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In this paper, we analyze the effect of natural hazards on migration in the United
States (US) and the importance of spatial dependence in such assessments. We use
two measures of migration: migration rates and flows. The model for migration
flows is estimated using the gravity model, whereas out- and in-migration rates are
analyzed using the spatial Durbin model. Our results indicate there is a major and
significant impact of economic damage caused by natural hazards on out-migration
rates and outward migration flows. In the spatial Durbin model and in the gravity
model, a $1,000 dollar damage per capita is associated with an increase in out-
migration of 16.0% and 9.1%, respectively. However, when spatial dependence is
not accounted for, the effect of natural hazards on migration is substantially
overestimated: the coefficients are 1.5–2 times larger when spatial dependence is
not considered.

Keywords: natural hazards; migration; spatial dependence; gravity model; spatial
Durbin model

1. Introduction

Recent literature shows that natural hazards have caused massive displacements of
people towards safer areas (IMDC 2022). Some of these people returned home after
the event, but others moved away permanently. When focusing on the US, there is
quite some empirical literature on the effects of natural disasters on displacements in
the US; however, the results are not always consistent. Some studies find that natural
hazards lead to higher net out-migration in US counties (e.g. Boustan et al. 2020),
while others find higher net in-migration due to hazard damage (e.g. Schultz and
Elliott 2013).

Recent meta-analyses on the empirical literature on climate change and migration
have attempted to identify why studies have found inconsistent results (Beine and
Jeusette 2021; Hoffmann, �Sedov�a, and Vinke 2021; �Sedov�a, �Cizmaziov�a, and Cook
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2021). One reason is that migration patterns are driven by a complex interplay of eco-
nomic, social, environmental, political and demographic factors, and evolve over dif-
ferent time and spatial scales (Black et al. 2011). Consequently, researchers have
employed a wide range of methods and data sources to analyze the unknown underly-
ing migration process. Beine and Jeusette (2021), Hoffmann, �Sedov�a, and Vinke
(2021), and �Sedov�a, �Cizmaziov�a, and Cook (2021) show that the methodological and
modelling choices significantly affect the results. For example, the meta-analyses sug-
gest that climatic hazards are more likely to be significant drivers of migration in
internal migration studies than in international migration studies.

An important observation by Hoffmann, �Sedov�a, and Vinke (2021) is the lack of
spatial models in migration studies, which can explicitly address spatial dependence in
the data. Spatial dependence occurs because, for example, disaster damage in one
region tends to be positively correlated with disaster damage in regions nearby (see
Figure 1 in the online Supplementary Information). In other words, observations
exhibit spatial dependence when they are not randomly distributed over geographic
units. When spatial correlation is not accounted for in statistical models, then this
could cause biased and inconsistent estimators, as well as inefficient estimates (i.e.
large standard errors) (LeSage and Pace 2009). This means that the point estimates
and statistical significance of the estimates cannot be trusted. Hoffmann, �Sedov�a, and
Vinke (2021) and �Sedov�a, �Cizmaziov�a, and Cook (2021) therefore recommend that
researchers must have a stronger focus on space in statistical modeling and account for
spatial dependencies in the data.

Some of the existing studies on migration and natural hazards in the US consider
spatial dependence, but in different ways: Boustan et al. (2020) use Conley standard
errors (Conley 1999) that correct for spatial and temporal dependence; Winkler and
Rouleau (2020) include a dummy variable when a neighboring county has experienced
a wildfire; and Schultz and Elliott (2013) include a spatial lag of the dependent vari-
able in the regression. This spatial lag is the average value of the dependent variable
(in their case, population growth) in neighboring counties. Strobl (2011) adopted a spa-
tial regression model that accounts for spatial autocorrelation in the error terms. We
suspect that these different treatments of spatial dependence could have contributed to
the mixed findings in this literature. In other fields, scholars have already found that

Figure 1. Overview of the data and the models.
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accounting for spatial dependence can significantly impact research outcomes, as dem-
onstrated by studies on child poverty rates in the US (Voss et al. 2006), the influence
of urbanization and environmental pollution on public health (Wu et al. 2023), and
child malnutrition in Africa (de Sherbinin 2011).

In this paper, our goal is threefold: i) we examine the impact of economic damage
caused by natural hazards on migration in the US, ii) we aim to improve the assess-
ment of internal migration dynamics by accounting for spatial dependence using spatial
econometrics models, and iii) we examine whether and how the results change when
two different measures of migration are used. With our approach, we add to the exist-
ing literature by trying to clarify some of the mixed evidence in the climate-migration
literature.

