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Abstract. As fossil fuels are phased out in favor of renewable energy, electric cars and other 34 

low-carbon technologies, the future clean energy system is likely to require less overall mining 35 

than the current fossil fueled system. However, material extraction and waste flows, new 36 

infrastructure development, land use change, and the provision of new types of goods and 37 

services associated with decarbonization will produce social and environmental pressures at 38 

localized to regional scales. Demand-side solutions can achieve the important outcome of 39 

reducing both the scale of the climate challenge and material resource requirements. 40 

Interdisciplinary systems modeling and analysis is needed to the opportunities and tradeoffs 41 

for demand-led mitigation strategies that explicitly consider planetary boundaries associated 42 

with the earth’s material resources. 43 

 44 

Continuing fossil fuel development and consideration of currently implemented policies implies 45 

that climate targets will be missed by a wide margin1. However, many technologies required 46 

to effectively address climate change are already available in the market. There are emerging 47 

signs that some societies can rally enough political support and practical action to slow climate 48 

change. Peak coal may have arrived2. Renewable energy technologies are diffusing 49 

exponentially as costs decrease3, are outcompeting fossil fuels, and are integrating into 50 

increasingly digitalized networks4. Energy end-use technologies enabling low-carbon 51 

electrification of mobility and heating services – such as batteries for electric vehicles (EVs) 52 

and heat pumps for housing – are becoming ever cheaper and expanding rapidly5. If these 53 

trends continue and are coupled with policies for tackling GHG emissions from land use and 54 

agriculture, the goal of limiting global warming to below 2°C may remain within reach 55 

(disinvesting from fossil fuels is however the harder part, given the power of fossil fuels in 56 

energy markets and the geopolitical implications associated with phase-out6). Large-scale 57 

deployment of carbon dioxide removal (CDR) technologies – such as direct air carbon capture 58 

and storage (DACCS) – may even offer the opportunity to reverse temperature increases 59 

further in the future.  60 

This optimistic scenario comes with intensifying and compounding trade-offs. Low-carbon 61 

technologies such as wind turbines, solar panels, or batteries – and the infrastructures they 62 

require – are material-intensive7, and specifically more mineral-intensive than their fossil fuel 63 

counterparts8. Their sourcing from the earth and sinking via mining and post-consumer waste 64 

will drive environmental burdens to new levels globally, including increased water pollution, 65 

ecosystem destruction from mining operations9, and supply chain-related GHG emissions10. 66 

Main drivers include deployment of large-scale renewable power plants, mining for resources, 67 

such as lithium and cobalt required for novel digital and low-carbon technologies11, and other 68 

land footprints12. This expected surge in impacts counteracts biodiversity protection and other 69 
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healthy ecosystem targets and is likely to meet increased conflicts with supply chain legislation 70 

and environmental protection in mining countries, as well as resistance among NGOs and the 71 

general public. Socially, the current energy transition path risks creating new social burdens, 72 

including disproportionate siting of extractive projects in low-income or indigenous 73 

communities13, and investment uncertainties that may exacerbate issues of energy poverty 74 

and inequality (within and between countries)14,15. 75 

Environmental and social impacts and geopolitical relations, not resource scarcity, constitute 76 

the main risks in metals and minerals supply16–20. Biodiversity and deforestation impacts of 77 

mining are well documented both for metals9 and for bulk materials such as sand21. Large-78 

scale extraction of energy resources, metals, and construction of transport infrastructures can 79 

have negative socio-environmental impacts disproportionately affecting ecosystem-based 80 

livelihoods (e.g., fishermen, pastoralists)22, marginalized communities, and lower income 81 

neighborhoods in both global North and South. High-resolution mapping reveals that mining 82 

is a major force in compromising biodiversity-rich areas by direct  and indirect impacts, e.g., 83 

via wide-spread logging23,24. While phasing out fossil fuels will reduce the overall impact of 84 

material extraction, a large literature shows that supply side solutions to support the energy 85 

transition will enlarge and intensify social and ecological injustices13,25. Mining, fossil fuels, 86 

dams, and energy infrastructure cause more than 60% of all documented environmental 87 

conflicts26. In this respect we argue that demand side strategies can significantly mitigate the 88 

risks associated with supply-side solutions. 89 

Digital technologies, platforms and applications support a rapid clean energy transition, 90 

helping to improve the resource efficiency of service provisioning systems. However, relative 91 

efficiency gains can be undermined by the resources required to build and operate digital 92 

infrastructure, as well as rebound effects that grow absolute levels of consumption and 93 

associated material demand27. Pervasive dDigitalization also creates new types of 94 

environmental footprint related to material use including copper ore, lithium, rare earth 95 

minerals, and many other materials. 96 

In this perspective we explain, illustrate, and discuss a main emerging problem with the 97 

transition towards climate neutrality: Large-scale transitions to a renewable energy supply, 98 

afforestation, and potentially new CDR technologies such as DACCS can have substantial 99 

trade-offs for material use, land use, the biosphere and local social systems, requiring 100 

mitigation of their impact  101 

In the following, we first establish the critical environmental and social burdens introduced by 102 

decarbonization strategies, such as increased mineral extraction with significant ecological 103 

and societal impacts. This foundation is essential for understanding the subsequent part, 104 
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which advocates for demand-side solutions as a necessary countermeasure to these burdens. 105 

