer not to drive (Cohen and Shaheen 2021).
However, despite all promises, there is no sign of rel-
evant take up of pooled mobility. The question is
why so? And: are there ways to overcome barriers
and lock-ins? We argue that these questions can be
best answered by a transdisciplinary research agenda
from different disciplines that study pooled shared
mobility.

Currently, despite the multi-disciplinary interest
in shared pooled mobility, there is a lack of collabora-
tion and communication between these different dis-
ciplines. This can lead to fragmented research agen-
das and missed opportunities to address the complex
challenges of sustainable mobility. There is hence a
need for a more transdisciplinary approach to shared
pooled mobility research to combine the results of
these different disciplines.

Here, we bring together recent research progress
from very different fields on shared pooled mobility
to gain insights into which approaches and answers
already exist and which open questions remain. We
see the main purpose of this research agenda as a road
map for academic researchers interested in transdis-
ciplinary advances on shared pooled mobility, thus
advancing a new epistemic community that gener-
ates policy-relevant insights. Our contribution fur-
ther serves as an overview of the current state-of-the-
art for businesses and municipal planners wishing to
implement an efficient, sustainable and convenient
service. The paper also helps to aggregate the assess-
ment of ride-pooling as a socio-technical innovation,
e.g. for IPCC reports.

2. Background

Shared pooled mobility gains substantial interest and
has already been evaluated in several reviews from
different perspectives. Shared pooled mobility is dis-
tinct from other smart mobility concepts (see box 1
for definitions).

Box 1. Definition.

Ride bundling can be implemented in a wide
range of ways and different terms exist to dis-
tinguish between the specific modalities of the
implementation.

Mobility-as-a-Service (Maa$S): an approach that
integrates different mobility services into a single
platform. Users book an entire trip across trans-
port modes.

Ride-hailing/Ride-sourcing: mostly unregu-
lated taxi services. The trips are usually booked
with an app.
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Ride-pooling: ride-pooling describes systems of
centrally operated, flexibly planned, on-demand
trip bundling. It aims to transport more than one
person at the same time.

Ride-sharing: ride-sharing includes ride-
pooling but also personal vehicle sharing, where
individuals offer to take an additional person
with them, for example to share fuel costs.

Paratransit: ad-hoc on-sight ride-sharing
without central planning. Often informal
systems.

Shared pooled mobility: shared pooled mobility
describes ride-sharing in cars and vans, generally
intended to increase the occupancy of vehicles.

Shared mobility: shared mobility is the most
general term including all ways of sharing
vehicles, bikes or trips. It includes merely shar-
ing the means of transport as, for example,
car-sharing or bikesharing. Thus, shared pooled
mobility is a subset of shared mobility.

In the literature, these differences are not con-
sistently distinguished. Especially ride-sharing,
ride-pooling,and ridesourcing are often used
synonymously.

Shared pooled mobility is often seen as one
part of mobility-as-a-Service (MaaS). The general
concept of MaaS$ is that different mobility services
are pooled into one platform. Customers then buy
mobility packages instead of trips with a single trans-
port mode. A literature review, divided into two
parts reviewing research about travel patterns with
and without considering MaaS, is found in (Durand
et al 2018). Notably, the authors propose a research
agenda, including also a paragraph about shared
pooled mobility, and thus, align with our review.
Another examination of MaaS is presented by (Maas
2022), wherein the author compares and connects the
findings from 127 publications. This review specific-
ally highlights research gaps, such as the exploration
of traffic flow dynamics in the context of widespread
MaaS adoption.

A review about the possibilities of MaaS in
developing countries can be found in (Dzisi et al
2022). Additionally, the authors propose a specific
business model for Maa$S service in combination
with paratransit. In (Victory and Ahmed 2023), the
authors reviewed specifically paratransit and mode
choice decisions. A review on politics regarding
paratransit is given in (Klopp 2021). The author
shows that paratransit was ignored by transport-
ation planners until just recently, but, as this is
changing, a shift from paratransit to transit can be
observed.
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In (Mitropoulos et al 2021) an extensive review
about ride-sharing can be found. The authors
combined a literature review with an exploration
of websites of popular ride-sharing operators. A spe-
cific review about the development of the shared
pooled mobility market in China, the corresponding
changes in travel patterns and its influence on the
reachability of environmental goals can be found in
(Hu and Creutzig 2022). In (Berbeglia et al 2010)
the authors present a technical review, highlight-
ing especially the dynamic routing problem, which
is the underlying problem when matching similar
trips.

3. Methods

We advanced this paper in four methodological steps.
We started with a workshop on shared pooled mobil-
ity, which was followed by the development of a trans-
disciplinary research agenda based on the research
area of all contributors. Thirdly, we created an extens-
ive literature review based on the perspectives derived
in the second step. In the fourth step we combined the
results of the three steps before. The four steps will be
explained in more detail in the following paragraphs.

In the first part, we organized a workshop present-
ing different academic perspectives on shared pooled
mobility. As a result of this workshop, we developed a
core text summarizing the key findings of the differ-
ent perspectives.

Second we brainstormed on different perspect-
ives on shared pooled mobility and invited experts
to join this writing group where not covered by pre-
existing expertise. This step was iterated after feed-
back from reviewers in a first round of reviews. As
a result we obtained nine different perspectives on
shared pooled mobility, delineated and motivated as
follows:

A transdisciplinary approach enables research to
establish the knowledge based on targets, transform-
ation, and systems required to innovate shared pooled
mobility. Transport studies analyze the impact of
shared pooled mobility on traffic congestion, travel
behavior, and emissions. Interestingly, many stud-
ies find a mismatch between the theoretically expec-
ted decrease of traffic through trip bundling and the
observed increase of traffic in many practical imple-
mentations such as Uber or Lyft. Social physics can
provide insights into the social dynamics of shared
mobility, including how people interact with each
other and the impact of social networks on ride-
pooling behavior. Economics can provide insights
into the financial incentives and barriers that may
influence people’s decisions to use shared mobil-
ity. For example, research has shown that offering
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incentives such as discounts or rewards can encourage
people to use shared mobility services. Psychology
can provide insights into the cognitive and behavi-
oral factors that may influence people’s decisions to
use shared mobility, such as attitudes towards shar-
ing, trust, and social norms. Research in human—
computer interaction (HCI) can help systematically
understand the user experience with digital shared
mobility services. One goal is to identify potential
in influencing interaction with decisions and recep-
tion of outcome when experiencing shared pooled
mobility as a user. Energy system research can ana-
lyze the interactions of shared mobility with variable
renewable electricity generation, and its impacts on
energy consumption and greenhouse gas emissions.
For example, research has shown that electric vehicles
used for shared mobility can significantly reduce
emissions compared to traditional gasoline-powered
vehicles. Climate change solution science can provide
insights into the potential of shared mobility to mit-
igate the impacts of climate change by reducing emis-
sions. From paratransit systems in the Global South it
is possible to draw valuable conclusions about shared
pooled mobility, as these systems are very similar to
shared pooled mobility but evolved already decades
ago.

Third, we developed a search query covering each
of the 9 perspectives and implemented the search in
google scholar (table 1). A wide array of literature was
only peripherally relevant for this review. We extrac-
ted relevant papers and combined them with the lit-
erature knowledge of domain experts in our review.
Exclusion criteria were: (i) papers with title not con-
cerned with transport and mobility; (ii) papers that
are predominantly concerned with Maa$, carshar-
ing, or micro mobility, and only peripherally with
shared pooled mobility; (iii) papers with predomin-
ant focus on autonomous mobility. Inclusion criteria
were: (i) specific consideration of ride sharing, ride
pooling, shared pooled mobility, or paratransit in title
or abstract; (ii) modeling studies, case studies, and
overview studies were all considered.