We aim to do this in several ways. First, we adopt spatial econometrics techni-
ques specifically designed for modeling data collected over geographic regions. The
advantage of using these techniques is that we can explicitly take into account the
spatial dependence in the data. Second, following the suggestions by Beine and
Jeusette (2021), we estimate two separate models using either migration rates or
migration flows to examine the effect of different drivers of migration. The first
regression model uses migration rates and is relatively similar to the previous cli-
mate-migration literature in the US, except for the spatial econometrics approach.
The second regression model is the gravity model using migration flows between
counties (Poot et al. 2016). Through applying the gravity model and using flow
data, the origin and destination of migration are known, whereas with migration
rates, only the origin (in case of out-migration rates) or the destination (in case of
in-migration rates) is known. Compared to the regression models using migration
rates, the gravity model could therefore give more accurate results because we
employ more information about the mechanisms behind the effects of natural hazards
on migration.

Finally, we test whether the migration response to natural hazards is different in
counties with a high risk of natural hazards and counties with a low risk of natural
hazards. On the one hand, we could expect that the migration response in high-risk
counties is lower due to familiarity with natural hazards and a higher disaster pre-
paredness. On the other hand, the response could be higher because the occurrence of
another disaster could be the trigger point to relocate to safer areas.

2. Methodology

The flowchart in Figure 1 presents an overview of the data used in the two modeling
approaches. From the Internal Revenue Service (IRS) data, described in Section 2.1.3,
we derive in- and out-migration rates and migration flows, which function as the
dependent variables of the regression models. The dependent variable for the spatial
econometric models is either out-migration rates or in-migration rates and the depend-
ent variable for the gravity model is migration flows between counties. The explana-
tory variable in which we are most interested, damage caused by natural disasters, is
derived from Federal Emergency Management Agency (FEMA) disaster data,
described in Section 2.1.1. FEMA reports yearly damages per capita due to natural
hazards in each of the 2,767 counties in the sample. Additional socio-economic data
are available to act as control variables, which are discussed in Section 2.1.2. The two
models are discussed in Sections 2.2 and 2.3.
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2.1. Data

2.1.1. FEMA damage data

In our migration models, we include hazard damage from different natural hazards in
the US as a predictor for migration in response to a natural hazard (e.g. Fussell et al.
2017). These natural hazards comprise hurricanes, flooding, severe storms, tornadoes,
wildfires, snow storms, ice storms and earthquakes. For declared disaster areas, FEMA
provides i) individual assistance to households that are not insured by the National
Flood Insurance Program (NFIP) and ii) public assistance to counties and states to
restore infrastructure and public buildings. Because the amount of individual assistance
depends on NFIP insurance rates, for which we do not have data, we only employ
public assistance data from FEMA as a measure of economic damage from natural
hazards. FEMA public assistance data at the county level is available from 1998
onwards up to the present. Additionally, we use the national risk index of natural haz-
ards provided by FEMA to identify high-risk and low-risk counties.

2.1.2. Socioeconomic data

We control for some socio-economic variables that may explain migration patterns.
For this, we include unemployment rates and personal income levels obtained from the
US Bureau of Labor Statistics (2021) and the US Bureau of Economic Analysis
(2021a), respectively. The personal income includes income from wages and salaries,
Social Security and other government benefits, dividends and interest, business owner-
ship, and other sources (US Bureau of Economic Analysis 2021a). The two traditional
variables in the gravity model (population and distance between counties), are obtained
from the US Bureau of Economic Analysis (2021b) and the National Bureau of
Economic Research (2021), respectively. The distance is measured in miles from the
centroids of the counties.

2.1.3. Migration data

We use yearly county-to-county migration flows that are derived from annual changes
in addresses as indicated on individual income tax returns filed with the IRS. Hence,
migrants are defined as those who change county of residence from one calendar year
to the next. Counties are the administrative units within a state in the US and, on aver-
age, a state comprises around 60 counties. Although not all households file taxes, still
87% of the US households are present in the dataset (Molloy, Smith, and Wozniak
2011; Winkler and Rouleau 2020). Specifically, retired people, students and the poor
could be underrepresented in the data, as these groups might not file taxes. Still, the
percentage of households that does file taxes is consistent over time, which suggests
that the underrepresentation of these specific groups is constant over time and should
not affect trends (Molloy, Smith, and Wozniak 2011). We exclude international
migrants from the data, as we focus on internal migration in this study. Following sug-
gestions on data quality by DeWaard et al. (2021), we only use the data before 2011.
Due to privacy reasons, the destination of migration flows lower than 10 people is
classified as unknown. As a result, counties with smaller populations are likely to have
reported lower migration inflows, because they are more prone to experiencing migra-
tion flows of less than 10 people. We therefore omit counties with a low population
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and, thus, potentially with low migration destination flows smaller than 10 people.
More specifically, we remove counties with a population lower than 5,000 people in
1998 and which leaves 2,767 out of 3,100 counties in the data sample. Similar to
Winkler and Rouleau (2020), the out(in)-migration rate per county is calculated as the
number of out(in)-migrants divided by the county’s population. Here, the county’s
population is the number of stayers plus the number of out-migrants.