Texposition on the impacts of decarbonization solutions underlines the importance of 106 

incorporating demand-side measures to mitigate these effects, thus supporting a holistic 107 

approach to achieving sustainable energy transitions. 108 

Environmental and social burden of decarbonization strategies 109 

Decarbonization influences material footprints differently across provisioning and service 110 

sectors, including energy, mobility, shelter, nutrition, general purpose technologies such as 111 

digitalization, and mitigation-specific technologies such as CDR for atmospheric carbon 112 

management. We illustrate these impacts with five salient examples. 113 

First, high levels of electricity consumption in ambitious solar photovoltaic (PV) and wind 114 

power scenarios will require additional bulk materials (e.g., steel, cement, aluminum) and land 115 

7,28,29. While the overall material footprint of low-carbon electricity goes down by 85% 116 

compared to fossil alternatives, higher metal ore extraction partly compensates for avoided 117 

fossil mass flow30.  CO2 emissions associated with construction also increase7 (see also Table 118 

1). Expansion of renewable energy and electrification of other sectors will rapidly increase the 119 

demand for most materials31. While the overall impact is uncertain, global demand for steel 120 

and aluminum in the electricity sector is estimated to grow by a factor of 2 in a baseline 121 

scenario or by a factor of 2.6 in a 2°C climate policy scenario32. Annual demand for neodymium 122 

in the 2°C scenario could more than quadruple32. Scenarios achieving a 1.5°C target have 123 

even larger material requirements. Material stocks in 2050 could increase by up to 30% for 124 

copper, 100% for concrete, 150% for iron/steel, and 260% for aluminum33. Most of these 125 

materials have moderate or high recycling rates and once stocks are built up, they can be 126 

used as a source of secondary materials. However primary material production will still need 127 

to increase to develop new infrastructure34,35. 128 

Second, electrification is an essential strategy to decarbonize mobility36. However, detailed 129 

lifecycle analyses (LCA) show that electric vehicles (EVs) have higher impacts than 130 

conventional fossil-fueled vehicles in terms of metal and mineral consumption and human 131 

toxicity potential, even as they reduce GHG emissions over the full lifecycle34. In the EV 132 

industry, significant supply risks originate in rapidly rising demand for battery grade natural 133 

graphite, lithium and cobalt for batteries, and the rare earth elements dysprosium, terbium, 134 

praseodymium and neodymium37. Also in this case, most of these materials have moderate or 135 

high recycling rates and once stocks are built up they can be used as a source of secondary 136 

materials 137 

Third, the requirements for lower carbon footprints in construction materials for buildings are 138 

driving a shift from mineral-based materials to bio-based materials38. From a lifecycle 139 
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perspective, bio-based materials such as wood not only emit less CO2 during the 140 

manufacturing phase than cement and steel, but also store CO2
39,40. However, there are 141 

important trade-offs with other ecosystem services and carbon sinks provided by forests and 142 

would imply the expansion of forestry to nearly 150 Mha by 210041. This is equivalent to the 143 

current size of the entire global urban land area or one third of the entire land area of the EU42. 144 

These land use pressures can be ameliorated by shifting to plant-based diets with much lower 145 

agricultural land footprints as well as dramatically lower GHG emissions43. Large scale 146 

adoption of meat substitutes, including alternative proteins and cultivated meat, by non-147 

vegetarians can also reduce emissions, but  may marginally increase demand for electricity, 148 

water treatment facilities, and high grade stainless steel44. The carbon reduction potential of 149 

these novel foods varies, but generally hinges on the assumption that they will utilize 150 

renewable energy (e.g.,  during the production of cultivated cells)45.  151 

Fourth, the increased use of digital technologies in the provision of goods and services is one 152 

of the fastest and most pervasive forces shaping our societies with disruptive consequences 153 

affecting both demand and supply across all sectors27,46. Digitalisation is also a critical and 154 

integral element of the clean energy transition: for balancing intermittent renewable supply in 155 

real-time with distributed storage and flexible demand in a low carbon electricity system47, for 156 

enabling low-carbon urban mobility modes such as car sharing48, and for promoting 157 

virtualisation and servitization to reduce demand for energy-intensive products and activities49.  158 

However, digital infrastructure and devices have distinctive material footprints and relatively 159 

low levels of material recovery from waste streams. They also depend on critical mineral 160 

extraction and often result in rapid turnover of short-lived consumer goods50. E-waste, 161 

estimated at 54 Mt in 2019, is the fastest growing waste stream in the world, doubling every 162 

16 years50, yet is worth over $60bn annually51. Impacts of digitalisation are also unequally 163 

distributed: benefits accrue more in the service-intensive economies of the Global North, while 164 

negative economic and social impacts associated with both resource sourcing and waste 165 

sinking are higher in the Global South52. Improving recycling of e-waste is a pressing concern 166 

and a high priority for future research53.  167 

Fifth, DAC has been proposed as a scalable but cost- and energy-intensive option to absorb 168 

CO2 from the atmosphere. However, per unit of CO2-emission reduced/sequestered, DAC 169 

(using temperature swing adsorption) is estimated to have similar renewable energy 170 

requirements and land footprints as a switch from gasoline to electric vehicles, but with 171 

approximately five times higher material consumption54. In some specific cases, existing 172 

mining operations can be better managed to improve carbon sequestration through enhanced 173 

weathering55, with a technical potential of up to 400 Mt CO2/yr, according to one study56. More 174 
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broadly, both the logistics (piping) and the geological storage capacity requirements for large-175 

scale application of CCS infrastructure also carries large land use footprints. 176 

