
Figure 2: Framework of the project modified from (Folberth et al., 2019) starting from a multi-dimensional cube 
of crop model input data at the top right and resulting in climate impact and adaptation projections at the 
bottom. Letters A-F indicate key steps in the methodology: A: Global gridded crop model simulations for a 
multidimensional cube of input data to generate training data for machine learning algorithms, B: training of 
machine-learning crop meta-models (MLCMs) based on various machine learning algorithms and the global 
GGCM training sample, C: predictions for comprehensive sets of GCMs and derived high-resolution climate data, 
other agro-environmental features, and management trajectories, D: storage and combination of MLCM 
predictions, E: extension of training data and GGCM simulation space if required, F: processing and 
interpretation of outcomes from benchmarking to adaptation pathway development, G: inclusion of field 
observations and associated data in MLCM training data space as an add-on to A-F. Dimensions of the training 
data cube are: C=atm. CO2 concentration, W=precipitation (incl. sufficient water supply), T=temperature, 
N=mineral nitrogen input, S=soil type, V=crop variety, MLCMs=machine-learning crop meta-models
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Importantly, emulators produced by CROMES are virtually scale-free 
as all training samples, i.e., pixels, are pooled and treated as 
individual points without geo-referencing. This allows for applications 
on increasingly available high-resolution climate datasets or in 
regional studies for which more granular data may be available than 
at global scales. Using climate features based on crop growing 
seasons and cardinal growth stages, also adaptation studies such as 
growing season and cultivar shifts are facilitated. We expect CROMES 
to enable explorations of comprehensive climate projection 
ensembles, studies of dynamic climate adaptation scenarios, and 
cross-scale impact and adaptation assessments.
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Outlook

Here we present a new emulator pipeline CROp model Machine learning 
Emulator Suite (CROMES) that serves for processing climate features from 
netCDF input files, combining these with site-specific features (soil, 
topography), and crop management specifications (planting dates, cultivars, 
irrigation) to train machine learning crop meta-models (MLCMs) and 
subsequently produce predictions (Figure 1).

Project design
Global gridded crop models (GGCMs) have become state-of-the-art tools in 
large-scale climate impact and adaptation assessments. Yet, these 
combinations of large-scale spatial data frameworks and plant growth models 
have limitations in the volume of scenarios they can address due to 
computational demand or complex software structures. Emulators mimicking 
such models are therefore emerging as an attractive option to produce 
reasonable predictions of GGCMs’ crop productivity estimates at much lower 
computational costs. However, such emulators’ flexibility is thus far typically 
limited in terms of crop management flexibility and spatial resolutions among 
others.

Background
Predictions require for a first used climate dataset about 45 min to 
convert from netCDF to a faster readable binary file format and 10 
min for any subsequent scenario, including climate feature generation 
and predictions, compared to approx. 14h for a GGCM simulation on 
the same system.
Prediction accuracy is highest if modeling the case when crops receive 
sufficient nutrients and are consequently most sensitive to climate. 
When training an emulator on crop model simulations for rainfed 
maize and a single global climate model (GCM), the yield prediction 
accuracy for out-of-bag GCMs is R2=0.93-0.97, RMSE=0.2-0.7, and 
rRMSE=8-10% in space and time (Figure 3). 

Performance

Figure 1: Processing and computational pipeline to produce machine learning crop meta-model (MLCM) 
predictions in a fully integrated framework. The same design is used for MLCM training.

As a first strategy to emulator development, training data have been 
generated in a synthetic cube of variations in weather data and CO2 following 
the approach from Franke et al. (2020) as a forcing for the GGCM EPIC-IIASA 
(Figure 1). Crop model outputs were fed into machine-learning algorithms 
combined with features derived from crop model input data including 
climate, soil, topography, and crop management (Figure 2). These resulted in 
a reasonable performance in reproducing yield estimates from the GGCM for 
climate projections but indicated bias towards values for quasi factorial 
features, i.e., atm. CO2 concentrations (not shown).
To provide a training sample that is less structured and has a wider range of 
feature combinations, a new approach was developed using GGCM 
simulation outputs from actual climate forcings (e.g., GCM X) to subsequently 
predict yields for unseen forcings (GCM Y).

Figure 3: (a) Comparison of global gridded crop yields for rainfed maize from EPIC crop model simulations vs 
predictions by an ML model that was trained on one GCM and applied to another GCM for RCP8.5 in both cases. 
(b) Global area-weighted crop yields for the same data over time for the original model EPIC and the emulator.
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The best agreement 
between predictions 
and crop model 
simulations occurs in 
(sub-) tropical 
regions, the poorest 
in cold and arid 
climates (Figure 4) 
where both growing 
season length and 
water availability limit 
crop growth. The 
performance slightly 
deteriorates if 
fertilizer supply is 
considered, more so 
at low levels of 
nutrient inputs.
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Figure 4: Same as Figure 3b but for macro-regions.
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