Results demonstrate that some perspectives are
widely covered, such as modeling and transportation
network companies (>20 000 papers), while others,
such as sector coupling and urban economic analysis
have only investigated scarcely (<100 papers).

Fourth, we combined the original documented
results of our workshop, our transdisciplinary
approach to summarize knowledge from different
research perspectives with the results of the system-
atic search queries from step 3. By this we came up
with an extensive review on past and ongoing research
on shared pooled mobility and a concept for future
research to answer remaining research questions.



10P Publishing

Environ. Res. Lett. 19 (2024) 053004

F Creutzig et al

Table 1. Search queries as implemented in google scholar as of 30 November 2023. Search time includes papers and gray literature, as

identified by google scholar, between 2016 and 2023.

Content

All queries included the term connected with specific
terms via AND, as listed for all 9 domains below

Transdisciplinary approaches to shared pooled
mobility

Transport modeling: Exploring user behavior
gauged with empirical data

Statistical physics: Exploring the collective dynamics
of shared pooled mobility
Human—computer-interaction: understanding and
optimizing the user experience of shared pooled
mobility

Market development: networked mobility and its
interaction with public transport

Urban economics

Climate change solutions
Impacts of shared mobility on the power sector

Global South perspective

Query Number of results
‘shared pooled mobility’ OR 25400
‘mobility-as-a-service’ OR ‘paratransit’

OR ‘ride-sharing’

Transdisciplinar® 937
Modeling AND behavior 22 600
Statistical physic* OR scaling law 184
Human—computer-interaction 1840
‘transportation network companies’ OR 20200
Didi OR Uber OR Lyft OR GRAB)

‘urban economic™” OR ‘spatial 68
economic™’ or ‘regional economic™’

Climate change 633
‘power sector’ or ‘electricity’ or ‘sector 32
coupling’

‘Global South’ OR ‘developing countr™’ 1890

4. Research perspectives on shared pooled
mobility

We provide a summary on nine research areas or
perspectives, including a transdisciplinary social sci-
ence approach, transport modeling, statistical phys-
ics, user experience research, market development,
urban economics, climate change solution model-
ing, power sector, and global south perspective, rel-
evant for the comprehensive understanding of shared
pooled mobility. Figure 1 provides an overview on
research areas and perspectives. In Box 1, we define
crucial terms.

4.1. Social science: the relevance of different
knowledge systems

For a successful governance of shared pooled mobility
innovations, urban planners and political decision-
makers need multiple forms of knowledge that can be
generated through transdisciplinary processes. A gen-
eral distinction is made here between three forms of
knowledge: systems knowledge about the initial situ-
ation and the expected effects of a measure such as
shared pooled mobility, target knowledge about the
desired future state and transformation knowledge
about the process required to transition from the cur-
rent to the desired future state (Pohl and Hadorn
2007).

Political actors on the ground must develop target
knowledge about shared pooled mobility: what are
the most important goals that shared pooled mobility
should achieve? In principle, shared pooled mobility
has the potential to enable cities to achieve several

of their goals at once, but a distinction can be made
between three directions: (1) the reduction of car
journeys and thus a reduction in traffic, climate-
relevant emissions, local air pollution, noise and acci-
dents; (2) social benefits, for example in the form of
higher social capital and quality of life: when encoun-
ters and social interactions occur between strangers,
this promotes social capital (Putnam 1993). Short
conversations between people who live in the same
region occur during the journey and anonymity is
reduced. Trust in other people and in the community
grows. Meanwhile, individual quality of life increases
when car dependency decreases, including the dimen-
sions of financial expenditure and perceived free-
dom (Stocker et al 2016). Finally, better spatial and
temporal accessibility can also be achieved by shared
pooled mobility. However, the direct and indirect
social benefits of shared pooled mobility are difficult
to measure and little empirical research has been con-
ducted to date (Marsden 2022); (3) freeing up space
previously used for parking private cars so that it can
be unsealed and climate adaptation measures such as
greening can be implemented.

Any effective governance of shared pooled mobil-
ity will require transformational knowledge, con-
sidering actor-specific perspectives, user behavior
and regulation (Kostiainen and Tuominen 2019).
Whether the positive potential of shared pooled
mobility is actually achieved will then depend on the
specific governance measures. Here, cities and other
political actors generally have three fields of action:
(1) infrastructure: e.g. high-occupancy vehicle lanes;
(2) pricing: e.g. increase parking fees for residents,
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Statistical physics

Transport modeling

Social Science

*

Power sector
impact

Transdisciplinary

knowledge generation

Market
development

Empirical analysis:
Ride-Pooling in real
world scenarios

Global south
perspective
Climate change
solution modeling

Urban economics

User experience

research

discussed in section 5.

Figure 1. Connection of research areas introduced in section 4 and research question clusters derived from the research areas, as

especially the annual fee, so that it becomes quite
expensive to own a car but hardly use it; increase taxes
on buying and owning cars to reduce the private car
ownership rate; city tolls as an incentive for pooled
trips and a higher occupancy rate of cars. Examples
are London, Stockholm; (3) regulation and financial
support: e.g. co-financing of providers (with specific-
ations as to which areas must be served complement-
ary to public transport), zero regulation of providers
or delimiting regulation of the cab industry, and sim-
plifications in passenger transport legislation.

Transformation knowledge is a complex process
of knowledge that is developed interactively by sev-
eral groups of actors. Real-world laboratories can pro-
duce socially robust bodies of knowledge that integ-
rate the findings of both scientific and practical act-
ors (Pohl and Hadorn 2007). Real-world labs encour-
age experimentation, but also innovation adaptation,
and have become increasingly popular in recent years
(McCrory et al 2020, Bergmann et al 2021).

In this section we have outlined why target and
transformation knowledge is still missing. The fol-
lowing sections focus on the current state of systems
knowledge about shared pooled mobility.

4.2. Transport modeling: exploring user behavior
gauged with empirical data

For a system understanding of shared pooled mobil-
ity, high resolution modeling—in terms of users
and their spatial interactions—is necessary. In con-
trast to conventional 4-step transport models, agent-
based transport models allow for dynamic high-
detail transport simulations and thus for modeling
shared pooled mobility. There exist various tools for
(autonomous) fleet simulation, such as FleetPy or
AMoDeus, that enable users to investigate operational
aspects like fleet sizing or vehicle repositioning under
arbitrary demand loads in realistic scenarios (Ruch
et al 2018, Engelhardt et al 2022). However, these
tools lack the interaction with other transport modes
and are operated with static demands. Other hol-
istic transport simulation frameworks like MATSim
or POLARIS combine methods from discrete choice
theory with behavioral models derived from empir-
ical data, traffic flow models and data-driven methods
for impact assessment such as GHG or noise emis-
sion quantification (Auld et al 2016, Axhausen 2016,
Dias et al 2017). Examples for (empirical) data that
are fed into these simulations range from case-specific
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stated-preference surveys, over large mobility sur-
veys like Mobilitdt in Deutschland or Mobilitdt in
Stiddten and census data to traffic counts (Nobis and
Kuhnimhof 2018, Gerike et al 2020). Overall, shared
pooled mobility simulations have been applied to
regions from all over the world with diverse results
(Horl 2020, Liu et al 2017, Kaddoura et al 2021,
Schlenther et al 2022; Schlenther et al 2023b).