In the clean energy transition, these different forces driving new material extraction are set 177 

against reduced mining of fossil fuels. The current scale of fossil fuel extraction from coal, gas, 178 

and oil surpasses those of all other materials together (excluding construction aggregates and 179 

limestone) (Figure 1, Table 1). Focusing just on the energy transition, total extraction will be 180 

halved from now until 2040 or shortly thereafter under the IEA’s Net Zero Emission pathway57. 181 

This dynamic is grounded in a sharp decline in the currently dominant fossil fuels, only partially 182 

compensated by rising demand for materials required for wind, solar, EVs, batteries and 183 

hydrogen. There is sufficient physical supply and economic potential for most of these material 184 

resources17. Nonetheless, the material specific mining increment is substantial. Depending on 185 

scenario assumptions, the total material requirement flows associated with mineral production 186 

increase by around by around 200–900% in the electricity sector and by 350–700% in the 187 

transport sector respectively from 2015 to 20508. Aggregates and clay-based materials are 188 

extracted at higher rates than fossil fuels, but their impacts are comparatively lower. 189 

Most of the “new” required minerals, metals and other materials have environmental and social 190 

impactsconsequences, as well as geopolitical risks of supply (Fig. 1). Sometimes, resources, 191 

impacts and the capacity to refine and process them are highly localized58. The Democratic 192 

Republic of Congo, for example, has half the world's supply of cobalt, and China produces 90 193 

per cent of the semiconductor wafers used to make solar cells58. However, a large literature 194 

shows that the need for minerals and metals necessary to develop low-carbon infrastructure 195 

will augment the stress placed on people and the environment in extractive locations. The 196 

orebodies of energy transition metals, for instance, are geographically concentrated in already 197 

marginalized communities characterized by a co-occurrence of environmental, social and 198 

governance risks13,25,59. Existing decarbonization scenarios do not account for the fact that 199 

local operational impacts associated with new and existing extraction projects are 200 

fundamentally incompatible with global sustainability objectives and will exacerbate existing 201 

inequalities and marginalization, e.g. of indigenous people and peasants, undermine local 202 

governance but also pose wider socio-political risks negatively impacting economic growth, 203 

human development60–62. Importantly, conflicts associated with environmental and social risk 204 

translate into business costs, undermining  the transition to a low carbon future62. 205 

Of particular concern is the fast-tracking of mining operations for critical energy transition 206 

minerals, such as lithium. Such practices threaten the rights of local and often indigenous 207 

communities59 (e.g., in Latin America and Canada) by circumventing their prior informed 208 

consent  and participation in decision-making processes. In the European Union,  current 209 

regulatory initiatives also push for accelerated application processes for new mines and 210 
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processing plants for critical minerals63. This not only undermines local governance but also 211 

poses wider socio-political risks. A 'social license to operate' is important for companies to 212 

manage local as well as national risks, as illustrated for copper61,64.Without the socio-political 213 

legitimacy conferred by local communities and stakeholders, corporate operations risk 214 

triggering local conflicts which can have the capacity to generate significant financial costs, 215 

influence national electoral outcomes, and shape public policy on a wider scale62,65. Big 216 

projects such as large-scale solar parks in India or Northern Africa can similarly amplify 217 

environmental and social risks66,67. 218 

There is an extensive body of literature that demonstrates how impacts can be substantially 219 

mitigated by adopting responsible and advanced mining, refining and processing approaches. 220 

Nonetheless, adverse social and environmental impacts cannot be wholly eliminated. At the 221 

same time, the transition also has great potential to ameliorate the social burdens of the fossil 222 

energy system, such as mitigating climate change, reducing air pollution from fossil fuels and 223 

increasing energy security through decentralized production. Community-owned renewable 224 

energy projects, as already in place68, could further empower local communities and reduce 225 

the social burdens and inequalities of centrally owned resources. 226 

The shift from fossil fuels to material extraction also has different impacts on planetary 227 

boundaries: lower pressure on the climate change and ocean acidification boundaries, but 228 

increased tensions for biosphere integrity, land-system change and freshwater change. 229 

Shifting impacts on planetary boundaries for biogeochemical flows remain unclear. 230 

Demand-side strategies reduce burdens 231 

Demand-side strategies focus on how services can be provided to achieve higher wellbeing 232 

at lower levels of energy and material use. This is achieved through social and behavioral 233 

change, low-carbon infrastructures, resource-efficient design of material stocks, and circularity 234 

strategies aimed at recycling materials and reducing overall material demand. Demand-side 235 

strategies are concerned with both final consumption and the service provisioning systems 236 

enabling that consumption69. Consequently, they make best use of demand-supply 237 

interdependencies instead of maintaining traditional sectoral distinctions between end use 238 

(e.g., buildings, transport), intermediate production (e.g., manufacturing) and upstream supply 239 

(e.g., energy, materials).  240 

 241 

Demand-side strategies achieve the important outcome of reducing both the scale of the 242 

climate challenge and material resource requirements (Figure 2). First, demand-side 243 

approaches avoid energy use and associated GHG emissions, directly lowering climate-244 

related risks while also reducing the required scale of the energy transition. Second, demand-245 

side approaches directly reduce adverse material impacts by dematerializing goods and 246 
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services provision (‘narrow’ strategies for circularity). Third, demand-side strategies can 247 

further enable circular material flows by extending product lifetimes and recovering and 248 

reusing materials (‘slow’ and ‘close’ strategies). However, with few exceptions70, demand-side 249 

strategies have not yet been systematically explored at the nexus of climate change mitigation 250 

and the material dimensions to the clean energy transition.  251 

 252 

Demand-side solutions hold high potential for the previously discussed examples of energy, 253 

mobility, buildings, food, digitalization, and CDR (Table 2). Strategies in the energy sector  254 

include material-efficient technologies, low-carbon industrial processes, and increased 255 

material recycling33. A shift from underutilized private cars (<1.2 passengers on average and 256 

in use <1 hour per day) to shared pooled mobility achieves similar or better mobility services 257 

at reduced material intensity71. 258 

In the building sector, sufficiency (reduced floorspace per capita) and higher material efficiency 259 

(increased yields, light design, material substitution, fewer domestic appliances, extended 260 

service life, and increased service efficiency, reuse, and recycling) reduce material burdens 261 

and associated GHG emissions72. More intense building use alone has as much potential as 262 

all other measures combined72. In the food sector, transitioning away from meat (whether to 263 

processed or unprocessed plant protein) is most effective43,73. The material impact of CDR 264 

technologies can be best avoided by minimizing their use, emphasizing overall demand-side 265 

strategies, and advancing renewable energy technologies5. 266 

In the case of digitalization and ICTs, demand-side solutions can narrow material cycles 267 

through resource-efficient design and dematerialisation (e.g. functional convergence with 268 

more services delivered through fewer devices74,75). Material cycles can also be slowed by re-269 

designing ICT business models and consumption practices, enabling repair, longevity, lifetime 270 

extension, resale, remanufacturing, component reuse, and modularity. Upscaling end-of-life 271 

recovery and recycling capacities including through improved provenance and sorting systems 272 

can close material cycles, enabled by simplifying material design choices76.  273 

Despite these significant potentials, demand-side strategies are not without trade-offs. 274 

Resource-efficient design of material stocks, and circularity strategies aimed at recycling 275 

materials and reducing overall material demand, also have social and environmental costs.  276 

Recycling raises environmental and justice questions. Resource-rich countries can face 277 

significant challenges in securing investments for novel technologies such as battery recycling 278 

and repurposing. These investments play a pivotal role in driving economic development and 279 

job creation and ensuring equitable access to clean energy77. Furthermore, tightening 280 

environmental standards in some countries can lead to relocation of recycling operations, 281 
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resulting in negative health outcomes for communities in other (often low-income) countries78. 282 

Another issue is the export of waste from high-income countries. Transporting large quantities 283 

of waste has a high environmental impact, and the health and safety conditions under which 284 

informal workers and communities collect and sort waste is a major concern in many low-285 

income countries79,80. 286 

Both examples emphasize that the clean energy transition will require not only technical and 287 

economic changes but also a strategic approach to political issues of justice and equity in a 288 

world with significant global inequalities and (historical) injustices. 289 

New challenges require interdisciplinary approaches 290 

The interdependencies between energy and materials, demand and supply, supply chains and 291 

service provisioning systems, as well as diverse societal debates and policy paths across 292 

sectors and geographies raise complex new research challenges. Navigating this landscape 293 

requires systems analysis and integration between technical and social scientific expertise. 294 

The global integrated assessment models (IAMs) are currently widely used  to inform long-295 

term climate mitigation strategies but cannot address these intricacies. They need upgrades 296 

enabling them to effectively analyze the material dimensions of low-carbon futures, particularly 297 

in terms of sectoral interdependencies. IAMs are widely used for providing a systems 298 

perspective on decarbonization pathways and the design of global and national GHG 299 

reduction strategies for the energy and land-use sectors81,82. However, IAMs do not consider 300 

the interplay between materials and energy or the emerging challenges of a clean energy 301 

transition (Figure 1)81. For example, material demand in IAMs is often either absent or 302 

represented in monetary rather than physical units, or modelled as a simple function of 303 

economic development. Demand is also segmented by sector – industry, transport, and 304 

buildings. This overlooks important interactions between sectors, such as how infrastructure 305 

and technologies used by the transport and buildings sectors directly influence industrial 306 

demand through material consumption83,84. Climate mitigation strategies like EV deployment 307 

or building insulation can reduce energy consumption but raise material demand85. 308 

Conversely, recycling or reusing materials can decrease material demand but push up energy 309 

consumption. 310 

As discussed earlier, the currently dominant supply-side strategies for decarbonization imply 311 

large and worrying footprints for material extraction at a planetary scale. This reinforces the 312 

need for new analytical tools capable of representing the systemic interplay between energy 313 

and material dimensions. Progress is being made with focused empirical questions such as: 314 

What are the specific material needs of decarbonization strategies? How are material 315 

footprints developing over time? How are material sources and sinks spatially distributed, and 316 
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with what environmental consequences? Ongoing research in these areas needs rebalancing 317 

to better represent the Global South, and to address key questions around the material 318 

equivalent of climate justice. 319 

Another set of fundamental questions relates to the compatibility of current net-zero strategies 320 

with planetary boundaries86. What strategies can mitigate both GHG emissions and material 321 

use in industrialized countries? How can emerging economies attain welfare and material 322 

comfort with lower material requirements? What is the scope for repurposing or reusing 323 

materials from stranded fossil-based assets, and what are the implications for GHG 324 

emissions? 325 

Answering these questions requires gathering and scaling up technology- and material-326 

specific knowledge to explicitly represent and simulate the material dimension in scenarios of 327 

climate change mitigation and global environmental change72. Here, IAMs can build on the 328 

research methods and data collection efforts in the industrial ecology (IE) field81. Material flow 329 

models provide a quantitative understanding of the material cycle stages from extraction, 330 

production, and use, up to disposal or other end-of-life options. This allows for the identification 331 

of materials inefficiencies and losses, as well as circularity potentials and opportunities for 332 

improvement. 333 

Connecting industrial ecology (IE) tools (materials) with integrated assessment modelling 334 