Existing studies reveal relevant insights on the
viability and potential of shared pooled mobility.
Specifically, simulations that account for mode choice
as well as real-world investigations indicate that most
users of shared pooled mobility services are attracted
from eco-friendly modes including public transport
(Narayanan et al 2020, Shaheen and Cohen 2020).
Variables such as the network topology, demand dis-
tribution and numerous service configuration para-
meters and strategies influence the (empty) mileage
of these services that are commonly compared against
private motorized transport (Bischoff et al 2018,
Horl 2020, Kaddoura et al 2020, Schlenther et al
2023b). While several studies suggest that one shared
(pooled) vehicle could replace around 10 private
vehicles (Bischoff and Maciejewski 2016, Bischoff
et al 2018, Kagho et al 2021), recent investigations
raise doubts that pooling will occur outside of peak
hours, highlighting the role of individual preferences
(Haferkamp and Ehmke 2020, De Ruijter et al 2023).
Whenever pooling does not happen, the taxi-like
service induces higher mileage than private motor-
ized transport because of (empty) pickup trips. For
relations that are found to be highly suitable for
pooling, it remains unclear whether those could
or should rather be served with small fixed-route
buses. Simulations as well as real-world applications
show that profit-oriented service operators are mainly
interested in areas of high demand density (Bischoff
et al 2018, Schlenther et al 2023a). In urban contexts,
these areas are commonly well served by conventional
public transport, which leads to undesirable compet-
ition and the aforementioned cannibalisation effects.
However, especially in areas of coarse public trans-
port networks, shared pooled mobility services could
provide a meaningful addition to public transport,
for example for school traffic, and/or as an option
for the first and last mile (Lu et al 2023, Schlenther
et al 2022). Concluding, there is a substantial need for
more detailed research on the best-suited application
contexts of shared pooled mobility as well as for well-
informed regulation.

4.3. Statistical physics: exploring the collective
dynamics of shared pooled mobility

While direct agent-based simulation as described
above is the most realistic way of modeling shared
pooled mobility, it is easily overwhelmed by com-
putational demand. A statistical physics perspective
investigates a simplified system, which preserves the
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full travel demand but omits dynamical mode choice
and traffic density. This approach allows for analyt-
ical approximations and the derivation of mathemat-
ical mean-field descriptions. From a statistical phys-
ics perspective, the shared pooled mobility system is a
complex dynamical process on a network. The street
network and request distribution are given as proper-
ties of the service area. The fleet size, vehicle size and
dispatching algorithm are chosen as fixed parameters
of the service implementation. For the approximation
of the dynamics, several approaches have been taken.

One approach, introduced in (Santi et al 2014)
defines shareability networks, in which the requested
trips are the nodes and connections indicate that they
could be shared given the chosen constraints, namely
acceptable maximum waiting time for the passen-
gers and capacity of the vehicles. This was found to
give rise in a universal scaling law of sharable trips in
(Tachet et al 2017) and forms the basis of the widely
used pooling algorithm defined in (Alonso-Mora et al
2017).

In most other approaches, the dynamics are dir-
ectly stimulated as a poisson process with requests
generated from the request distribution of the region
and inserted into pooled routes according to heur-
istics (for example using the open source python
package ridepy (Jung and Manik 2023)). Using timed
origin-destination data is also possible, when avail-
able. The resulting pooled routes are analyzed for
varying values of all parameters and system specifica-
tions to unravel their impact on the system’s behavior.
Such analyses are helpful in understanding under
which conditions and in which regions ride-pooling
constitutes a suitable sustainable transport option.
Recently, (Lotze et al 2023) identified an easy to cal-
culate system load (defined as the cumulative time
required by direct trips, divided by the total driv-
ing time available to the system) as the sustainabil-
ity threshold (load at which individual driven dis-
tance and shared pooled driven distance are equal)
and found that such loads are achieved in small scale
pilots at peak hours.

Another recent study finds that there are two
viable solutions for shared pooled systems: The first
one are niche markets, where current implementa-
tions of on-demand ride-pooling operate; a second
cover most individualized transport, if fleet sizes can
be made large enough (Herminghaus 2019, Navidi
et al 2020). Partially based upon the aforementioned
dispatching algorithm, (Miihle 2023) introduces an
analytical framework to approximate the minimal
fleet problem. However, these analyses were done
in a Euclidean 2D plane using a uniformly random
request distribution.

Other research demonstrates universal scaling of
the efficiency (relative travel time) with the fleet size
deployed, at a fixed relative request rate and also
accounting for street network topology (Molkenthin
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et al 2020, Zech et al 2022). In the other extreme, the
influence of network topology on ride-pooling effi-
ciency was analyzed for a single vehicle in (Manik
and Molkenthin 2020). Here it was found that the
mesh-like structure of rural areas is better suited for
pooling rides than the grid-like structures of cities
or the hub-and-periphery structure of smaller cities
together with the surrounding area. However, in most
realistic scenarios this effect is eliminated by the lower
request rates in rural areas, which has a negative effect
on pooling.

Another notion of efficiency is presented in (Ruch
et al 2021), in which it is defined as a trade-off
between individual travel time and global distance
traveled. The analysis in this paper compares mean
total travel time and vehicle miles traveled across dif-
ferent fleet sizes as well as pooling algorithms.

A collaboration with the agent based transport
modeling community will help to identify the favor-
able fixed point in traffic models with dynamic modal
demand patterns. Such an understanding is crucial
in order to find system parameters that encourage
customers to switch from private vehicles to shared
mobility. However, dynamical modeling can only
estimate the effects of time efficiency and perhaps pri-
cing, while in reality many more factors may influence
such a decision, as detailed in the next section.

4.4. HCI: understanding and optimizing the user
experience of shared pooled mobility

While the sections above see traffic demand as given
(4.3) or subject to purely rational preferences (4.2),
studies show that there is a discrepancy between
the theoretically expected user preferences and those
observed in practical implementations. Users of car
pooling systems have to choose to enter uncertain
social situations, when being matched with other
people on shared rides. This section investigates the
user perspective through the lens of the domain
of HCI. We explore how ‘smart’ systems may sup-
port user decisions, how gamification can make these
decisions more interesting, focusing on the emotional
enjoyment of using car pooling services as a prom-
ising factor for actually using them.

While the reasons and motivators for carpool-
ing have been studied since the 1970s, the actual
human factors for using so-called ‘smart’ systems
that support shared pooled mobility services have
only recently been under investigation (Millonig and
Haustein 2020). Novel apps are accordingly designed
to optimize user decisions during the matchmaking
process in carpooling in a ‘smart’ way by analyz-
ing user data for behavior and preferences, driven by
innovation in mobile applications and services that
incorporate machine learning. Recent studies show
how computer systems for sustainable solutions could
be designed (Raghavan and Pargman 2017). A first
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glimpse of an analysis combining research on HCI
and mobility as a service can be found in (Johansson
and Lund 2022).

Studies on shared pooled mobility experiences
find that users perceive carpooling as a good solution
and a positive human experience when the matching
is accurate, but many uncomfortable situations often
prevent user retention (Adelé and Dionisio 2020).
They identified shortcomings related to uncertainty
regarding information search and co-using systems
with others caused by the ‘smartness’ of the ser-
vices, e.g. intransparent pooling suggestions where
the user does not understand why the system pro-
poses a particular match of users to a pooling, effect-
ively losing sense of agency and control. These find-
ings reflect known challenges in several subdomains
of HCI, namely in context-aware computing (Schilit
and Theimer 1994) where uncertainty in context
recognition should be matched with an appropriate
level of user control or automation (Dey and Hakkild
2008). While a high level of user control seems help-
ful, users often are overwhelmed by ‘information
glut), i.e. too much information with unpredictable
impact on selecting an optimal ride, making prac-
tical solutions challenging. In the subfield of digital
game design, game makers use information balancing
to create motivating challenges where the concept of
partial predictability is seen positively as a catalyst for
making decision-making interesting and more emo-
tional (Sylvester 2013).