(IAM) (energy, land) represents the frontier for advancing systems analysis of the trade-offs 335 

involved in the clean energy transition. Accounting for material demand in IAMs requires: first, 336 

an enhanced quantitative representation of specific sectors in physical terms, including 337 

products and service levels (e.g. building types and floorspace levels for residential and 338 

commercial sectors with associated material requirements87,88); second, re-configuring models 339 

to depict industry as an intermediate sector, and not as end-use sector, whose output is 340 

consistent with demand from households, the public sector, and investments; and third, 341 

detailed coupling between IAM and IE models89 to link material cycles, including mining, 342 

manufacturing and end-of-life treatment to the services and products. This linkage would allow 343 

the generation of material demand futures coupled to projected energy transitions, and vice 344 

versa, the estimation of energy requirements for producing required materials. Economic 345 

aspects of material cycles are also important but typically not covered by industrial ecology 346 

methods, whereas they are at the core of decision making in IAMs. Related data is hard to 347 

find and typically proprietary which amplifies the challenge of integrated modeling in this 348 

domain. 349 

In addition to IE-IAM model coupling, a complementary approach to projecting global energy 350 

and material systems draws on artificial intelligence (AI) and empirical big data techniques. 351 
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These methods are increasingly linked to climate change mitigation and adaptation90. In 352 

particular, studies with explicit spatial resolution have delivered promising results in predicting 353 

building attributes, and material and energy demand with high generalization capacity91,92. 354 

Using satellite imagery and volunteered geographic information from OpenStreetMap, studies 355 

have created high-resolution maps of material stocks in buildings and infrastructures93, and 356 

identified rooftop areas for solar PV that avoid land-use conflicts94. The flexibility of these 357 

approaches allows analyses to be extended to areas with sparse official data where 358 

conventional material flow models cannot be applied95, particularly in the Global South. 359 

Incorporating temporal dynamics can further reveal long-term trends, such as urban 360 

expansion96, and help project future material demand of settlements. If data of appropriate 361 

spatial resolution are unavailable, AI techniques can facilitate the downscaling and upscaling 362 

of data via clustering and disaggregation methods97,98. While these use cases show some 363 

promise, the application of AI to material and energy analyses of urban areas is a recent 364 

development: its full potential has yet to been fully explored. 365 

These methodological advances for understanding the feedbacks between energy, land and 366 

material systems are required not just to design robust mitigation scenarios but also to 367 

evaluate demand-led strategies such as material efficiency and sharing economies that 368 

reduce both energy and material demand. The importance of demand-side measures, and the 369 

policies for incentivizing their adoption, have so far not been well captured in either global or 370 

regional pathway analyses (for a recent notable exception see the analysis of China’s bulk 371 

material loops70). 372 

Material and energy demand interact with human behavior and cultural context99. Resource 373 

efficiency savings, including those advanced by the circular economy, are often compromised 374 

by rebound effects100. Leverage points for reducing material intensive supply and demand 375 

include changing norms, the provision of low-carbon services and infrastructures, combined 376 

with the update of new services and technical solutions99. Policy instruments, such as carbon 377 

pricing, and equivalent pricing of harmful material extraction, are central for keeping overall 378 

demand in check101. 379 

 380 

There is also an urgent need for ex ante assessments of justice and equity implications of 381 

policy paths, together with their socio-political feasibility. This underlines the importance of an 382 

approach that integrates social science insights with advanced modelling techniques to 383 

analyze the complex relationship between social impacts, material flow dynamics and policy 384 

development. A holistic, interdisciplinary perspective is essential to ensure that the material 385 

and societal burdens of the energy transition are mitigated. Correspondingly, the complex, 386 
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multi-level dynamics of these socio-political risks require a nuanced and integrated approach 387 

to resource governance and corporate responsibility. 388 

 389 

Demand-side strategies emerge as holistic solutions 390 

The clean energy transition to address climate change may be just in time to keep global 391 

warming within limits consistent with human survival. Yet, many communities encounter new 392 

essential challenges to their livelihoods, as the mineral demand underpinning the energy 393 

transition creates new environmental and social risks. To date, analytical and policy focus has 394 

rightly been on the energy and land-use dimensions to the climate challenge. While the new 395 

stressors are not at the scale of fossil fuel extraction and current agricultural practices102, they 396 

will nonetheless compromise sustainability in new locations at large scales. This implies that 397 

demand-side strategies, as detailed in the recent IPCC report43, matter not only for climate 398 

change mitigation but simultaneously serve to limit material-related environmental and social 399 

burdens. For example, urban planning and transport system strategies, such as compact 400 

cities, transit-oriented development, the 15-minute city, and novel systems of shared pooled 401 

mobility, can improve accessibility, while decreasing the demand for cars, and thus materials 402 

needed for electric motors and batteries. Future research should aim to develop a 403 

comprehensive understanding of demand-side measures, including experience of their 404 

implementation and mapping of available data on their effectiveness. Given the extensive and 405 

interdisciplinary nature of this literature, which sometimes presents ambivalent results, such a 406 