Gamification hence appears as a way forward
to make shared pooled mobility more attractive
(Deterding et al 2011). Gamification proposes to gen-
erate a higher impact on user motivation and beha-
vior change, e.g. by choosing appropriate mechan-
ics, dynamics, and components (Werbach and Hunter
2012, Klock et al 2019). Specifically, this potential
is being discussed concerning transportation services
where motivational factors and marketing are already
shown to impact behavior change without explicitly
using gamification (Yen ef al 2019). This potential is
also underlined by a recent analysis of user experi-
ence factors of carpooling services, which proposed
emotional enjoyment as a main level besides easy-
using and functional availability (Xie et al 2020).
Another relevant HCI subdomain is user-centered
design focussing on the identification of potential
user groups (Winter et al 2020) and the adaptation
of systems to their particular needs in development
processes (Holtzblatt and Beyer 2017). The domain
of game user research proposes interesting concepts
of player personalization and adaptation of system
behavior in real-time (Bakkes et al 2012, Gobel and
Wendel 2016).

In summary, this perspective through a lens of
HCI shows that we can design systems that effectively
provide interesting experiences with optimal matches
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of users through usable systems that are tailored spe-
cifically for or adapt to relevant contexts and situ-
ations in a reliable manner.

4.5. Market development: networked mobility and
its interaction with public transport

While the previous sections have discussed the theory
on how to design networks of pooled vehicles, this
section addresses the application of shared pooled
mobility in the transport system. We look mainly at
two aspects: (a) the private market of transportation
network companies (TNCs) and (b) the interaction
with public transport.

From a perspective of the private market, shared
pooled mobility has advanced in the course of the
global expansion of TNCs such as Uber, Grab, DiDi
or Lyft. Today, TNCs are active in many countries,
with studies estimating that services are available in
80 or more countries (Goletz and Bahamonde-Birke
2021, Hasselwander et al 2022). TNCs have experi-
mented with offering pooling options as extension of
their core business of ride sourcing (under product
names such as uberX Share, GrabShare or Lyft Shared
Rides) since 2014 (Hemel 2017). However, they faced
headwinds from regulators or mini-bus operators
that felt threatened by such activities (Goletz and
Bahamonde-Birke 2021) and during the COVID-
19-Pandemic, TNCs generally stopped offering ride-
pooling options. Today, pooling by TNCs remains a
niche market. UberX Share (formerly uberPool), for
instance, is available only in about 40 cities (Tsay
2023), while UberX (non-pooled ride-sourcing) is
available in more than 1000 cities (Uber 2023).
Meanwhile, Lyft, Uber’s main competitor in North
America, ceased its pooling service in the second half
of 2023, explaining that with too many detours were
taking ‘people out of their way’ (Davalos 2023). In
some cases ride-sharing operators work together with
transit agencies, in order to reduce costs for a pub-
lic transportation system (Minot 2018). An extens-
ive overview of the growing sharing economy can be
found in (Shaheen et al 2020a).

At least when looking at the billion dollar busi-
ness of TNCs, pooling does not (yet?) seem to be
an important part of it. If and how this could be
overcome is subject to ongoing scientific discussions:
(Zhang and Nie 2021) analyzes the economic trade-
off to offer non-pooled and/or pooled services that
TNCs face, which is influenced by fleet size and
drivers, price per trip, profit per trip and other factors.
She finds that a mixed strategy offering pooled and
non-pooled rides can maximize profits for TNCs, and
that in order to increase pooling a (congestion) tax
policy that penalizes solo rides can be effective. Such
policies have already been applied in practice: The
city of Chicago, for instance, has imposed taxes on
TNC rides that differ depending whether the ride is
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single-occupancy or pooled, with pooled rides hav-
ing lower taxes. For this case, (Abkarian et al 2023)
found an increased count of pooled rides by 27%.
Another aspect that is considered to have high poten-
tial is the complementary integration of ride-pooling
with public transport (PT). Here, the main idea is
that ride-pooling could solve the challenge of first-
last-mile access towards PT, thereby increasing the
overall use of PT and reducing car use. (Mohamed
2022) studied the interaction of uberpool and PT
from the governance perspective, finding that author-
ities lacked competencies in relation to ride-pooling.
He also finds that about 60% of the trips that have
been made by ride-pooling would have been made
by public transport. Further research relates to the
planning of the interaction of ride-pooling with (line
and schedule based) public transport (Lorente et al
2022), so that the scheduled and non-scheduled on-
demand services can be connected in an efficient
way. (Hou et al 2020) have studied factors that affect
‘willingness-to-pool, findings that distance and dur-
ation (both factors that increase the trip fare) had a
positive effect on the willingness to use ride-pooling,
while trips to or from the airport, that likely were
undertaken under time pressure and with luggage,
had a negative impact.

For the future, it will be important to research
how ride-pooling offered by TNCs can be used in a
way that supports the transition to sustainable mobil-
ity. In its current form, TNC mainly sells non-pooled
ride-sourcing, a product that has equal or higher
emissions to car rides, while ride-pooling remains
a niche. Research is needed to understand how to
incentivize the use of ride-pooling for users, and how
to regulate it so that TNCs (or any other private com-
pany) will offer it wherever they operate. This seems
to be also very relevant against the backdrop of the
expansion of TNCs: as these companies have shown
an enormous pace in global expansion, going from
zero to 80 countries in 10 years, they could become
one of the forerunners to make ride-pooling avail-
able globally. Especially as they already have the tech-
nical capabilities to offer such a service on their plat-
form, which likely is just a feature to be activated.
Apart from TNCs, the role of companies that only
offer pooling services such as MOIA in Germany or
Via in the US should be studied by academia, thereby
contributing to closing the research gap between the-
oretical effects and the practical application of shared
pooled mobility.

A stated choice experiment in Switzerland sup-
ports the assumption that in future, autonomous
vehicles are likely to be used in a shared, pooled mode,
with 61% of respondents in the control condition
preferring pooled (autonomous) vehicles over private
ones (Stoiber et al 2019). Combining instruments
influencing comfort, cost, and time could potentially
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increase the proportion of pooled uses of autonom-
ous vehicles (Stoiber et al 2019).

4.6. Urban economics: business case limited to
dense urban centers?

As transport modeling focuses on how the mobility
system simulates, statistical physics explores how the
dynamics of the process of the mobility system work,
user experiences explain how the effective designs that
influence shared pooled mobility usage are shaped,
and market development discusses how the market
share of shared pooled mobility is at its current state,
this section draws attention to how viable and func-
tional shared pooled mobility is in different urban
forms and city sizes in terms of population density.

User density matters for car sharing and also for
shared pooled mobility to make joint routing time
efficient. Currently, this translates into financially
viable business models only for dense agglomera-
tions. One consulting study suggests that free-floating
car sharing remains limited to cities with populations
above 500 000 inhabitants (Kearney AT 2019). In con-
trast, other sorts of car sharing, e.g. station-based car
sharing, are more flexible and are often present in
smaller municipalities (Bundesverband CarSharinge.
V 2019).

Nonetheless, congested megacities will be most
attractive for shared pooled services. According to the
United Nations, as of 2018, there are 33 megacities
in the world—21 are located in Asia (United Nations
2019). A study in Bangkok (Ayaragarnchanakul et al
2022), one of the Asian megacities, confirms the prob-
able viability of (door-to-door) shared pooled mobil-
ity by indicating that as long as the 5-seater shared
pooled vehicle is fully occupied and the detour time
is no more than 10 min, commuters will opt for it
because the travel time and travel cost trade-off is
worth it for them. Shared pooled mobility is especially
attractive to commuters living in gated communities
(62% of car owners and 48% of total car trips), where
choices of modes are more limited.