review could be a crucial aid to policy and practice. Most importantly, this review should also 407 

seek to establish links with studies on the specific environmental and social impacts of 408 

extractive projects, in order to focus efforts on the most pressing problem areas. The tools and 409 

thinking underpinning global climate mitigation need to be updated, linked, and extended to 410 

provide robust policy advice on the supply and demand-side strategies that jointly address the 411 

energy and material dimensions of future sustainable development pathways. 412 

 413 

 414 

 415 
Table 1. The clean energy transition impacts or is influenced by Overview of key materials, services, 416 
current extraction rates, demand evolution, environmental, social and geopolitical risks, supply chain 417 
concentration and relevant transition dynamics of the clean energy transition. As social impacts are highly 418 
context-dependent and extractive projects have both negative and positive social impacts, the table should be 419 
read as an indication of overall trends in social burdens resulting from specific extraction practices in relation to 420 
different natural resources. We conceptualize social burdens as perceived difficulties or disadvantages that 421 
extractive projects impose on communities or societies. Burdens can include the need for resettlement, increased 422 
cost of living, forced acquisitions, or conflicts over land use and property rights. Social burdens are typically 423 
unevenly distributed, with marginalized and vulnerable populations bearing a disproportionate share of the 424 
burden. Find a complete list of references cited in the table in the Supplementary Material.  425 

  426 
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Material Service(s) 
Current 

extraction 
Demand evolution 

Environmental Impacts (water 

depletion and pollution, waste related 

contamination and air pollution) 

Social impacts (misuse of 

government resources, 

fatalities and injuries, human 

rights abuse) 

Geopolitical 

risk / Critical 

material 

Supply chain 

concentration 

(national, global) 

Dynamics of the transition 

Oil All 
5.3 Gt/y in 

2019 103 

In 2030: +5% to -20% 

than in 2022. In 2050: 

+1% to -75% depending 

on scenario 104 

Oil spillages lead to water and soil 

contamination, with impacts in aquatic and 

terrestrial ecosystems. Crude oil refining 

releases several toxic substances as 

benzene 105. Oil combustion causes air 

pollution (particles, smog, acid rains, etc.) 

with highly relevant health impacts. 

Impacts aggravated when fracking is used 
106 

Higher disease prevalence in 

communities near oil drilling 

operations 107. Indigenous 

communities particularly suffer, 

e.g. in Northern Alberta 108. 

People displacement, food 

insecurity, disruption of social 

and cultural cohesion, among 

other felt across the world, e.g. 

Uganda 

High 

(cartelization 

and war) 

USA, Russia, Saudi 

Arabia extract 42% 

world supply 109 

Not applicable 

Natural gas All 
2.8 Gt/year in 

2019 103 

In 2030: +3% to -31% 

than in 2022. In 2050: 

0% to -78% depending 

on scenario 104 

Water depletion, toxic wastewater 

production contaminating underground 

water/water bodies 105. Impacts 

aggravated when fracking is used 106. 

Land subsidence has occurred in 

Netherlands 110.Natural gas combustion 

leads to acidifying emissions, besides 

GHG emissions. 

People displacement and 

homelessness, , disruption of 

social and cultural cohesion, 

lack of government; poor health 

and wellbeing 111. Food 

insecurity has also been 

reported. Widespread impacts 

across the world, as Uganda 112, 

Nigeria 113.  

High 

(cartelization 

and war) 

USA, Russia, Iran 

extracts 47% world 

supply 109 

Not applicable 

Coal all 
7.8 Gt/year in 

2019 103 

In 2030: -14% to -44% 

than in 2022. In 2050: -

40% to -91% depending 

on scenario 104 

Soil, aquifers/surface water contamination, 

water depletion, land subsidence reported 

in many countries as Bangladesh, Brazil, 

China, India, UK, Greece, Colombia, 

among other 114 115. 26% of global mining-

related biodiversity loss in 2014 due to 

coal mining 116. Coal combustion leads to 

particulate emission, smog, acid rains 

besides GHG emissions 105 

Health-related issues and 

impoverished community 

cohesion 117 105. Human 

casualties and injuries in 

disasters, e.g. incident in an 

open-pit coal mine in northern 

China in 2023 118  

Lower than oil 

and gas. xx 

China produced 50% of 

global supply in 2022, 

followed by India (10%), 

Australia and Indonesia 

(10% each), USA (6%), 

Russia (5%), EU (4%). 

Rest of the world 

supplied 11% 119  

Not applicable 

Lithium (Li) 
Mobility (EV 

batteries) 

1.30 Gt E-04 

ore in 2023 120 

20-30x  increase from 

2018-2100 121; 18-20x 

increase 2020-2050 for 

use in batteries 122 

Groundwater depletion, ecosystem 

degradation 123 124 

Forced displacement of 

populations 124 

Considered a 

critical 

material in EU 
125, USA 126, 

IEA 127 

Reserves quite 

concentrated (>50% of 

global) in Chile, 

Argentina, Bolivia 123 

Between 2010 and 2022, lithium 

mining output rose by a factor of 

five xx ref 
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Material Service(s) 
Current 

extraction 
Demand evolution 

Environmental Impacts (water 

depletion and pollution, waste related 

contamination and air pollution) 

Social impacts (misuse of 

government resources, 

fatalities and injuries, human 

rights abuse) 

Geopolitical 

risk / Critical 

material 

Supply chain 

concentration 

(national, global) 

Dynamics of the transition 

Cobalt (Co) 
Mobility (EV 

batteries) 

1.90 Gt E-04 

ore extracted 

in 2023 128 

2x-4x increase from 

2020-2050 129; 17-19x 

increase 2020-2050 for 

use in batteries 122 

Similar to copper (circa 60% of world 

cobalt is co-mined with copper) 129. Soil, 

aquifers/surface water contamination, air 

pollution due to dust 130. 