Shared pooled mobility could also be a viable
option in a populated subset of area in a city. By devel-
oping a similarity index between two trips, it was pos-
sible to cluster over 85% of taxi trips during the morn-
ing peak (8-11 a.m.) in the Midtown and Upper East
Side of New York City. Taxi trips constitute almost
one-third of total trips in New York and 94% of these
trips recur daily on weekdays. Furthermore, this exact
method was applied to Chengdu, which is less dense
than Midtown and the Upper East Side of New York
City. The results are almost as good as New York’s, but
only 73% of clusters are recurrent (Veve and Chiabaut
2020).

Apart from urban density, urban form plays an
important role in the outcome of shared pooled ser-
vices. The spatial structure of a polycentric city sug-
gests ridesharing services could reduce road traffic
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in the inner core city of the Beijing Metropolitan
Area, a polycentric city with a strong core and seven
sub-centers (Liu et al 2021). Resulting from scen-
arios of car-sharing and transit promotion in 288 pre-
fectural Chinese cities, polycentric megacities show
reduced gasoline-fueled private car usage when com-
pared to monocentric megacities. This finding is how-
ever not transferred to cites of other sizes smaller
than 5 million citizens (Li et al 2018). Future simula-
tion of integrated land use-transportation models are
recommended to draw general conclusions (Hawkins
and Nurul Habib 2019).

Unfortunately, shared pooled mobility cannot
reach the desired modal share without pushing for
private-vehicle associated costs of tollway and park-
ing charges too. Further, pricing private vehicles with
the true social cost, a correction of market failure,
results in fewer externalities related to road traffic
(Ayaragarnchanakul and Creutzig 2022). This essen-
tially minimizes the endowment effect, a thought that
people sometimes value ownership over their willing-
ness to pay (Hawkins and Nurul Habib 2019).

Although the concept of shared pooled mobility
has prospered in densely populated and diverse urban
areas, it is also gradually extending its reach to less
densely populated and suburban areas such as small
and medium-sized college towns of 50-500 thousand
citizens (Cohen and Shaheen 2021). The purpose is
to improve accessibility and social inclusion rather
than reducing traffic externalities. For example, ride-
pooling is used either as the first-and-last-mile con-
nections to public transit or as public transit replace-
ment in the suburbs of Northern Virginia (Shaheen
etal 2020b). Government agencies are also partnering
with ridesharing services as a feeder to train stations
(Hawkins and Nurul Habib 2019).

Balancing the trade-off of important transport-
related factors that commuters emphasize is crucial
for shared pooled mobility to become successful.
These factors vary depending on users and markets
in different cities as discussed earlier in the previous
subsection. For instance, travel time, convenience (in
terms of accessibility and availability), travel cost, and
privacy are the most valuable factors of commuting
(in that order) in Bangkok (Ayaragarnchanakul et al
2022). The pricing gap between public and private
transport modes also plays an important role in
mode-shifting potential. Integrating demand estim-
ation that balances user utility with transport systems
planning models is crucial to minimize detour time
and shared travel costs, but sufficient user density in
residential clusters like gated communities is a pre-
requisite for economic feasibility.

4.7. Climate change solutions: pool rides, not hail

Research from the perspective of urban economics, by
examining the economic drivers and market incent-
ives of shared mobility systems, can play a key role
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in shaping affordable and convenient shared mobil-
ity systems. Turning to research on climate change
solutions, these insights can inform the development
of strategies and policies aimed at addressing climate
change effectively.

Shared mobility is seen as an important com-
ponent to reduce transport related climate emissions,
due to its ability to reduce private car use and own-
ership. In urban areas, it can help to reduce traffic
congestion, noise, and accidents, while also redu-
cing energy consumption and emissions by decreas-
ing the fleet size and increasing vehicle utilization
(Hu and Creutzig 2022, Zhong et al 2023). In rural
areas, it can help to reduce the dependency from cars,
increase the efficiency of public transport by increas-
ing seat occupancy (Hult et al 2021, Schliiter et al
2021). Limiting global warming to 1.5 °C will require
rapid decarbonisation of the world’s transport sys-
tems, while urban transport is currently dominated
by petrol and diesel-powered vehicles (Glazebrook
and Newman 2018, Monaco 2023). Combining the
potential of shared mobility with vehicle electrific-
ation and other strategies to reduce vehicle car-
bon emissions may be a viable solution of decar-
bonizing land transport (Sustainable Mobility for All
2022). However, the emission reduction potential of
this comprehensive strategy is currently unclear. For
example, a detailed investigation of shared motor-
cycle use in Jakarta, Indonesia, demonstrated that
customers benefited from the flexible new services,
but that overall sustainability benefits, such as GHG
emissions, were canceled out by deadheading and
limited mode shift from private vehicles (Suatmadi
etal 2019).

In the climate solution literature, two perspect-
ives are of relevance: life-cycle accounting and scen-
ario modeling.

First, life-cycle accounting. In the literature on
shared mobility, life-cycle accounting has been used
to evaluate the carbon emissions associated with vari-
ous transportation modes, such as bike-sharing, car-
sharing, and ride-pooling. These studies typically
compare the emissions from shared mobility options
to those from traditional transportation modes, such
as private car ownership, and assess the potential
environmental benefits of a shift towards shared
mobility (Yi and Yan 2020, Sun and Ertz 2021). A
previous work evaluated marginal CO2 emissions
for each kilometer a person travels in shared mobil-
ity modes (Creutzig 2021). Findings reveal that two
wheelers are more climate friendly than four wheel-
ers. A private bicycle is 15 times more CO2-efficient
than an average car with an internal combustion
engine. More importantly, occupancy makes all the
difference for car use. With four passengers, the car
will perform similar to bike sharing and e-scooters.

Ride hailing (or ride-sourcing) is particularly
problematic, as illustrated in figure 2, because ride
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hailing services, if not having a fossil-free drivetrain,
can have higher carbon footprints than private vehicle
trips due to deadheading (empty mileage en route
to the pick-up) (Bischoff and Maciejewski 2016,
Tirachini and Gomez-Lobo 2020, Creutzig 2021).
Including larger systemic effects, such as reduced life-
cycle footprint due to higher utilization of vehicles
may have positive effects on the carbon footprint
(Morfeldt and Johansson 2022) or even further
worsening effects as people shift from public transit
(Schaller 2021).

Second, scenario-based assessments enable
extensive analysis of how high-quality shared pooled
mobility can contribute to deep decarbonization
in the passenger transport sector. A series of stud-
ies based on simulation on different regions (such)
lead by ITF-OECD shows CO2 emission can by
—31%~—62% in five cities (Dublin, Auckland,
Helsinki, Lisboa and Lyon) with all private cars in cities
were replaced by shared vehicles, while the only 10% or
less of the number of vehicles were needed for citizens
(International Transport Forum 2017a, 2017b, 2018,
2020). Thereis a general lack of understanding of shared
mobility patterns and potential for climate change in
developing countries, leading to an inconsistent local
policy structure aimed at incorporating shared mobility
into the wider set of mobility choices. In a recent pro-
ceeding study, some of this paper’s authors found that
deep decarbonization to net-zero in the passenger
transport sector would rely on a comprehensive cli-
mate policy (including electrification, sharing mobil-
ity, and rapid replacement of coal and gas power
plants with renewables) that maximizes the benefits
of emission reduction (Hu et al 2024). To achieve the
same emission reduction, the total number of vehicles
in the shared mobility scenario is less than 1/2 of that
in the EV scenario, which will greatly reduce vehicles’
material demand. Importantly, because of reduced
demand for transport sector electrification, addi-
tional energy demand can be more easily covered by
renewable energy sources.