In Democratic Republic of 

Congo (DRC), reported severe 

health impacts, child labour 131, 

accidents and occupational 

hazards, loss of community 

health, as well as violent conflict 

and deaths 130 

Considered a 

critical 

material in EU 
125, USA 126, 

IEA 127 

Highly concentrated in 

both mining and refining 

countries with DRC 

providing 60-70% world 

supply [5]. Strongly 

related to production of 

copper and nickel  129 

Now 7.2 million EV that could 

become 140 -245 million in 2030 
132. Between 2010 and 2022 

mining output rose by a factor of 

five 133 

Limestone 

(for e.g. 

cement, 

glass, others) 

Buildings, 

Civil 

Engineering, 

Energy 

Infrastructure 

(offshore 

wind, 

hydropower) 

6.7 Gt/year in 

2019 of 

limestone 103 

Constant-30%increase 

by 2100 134. Well below 

2°C warming compatible 

supply of concrete only 

compatible with 22–56% 

(interquartile range) of 

the expected baseline 

demand in 2050 135 

Concrete production from limestone and 

clinker caused 2.7% of global GHG 

emissions in 2018 136. ‘Resources’ and 

‘climate change’ are the two greatest 

environmental impacts of the limestone 

rock production 137, followed by changes in 

land use pattern, habitat loss, higher noise 

levels, particulate matter emissions and 

changes in aquifer regimes 138 

Human casualties and injuries in 

disasters. e.g. limestone mine 

collapse in India, 2022 139 

Not a critical 

material 

Potential resources of 

pure carbonate rocks 

are in the order of 

several tens of 

thousands of Gt, that 

are widespread 140 

Global materials use is projected 

to more than double from 79 Gt in 

2011 to 167 Gt in 2060. Non-

metallic minerals, such as sand, 

gravel and limestone, represent 

more than half of total materials 

use 141. The need for cement 

grade limestone will increase 43-

72% by 2050 142 

Copper (Cu) 

Energy 

(power grids), 

mobility 

(motors, 

batteries) 

2.7 Gt/year in 

2019 of 

copper ore 103 

Future Al and Cu 

demand for power 

sector infrastructure 

could require 18% of 

current production [8]; 

1.5x-5x demand growth 

by 2050 134 

Toxicity from (sulfidic) mining tailings 

leaching into groundwater and soils. also, 

eutrophication from phosphate leaching 

from tailings 143 144 

Many mine tailing spilling 

incidents. Chile reports 43 

copper miners died in Chile in 

2010 due to accidents in mining 

operations, and relates higher 

fatalities with higher commodity 

prices 145 

Not a critical 

material, yet 

strategic 

material in the 

EU 125 

Chile supplies 26% 

global primary 

production, followed by 

Peru (11%), DRC (9%), 

China (9%) and USA 

(9%). Smelting/refining 

well distributed across 

countries 146.  

5 Mt/yr for power grids in 2020 to 

7.5-10 Mt/yr in 2040 109 

2-3x annual copper demand in 

2050 over 2021 for energy 

distribution and transmission 

grids, as well as power plants and 

transformers 147 

2.5x annual copper demand for 

electric vehicles in a 1.5°C 

scenario 148 

Rare earth 

elements, 

particularly 

Dysprosium 

(Dy) 

Mobility & 

magnets 

300 kt of total 

rare earths 

mined in 2023 

in rare-earth-

oxide (REO) 

equivalent 149 

3.1 kt of 

Dy2O3 mined  

in 2021 146 

2x-30 x increase 

expected 150 

Human toxicity 151. Impacts include 

localized pollution sources due to 

acidifying mining wastewater impacting 

soil and groundwater. Radioactive 

materials and heavy metal contamination 

can also occur. Important damage has 

been reported due to REE specific 

extraction and metallurgic processes 152 

Health complications due to 

exposure to these toxic 

chemicals. Human rights 

abuses have been reported 

throughout mines in these areas 

as labourers are overworked 

and underpaid 153 

Considered a 

critical 

material in EU 

[2], USA [3], 

IEA [4] 

Reserves evenly 

distributed between 

China (36%), Brazil 

(18%), Vietnam (18%), 

Russia (10%) 154. 

However, China 

responsible for 40% of 

global  Dy production, 

followed by Myanmar 

(31%) and Australia 

(20%) 146 

By 2050 maximum annual 

demand for energy could 

represent 309% of current 

production 155 
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Material Service(s) 
Current 

extraction 
Demand evolution 

Environmental Impacts (water 

depletion and pollution, waste related 

contamination and air pollution) 

Social impacts (misuse of 

government resources, 

fatalities and injuries, human 

rights abuse) 

Geopolitical 

risk / Critical 

material 

Supply chain 

concentration 

(national, global) 

Dynamics of the transition 

Rare earth 

elements, 

particularly 

Neodymium 

(Nd) 

Energy 

(permanent 

magnets of 

onshore and 

offshore wind 

power plants) 