In future studies, we hope to extend the assess-
ment framework with a high-frequency vehicles data-
base, more accurate emissions accounting methods,
and reasonable scenario design. More valuably, not
only carbon emissions benefit but also decarbon-
ize cost, material demand, and land use need to be
considered in an integrated climate change solution
model.

4.8. Power sector: shared pooled BEVs have distinct
impact

To take into account the potential contribution of
shared mobility to the reduction of carbon emissions,
it is also necessary to better understand how a sig-
nificant shift from private car use to shared car use
may affect the electricity sector, in the case where a
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large part of the vehicle fleet is electrified. The interac-
tions between private electric cars and the power sec-
tor, on the one hand, and shared electric cars and the
power sector, on the other, may lead to different out-
comes in terms of renewable energy integration. This,
in turn, affects the carbon intensity of the power sec-
tor, which in turn affects the carbon intensity of the
whole supply and operation vehicle chain. Such inter-
actions can be investigated using power sector mod-
eling techniques.

Battery electric vehicles (BEV) that are used for
shared pooled mobility may have very different effects
on the power system than privately-owned BEV,
which constitute so far the main focus of research
on the interactions between the transport and the
power sectors. In future power systems with increas-
ing shares of variable renewable energy sources, the
ability of electric vehicles to make flexible use of vari-
able electricity supply gains importance (Blumberg
et al 2022, Strobel et al 2022). The power sector
impacts of BEV depend on parameters such as the
passenger road mobility demand, the battery capacity
provided by electric vehicles, as well as charging avail-
ability and charging mode (Schill and Gerbaulet 2015,
Taljegard et al 2019). The latter also depends on the
type of charging systems, e.g. stationary vs. dynamic
charging via electric road systems, on their geograph-
ical distribution and power rating, and on the avail-
ability of smart charging or vehicle-to-grid technolo-
gies (Lauvergne et al 2022). Investigating how these
factors shape the interactions of shared pooled BEV

with the power sector requires bringing together sev-
eral fields of expertise, namely transport modeling,
power sector modeling and behavioral sciences.

Travel demand plays an important role in determ-
ining the electric load effects of BEV, i.e. their absolute
electricity demand and hourly load profiles (Xu et al
2018, Crozier et al 2021). Of particular importance
in a power system dominated by variable renewable
energy sources is the impact of BEV on the peak resid-
ual load, and their ability to make use of periods with
high renewable electricity generation. To understand
the impacts of shared pooled mobility, we must better
understand how it modifies travel demand and sub-
stitutes other transport means—in particular private
electric cars. Depending on how widespread smart
charging and potentially even vehicle-to-grid techno-
logies may become for shared pooled electric vehicles,
they could help to integrate variable renewable energy
sources. Their interaction with the system integration
of variable renewables further relies on the substitu-
tion effect between electric shared pooled vehicles and
other electric vehicles, in particular privately-owned
ones.

The overall storage capacity supplied by the
shared pooled vehicles also plays a determining role
in the flexibility potential offered to the power system.
From a power sector perspective, the storage capacity
of electric shared pooled vehicles depends on both
the fleet size and the battery capacity of individual
vehicles. From the perspective of shared pooled fleet
operators, the optimal battery capacity of vehicles is
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very much linked to the travel demand it has to supply
and the charging availability. For instance, in order
to undertake long trips with very little time to charge
in between two trips, such vehicles might need to
be equipped with batteries that are significantly lar-
ger than batteries of vehicles designed for private use
only. Yet, if shared pooled BEV came with much bet-
ter charging opportunities than privately owned BEV,
this would limit their need for larger batteries. The
bigger the overall storage capacity provided by shared
pooled mobility, the larger their potential flexibility
supply to the power sector. In contrast, shared pooled
mobility may also come with smaller grid charging
availability as vehicles are likely to be more often on
the road and less often idle, which would rather atten-
uate the flexibility potential of shared pooled vehicles.
The impacts on the power system flexibility depend
on this trade-off between potentially larger batteries
and smaller grid availability, which is quantitatively
not understood so far.

4.9. Global south perspective: leapfrogging
possible?
We discuss the market situation of shared pooled
mobility in section 4.5. While these systems are rather
new in the Global North, similar systems have long
existed in the Global South. Analyzing them could
provide us with valuable information necessary for
implementing shared pooled mobility efficiently.
Previous research has sought to formally char-
acterize paratransit, both through a conceptualiza-
tion of its common characteristics across different
contexts, and through an analysis of specific coun-
try or city-level studies. Key references include the
work by (Behrens et al 2021) and (Behrens et al
2016), where paratransit’s business models, regulat-
ory regimes, and operating practices in relation to
public policy and city-level planning are analyzed
based on different regional realities, while also pin-
pointing the emerging role of potentially disruptive
(digital) technologies. Additional general assessments
of MaaS$ in the Global South include the systematic
review by (Hasselwander and Bigotte 2023), who con-
clude that to untap its full potential, ad-hoc Maa$S
models are required to match context-specific regu-
latory frameworks, available infrastructures, institu-
tional and financial constraints, and user preferences
for existing paratransit systems. The most crucial bar-
riers to a MaaS implementation in the Global South—
with specific emphasis on the integration of parat-
ransit in transportation planning and on multimodal
transport planning—is offered in (Boutueil et al 2020,
Ho and Tirachini 2024), respectively. Finally, a large
number of studies has assessed paratransit experi-
ences, challenges, emerging trends, and recommend-
ations for sectoral regulation and development in spe-
cific countries: for instance, the interested reader can
refer to (Lozano Paredes 2023) for South America;
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(Kasera et al 2016) for Namibia; (Klopp and Cavoli
2019) for Mozambique and Kenya; (Saddier et al
2017) for Ghana; and (Phun et al 2019) for Thailand.

Throughout the twentieth century—and largely
until today—private vehicle ownership has been
strongly and positively associated with economic
growth across world countries (Pucher et al 2007).
As seen from figure 3, high-income countries (the
‘Global North’) exhibit high motorization rates
(vehicles per capita), leading to socio-infrastructural
settings defined as ‘car dependence’ (Mattioli et al
2020), e.g. the current 900+ vehicles per person
in the United States, while Global South countries
display considerably lower values (e.g. Botswana,
the country with the highest PPP GDP in sub-
Saharan Africa, stands at 260 vehicles per cap-
ita per 1000 people). This heterogeneous picture
is mostly the result of income constraints to pur-
chase and operate private vehicles by dwellers in the
Global South.

Global South countries and cities are character-
ized by significant transport infrastructure gaps, with
limited and infrequent public buses, low density of
rail and light urban rail, and scarce active mobility
infrastructure (e.g. bike lanes) (Pandey et al 2022,
Zhou etal 2022). As a result of such infrastructure and
income constraints, in the Global South the prevalent
approaches for meeting mobility demand have largely
been two: (i) the massive use of walking as a transport
mode; and (ii) what is defined as ‘paratransit.