300 kt of total 

rare earths 

mined in 2023 

in rare-earth-

oxide (REO) 

equivalent 149 

4.75 kt of 

Nd2O3 mined 

in 2021 146 

2x-30x increase 

expected 150; ; 3x-4.4x 

increase of Nd by 2050 

only for electricity 

infrastructure 156 

Same as for Dysprosium 

Health complications due to 

exposure to these toxic 

chemicals. Human rights 

abuses have been reported 

throughout mines in these areas 

as labourers are overworked 

and underpaid 153 

Considered a 

critical 

material in EU 

[2], USA [3], 

IEA [4] 

See Dy for REE 

reserves. China 

responsible for 62% of 

global  Nd production, 

followed by Myanmar 

(14%), USA (11%) and 

Australia (7%) 146 

By 2050 maximum annual 

demand for energy could 

represent 271% of current 

production 155 

Aluminium 

Transport, 

buildings, 

packaging, 

machinery, 

electricity 

distribution 

0.4 Gt/year in 

2019 of 

bauxite 

extraction 103 

2x-8x increase by 2050 

[16]; 2x-8x increase by 

2050 [16]; 2x-2.3x 

increase by 2050 only 

for electricity 

infrastructure 156 

12% of global mining-related biodiversity 

loss in 2014 due to bauxite mining 116, 

well-below 2°C feasible steel supply will 

only meet 58–65% (interquartile range) of 

the expected baseline demand in 2050 135. 

Air and water pollution and land 

degradation reported in Guinea 157 

Corruption and high social 

inequalities among mining 

workforce, e.g. in Guinea 157. 

Human casualties in disasters. 

E.g. explosion aluminium-alloy 

plant in Kunshan, China, 2014 
158 

Considered a 

critical 

material in EU 

[2], USA [3], 

IEA [4] 

Guinea responsible for 

36% of global  primary 

production, followed by 

Australia (25%), and 

Russia (17%). >50% of 

smelting occurs in 

China 146 

30% increase in EU demand for 

aluminium by 2040, driven mainly 

by the growth of electric vehicles, 

solar PV and electricity grids 159. 

Global demand can double from 

2017 141 

Iron (for e.g. 

steel) 

Buildings, 

infrastructure, 

machinery, 

electricity 

system 

3.1 Gt/year in 

2019 of iron 

ore extraction 
103 

2x-2.6x increase by 

2050 only for electricity 

infrastructure 156 

10% of global mining-related biodiversity 

loss in 2014 due to iron ore mining 116 

Human casualties in disasters, 

interruption in water supply, and 

indigenous people impacted. 

E.g. Dam tailing rupture in the 

Doce River, Brazil in 2015 and 

2018 160 

Not a critical 

material, no 

geopolitical 

risks at this 

stage 

Reserves quite 

distributed, Australia 

biggest producer 

followed by Brazil, 

China, India 151 

Global demand can double from 

2017 141 

Non-metallic 

construction 

minerals 

(sand, 

gravel, clays, 

stones, 

gypsum) 

Buildings and 

infrastructure 

42.9 Gt/year 

in 2019 103 

Substantial increase in 

demand for buildings 

and infrastructure 

expansion around the 

world 161 162. Aggregates 

extraction projected to 

grow from 24 to 55 Gt 

per year in 2011–2060 
141 

33% of global mining-related biodiversity 

loss in 2014 due to minerals 116. River 

sand mining can cause riverbed 

modifications, reduced biodiversity, and 

reduced water, air and soil quality due to 

pollution 163 164 

Local livelihoods negatively 

affected through degradation of 

local ecosystems, esp. in 

developing countries and 

coastal/river regions. Potential 

increase in vector borne 

diseases. Reports of organized 

crime groups in India, Italy 

among other where illegal trade 

in sand occurs 161 

Not a critical 

material, no 

geopolitical 

risks 

Widespread deposits, 

often illegal extraction 
161 

~45% increase in global sand use 

for buildings from 2020 to 2060 

with 300% increase in low-and-

lower-middle-income regions and 

a slight decrease in higher-income 

regions 162 

 427 
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Table 2. Summary of demand-side strategies that contribute both to climate change mitigation and material 429 
resource challenges.  430 

Service Demand-side strategies to mitigate adverse material impacts 

Energy Limit energy and material demand including through more efficient design of plants 
to reduce material footprints, integrated solar PV in building designs to reduce 
material demand of support structures, optimize location of new installations to 
reduce the need for network expansion, limits on sprawling settlements 

Mobility Use vehicles as shared devices to downsize the size of the vehicle fleet; rapidly 
expand public transport systems 

Buildings Increase lifetime of existing buildings and infrastructure by following circular 
economy and sufficiency principles, such as repairing buildings, sharing spaces, 
intensifying use of existing buildings, material efficiency and natural building 
materials, limit sprawling settlements 

Nutrition Curb meat consumption and shift to unprocessed plant protein, sufficiency in line 
with dietary recommendations 

Communication and 
information processing 

Material efficiency in design and manufacturing of ICTs, value capture from material 
recovery and recirculation 

Carbon dioxide removal Rapid GHG emission reductions avoid the need for large-scale CCS infrastructure 

 431 

 432 

 433 

Figure 1. Comparative overview of impacts of extracting and supplying emerging materials and fossil fuels. The 434 
relative location of materials and fuels is by expert judgement underpinned by the insights from Table 1. Only the 435 
extraction and processing stages are included, not fossil fuel combustion. 436 

 437 
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 438 

Figure 2. Shifting risks and response strategies from the clean energy transition. Partially motivated by165.  439 

 440 
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