As extensively discussed in (Behrens et al 2016),
paratransit describes the originally informal (but
increasingly recognized and partially regulated by
public authorities of several countries) system of ride
sharing services that is widespread across countries of
the Global South. Irrespective of existing differences
among regions (including the local name for what is
commonly called paratransit, ranging from matatu
in Kenya, to Dala Dala in Tanzania, or Colectivo in
Latin American countries), paratransit has several
common characteristics. Paratransit vehicles are typ-
ically small, privately-owned and operated buses or
vans that collect passengers on a loosely fixed route
without timetables, combining multiple passengers
with similar or overlapping destinations into a single
shared vehicle which may stop anywhere to pick up
or drop off their passengers and only departing when
most or all seats are filled. This system ensures high
occupancy rates, which in turn result in low per-
fare, per-passenger environmental impacts ((Creutzig
2021); cf figure 2).

Interestingly, even though several characteristics
of paratransit mirror the features of shared pooled
mobility described in this paper, paratransit has
emerged decades before the rise of the sharing eco-
nomy in the early 21st century. In the Global South,
shared pooled mobility is indeed implicitly already
one of the leading urban modes of transportation.
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Figure 3. Scatter plot and locally estimated scatterplot smoothing (LOESS) fit of PPP per-capita GDP (World Bank 2023) against
motorization rates (Imamaliev et al 2021). Each dot is a country between 2019-2022 (depending on source’s year). Developing
countries have the potential to leapfrog by maintaining and improving existing paratransit to shared pooled mobility and avoid

car dependence and lock-in.

Paratransit has attractive characteristics for urban
and peri-urban populations of developing coun-
tries due to its proximity, affordability, effectiveness.
Statistics on the modal share for a broad range of cit-
ies in developing countries is offered by (Middleton
2018) who shows that paratransit accounts for very
large shares of total public transport usage. For
instance, in Accra, Ghana, it is above 90%; in Abidjan,
Cote D’Ivoire, it meets half of the entire mobility
demand; in Addis Ababa, Ethiopia, it stands at about
35%, in Dar Es Salaam, Tanzania, it is above 60%, and
in Lagos, Nigeria, it reaches almost 40%.

The current and projected climbing urbanization
rates and increasing affluence in the Global South are
strongly boosting mobility demand (United Nations
2022). So far, motorization rates have remained rel-
atively low, also due to the significant cost compared
to average salaries and to limited and congested road
networks (Olvera et al 2008). However, as demon-
strated in the literature, the status symbol nature of
private vehicle ownership still represents a reason
for concern in relation to future mobility trends in
the Global South (Luke 2018, Ramakrishnan and
Creutzig 2021). In addition, besides socio-cultural
reasons for car ownership aspiration, there also exists
a set of issues related to paratransit that need to be
solved if shared pooled mobility is to consolidate as a
leading modal share in the Global South. Specifically,
despite its qualities, the shared pooled mobility of the
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Global South is also characterized by several chal-
lenges that are common across countries, including
(Sietchiping et al 2012, Venter et al 2020, Gupta 2022):
(i) low vehicle standards (e.g. inefficient engines, high
local pollutants emissions, limited vehicle mainten-
ance); (ii) safety and regulation, such as limited safety
standards inside for paratransit vehicles passengers
and limited compliance to driving regulation by para-
transit drivers; (iii) informality and taxation (i.e. lim-
ited revenue collection opportunities and challenges
in regulating the service); (iv) informality and route
planning to meet transport demand (limited room
for policy intervention by public decision-makers,
e.g. to implement mobility policies and coordinate
existing transport services with public infrastructure
investment) (Boutuelil et al 2020).

Several studies have highlighted the importance
of high-quality, granular transport data, as well, as
of multi-stakeholder discussions (including public
decision-makers and private paratransit service pro-
viders) for understanding needs and barriers and
enhancing urban planning in rapidly evolving devel-
oping cities (Klopp and Cavoli 2019, Falchetta et al
2021). In future decades, planners and policymakers
in the Global South concerned with meeting grow-
ing mobility demand with affordable, efficient, and
sustainable systems should seek to consolidate para-
transit as a sustainable mobility solution that uses
digital innovation and low-carbon technologies to
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efficiently bundle and schedule rides (Pirie 2014).
Already in recent years, private companies (e.g.
SWVL, Careem, Ola) have sought to use technology
and algorithms to improve the operational efficiency
of paratransit in Global South contexts.

Countries of the Global North could draw inspir-
ation from the paradigm of paratransit coupled with
efficient, low-impact vehicles, sound regulation, and
digital innovation (i.e. shared pooled mobility) as a
virtuous concept. Countries from the Global South
could leapfrog from paratransit to shared pooled
mobility system avoiding car dependence and urban
sprawl (figure 3). This would decrease private vehicle
ownership and use and therefore improve efficiency,
decrease congestion and reduce environmental pollu-
tion, including transport sector GHG emissions.

5. Towards a transdisciplinary research
agenda

Several research questions arise from the synthesis of
the variety of angles given above, which require know-
ledge from several areas to solve. The research ques-
tions are classified in three research question clusters:
(1) optimal configuration of ride-pooling systems,
(2) empirical studies, (3) market drivers and implica-
tions for the economics of ride-pooling. An overview
of clusters and associated research areas is depicted in
figure 1. In the following the three research question
clusters are explained in more detail.

5.1. Optimal configuration of ride-pooling systems
As one strategic point for optimizing shared pooled
mobility, we suggest analyzing ride-pooling from a
systemic point of view and find optimal configura-
tions for ride-pooling vehicles, fleets, operators, cus-
tomers and systems.

5.1.1. Dynamical parameter analysis of shared pooled
mobility setup

While some studies indicate that ride-pooling has the
potential to drastically reduce the number of vehicles
necessary for serving the demand, observations and
agent-based simulations often find that pooling only
occurs in a fraction of requests as outlined in 4.2 and
4.3. This necessitates a detailed analysis of the para-
meter space of all ride-pooling parameters from fleet
size (Balac et al 2020) to dispatch algorithms for a
wide range of request rates to gain a better under-
standing of the underlying dynamics and how the
different approaches fit together. This would aim to
answer the question whether a high-pooling scenario
is possible and for which parameters it can be reached.

5.1.2. Regionally optimal ride-pooling parameters

Beyond the dynamical parameters there are also geo-
graphical characteristics impacting ride-pooling per-
formance. For example, first studies have tried to
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answer the optimal fleet size for specific areas of
ride-pooling services (International Transport Forum
2015), but different methods and improved empir-
ical resolution is required. We suggest that the ride-
pooling parameters should be systematically determ-
ined in dependence of the given street network, the
expected or measured demand, social and economic
factors and regional aspects (downtown or suburb).

5.1.3. Intercomparison of high and low income
countries

Viewing ride-pooling from a global perspective, it
becomes clear that it needs to be differentiated
between low- and high income countries. In high
income countries most people have a private vehicle,
which should be replaced by ride-pooling. In low
income countries, the initial situation differs, most
people do not have a private vehicle, thus, ride-
pooling should prevent private vehicles from becom-
ing the most dominant mode of transport. Hence,
the implementation strategy of ride-pooling differs
between low and high income countries. Second,
ride-pooling is relatively cheaper in low income coun-
tries compared to high income countries, as for
example, informal paratransit forms of ride-pooling
already exist. These differences need to be investigated
in order to optimize the usage of ride-pooling in low
and high income countries.

5.1.4. Relationship of ride-pooling and line services
(public transit)

On-demand pooling and line services represent two
ways of bundling trips. It would be interesting to
better understand their interaction in a number of
respects: Some early simulations suggest that for very
small networks and very large request rates and fleet
sizes, on-demand ride-pooling dispatchers produce
cyclic routes. Do cyclic and non-cyclic routes co-exist?
What is the nature of the transition between them? Do
the cyclic routes correspond to line services in realistic
scenarios?

5.1.5. Interactions between dispatch algorithms,

rebalancing, service quality, and resource consumption
The efficiency of a ride-pooling system is fundament-
ally determined by its dispatching algorithm, which
allocates requests to specific vehicles (Maciejewski
et al 2016, Horl et al 2018). Electric charging adds
another aspect (Bischoff and Maciejewski 2014). Fleet
rebalancing improves service quality, but consumes
more resources (Winter et al 2017, Schlenther et al
2023a). In contrast, pre-booking allows significant
savings (Lu et al 2023). Research is needed to identify
different trade-offs between these aspects, and to
possibly relate them to properties of the demand
or the road network. To implement efficient fleets
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this research must be supported by empirical stud-
ies about real-world ride-pooling systems (see next
section).

5.2. Empirical analysis: ride-pooling in real world
scenarios

Analyzing ride-pooling applications in real-world
scenarios is crucial if they are to be deployed on a large
scale. It matters how shared mobility interacts with
other public transport, how sustainable ride-pooling
is compared to private vehicles and how urban form
and density influences shared-mobility.

5.2.1. Real-World analysis of ride-pooling

A large share of papers that analyze ride-pooling are
investigating ride-pooling with simulated data. The
demand is often simulated as an uniform request
distribution, meaning that from every stop the sys-
tem gets the same amount of requests over time.
We suggest on the one hand that ride-pooling sim-
ulations should focus on real-world scenarios with
demand from real-world measures, after optimizing
them from a theoretical point of view. On the other
hand, results from real-world ride-pooling systems
should be studied systematically. One of the main
challenges here seems to be how to deal with incom-
plete or sparse data on one hand and limited compu-
tational capacity on the other hand.

5.2.2. Formal vs. informal ride pooling systems

While informal, decentrally operated flexible minibus
systems have long been successfully operated in many
regions in the global south effectively bundling trips
at a low price, digital ride-pooling systems tend to
operate as a taxi service with occasional pooling
at much higher prices. Studying the differences of
informal and digital shared pooled mobility offers a
unique chance at revealing the causes of ride-pooling
platforms failure to reach larger market shares.

5.2.3. Intermodal public transport using ride-pooling
How ride-pooling would interact with other public
transportation systems is only rarely investigated. On
the one hand, ride-pooling could function as a sys-
tem along other public transportation systems, which
offers users another, more comfortable, way of trav-
eling from one place to another. On the other hand,
ride-pooling could also be a system that serves only
as a supplement for other systems, for example, in
last-mile travel or during off-peak hours (Luo & Nie,
2019). Research is needed on how to identify when
and where ride-pooling could be used and how to
find the optimal configurations for such ride-pooling
systems.

5.2.4. Influence of shape and density of a city on shared
mobility usage

Which type of mobility, for example private vehicles
or subways, is preferred by the inhabitants of a specific
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area of a city is strongly influenced by its density and
shape (Wagner et al 2022). Here we suggest investigat-
ing what the requirements for a viable shared pooled
mobility option in terms of the size (density) and
shape of a city are. This would allow it to design spe-
cified ride-pooling or intermodal transport options
for different cities and its boroughs.

5.2.5. Sustainability of ride-pooling

The overall goal of implementing ride-pooling is
to increase sustainability of transportation by redu-
cing the usage and ownership of private vehicles.
Right now, studies about the comparative and over-
all material, environmental and climate footprint of
shared pooled mobility for different shared-pooled
mobility scenarios that also account for energy sec-
tor interactions are missing. We suggest using find-
ings about optimal real-world shared-mobility scen-
arios to determine the sustainability of ride-pooling
compared to the usage of private vehicles.

The insights gathered from real-world ride-
pooling systems allow it to design optimal ride-
pooling systems in the sense of operational effi-
ciency. From the perspective of the operators this is
often not enough, for them financial aspects often
play an important role too. Thus, the following
section 5.3. gives an overview of research studying fin-
ancial aspects of ride-pooling.

5.3. Market drivers and implications of
ride-pooling

Shared mobility offers the opportunity to provide ser-
vices where public transit is financially less viable as
user density is relatively low. This requires analyses of
the market opportunities for shared mobility options.

5.3.1. Integration of variable renewable energy sources

The proliferation of shared mobility could signi-
ficantly impact future power markets, particularly
if these vehicles utilize renewable energy sources.
Consequently, it is imperative to investigate whether
shared pooled mobility facilitates or impedes the
integration of variable renewable energy sources into
future power systems and what impact the details of
the pooling service’s set-up have on it. Additionally,
an exploration of the driving factors behind these out-
comes is warranted.

5.3.2. Life-cycle assessment impacts of switching to
shared pooled mobility

Ride-pooling can employ a diverse array of vehicles,
from compact cars to small-scale buses. Like private
cars, these vehicles necessitate a substantial variety of
materials, thereby exerting an environmental impact.
Notably, the construction of batteries for shared
vehicles requires rare earth elements. We propose a
focus on the differential life-cycle assessment impact
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of shared-pooled mobility, particularly in compar-
ison to alternatives such as privately owned electric
vehicles.

5.3.3. Market systems incentivize usage of shared
pooled mobility

The efficacy of shared-pooled mobility as a transport
alternative hinges on the design of an appropriate
market model. Further research is required to discern
the market systems that promote the use of shared
pooled mobility, including the exploration of spa-
tial settings—namely, the application of ride-pooling
in suburban and rural contexts. Additional inquir-
ies include identifying settings that enhance the mul-
timodal use of shared mobility and other environ-
mentally friendly modes, such as public transport and
active modes. It is crucial to determine the condi-
tions under which individuals relinquish car owner-
ship and effectively curtail motorized transport.

5.3.4. User comfort and pleasant interactions with
ride-pooling

Understanding how to build and improve matching
systems that provide reliable and enjoyable services
and effectively provide onboarding and user reten-
tion. How can digital systems and the interaction
with them offer decision support and lead to reli-
ably positive, e.g. meaningful and interesting social
experiences? This research needs experimental setups
with methods from user-centered, context-aware and
maybe even game-based systems in the domain of
HCI that yield powerful and daring interactive pro-
totypes and their analyses.

6. Conclusion

In this paper we provide a novel transdisciplinary
research agenda that aims to identify the social, eco-
nomic, and technological conditions under which
shared pooled mobility can contribute to low-energy
demand climate solutions. We identify three main
research areas: the optimal configuration of ride-
pooling systems, empirical studies to analyze ride-
pooling under real world conditions and, the ana-
lysis of market drivers and implications for the eco-
nomics of ride-pooling as the. To thoroughly study
these areas, we propose to combine the expertise in
the respective research areas represented by the differ-
ent contributors of this work, namely transport mod-
eling, statistical physics, social science and urban eco-
nomics. To determine how a ride-pooling system can
be designed to be as convenient as possible for the pas-
sengers, it makes sense, for example, to consider both
a technical perspective—how can passengers reach
their destination as quickly as possible—and a social
perspective—how must the vehicles be designed, so
that users can get on board. To determine how ride-
pooling could be used to explicitly replace private
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vehicles, considering an economical perspective—
how much operating costs are required—and a social
perspective—how expensive should the system be for
users—is useful. This research could be improved by
simulating ride-pooling systems or observing exist-
ing ride-pooling services. With this transdisciplin-
ary approach, transformational and system know-
ledge about the optimal implementation strategy for
shared pooled mobility will become increasingly use-
ful. These knowledge gains are intended to support
the development and implementation of ride-pooling
systems in urban and rural areas, by businesses or
public transit operators, as stand-alone systems or
in combinations with other transportation systems.
With this flexible public transportation system we
hope to motivate people to switch to public transport
and to limit the usage of their private vehicles, in order
to reduce emissions of the transport sector.
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