2.1.4. Description of the data

To gain some insight into the data, Table 1 reports the measurement unit, as well as
the minimum, mean, median, maximum and variance for each variable. Table 1 reveals
that the migration flow data is skewed to the right, because the median is less than the
mean. The same holds for the household damage data, where we see that for at least
half of the observations, there is no disaster damage.

2.2 The spatial Durbin model

Data collected over geographic regions often contain spatial dependence, because there
is usually spatial interaction between two geographically close areas. Consequently,
observations from a region often exhibit trends similar to the region’s neighbors.
When spatial correlation is ignored, this could lead to inefficient estimates and biased
estimators (Elhorst, 2014).

Yt ¼ aiN þ qWYt þ XtbþWXthþ ut
ut ¼ kWut þ et (1)

To account for dependence among observations in space, the spatial econometrics
literature introduces a weighting matrix W that describes the interactions between geo-
graphic units (Elhorst 2014). The weighting matrix can take different forms, such as
an inverse distance matrix or a binary matrix, where 1 indicates that two regions are
neighbors. Equation (1) shows how the weighting matrix is integrated into a conven-
tional panel model to account for three types of interaction or spillover effects (Elhorst
2014).

Yt represents the dependent variable and is an N� 1 column vector, where N is the
number of cross-section units, and subscript t denotes the time dimension, which runs
from 1 to T. Xt is a vector of explanatory variables, ut is the composite error term, and
et is a random variable that is independently and identically distributed with a zero

Table 1. Descriptive statistics.

Variable Unit Minimum Median Mean Maximum Variance

Out-migration % 2.264 5.788 6.103 78.174 3.882
In-migration % 1.804 5.824 6.249 44.494 4.828
Income USD/capita 9,265 28,013 26,655 163,582 67.199� 106

Unemployment % 0.700 5.400 6.043 30.300 7.338
Disaster damage USD/capita 0 0 11.536 27,140 60,573
Migration flow Number 0 20 70.927 51,442 205,227
Population Number 5,017 29,861 103,325 9,793,263 9.982� 1010

Distance Miles 4.265 315.61 607.20 5,182.52 510,389
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mean and finite variance. The other Greek letters (i.e. a, q, b, h, k) are parameters to
be estimated.

Endogenous interaction effects are represented by qWYt : observations of the
dependent variable depend on each other (i.e. q 6¼ 0), which means that migration proc-
esses are not bound to one region and spill over to nearby regions. Exogenous inter-
action effects are included through WXth : observations of a region’s dependent
variable depend on the observations of the explanatory variables in nearby regions (i.e.
h 6¼ 0). This effect arises, when, for example, a natural hazard in a region increases
out-migration in a nearby region, because people realize that this disaster could have
happened in their own region. Finally, ut ¼ kWu þ et represents interaction effects
among the error terms: There remains spatial correlation in the composite error term
(i.e. k 6¼ 0), which stems from omitted variables and unobserved spatial shocks.

The model in Equation (1) is a general spatial econometric model but, in practice,
only one or two interaction effects are included. The model including all three inter-
action effects is often overparameterized and unable to outperform simpler models
with fewer interaction effects. Schultz and Elliott (2013), for example, estimate popula-
tion growth using a spatial autoregressive model, which includes only the qWY term.
Salda~na-Zorrilla and Sandberg (2009) apply the spatial Durbin model, which includes
endogenous and exogenous interaction effects. They show that the spatial Durbin
model provides the best fit for explaining out-migration in Mexican municipalities.
Their results indicate that natural hazards in neighboring municipalities actually reduce
out-migration. They argue that natural hazards drive up agricultural prices due to
destroyed harvests, which increase farmers’ income and thereby reduce the incentive
to migrate.

In this study, we first test for spatial dependence by estimating a spatial error
model, which only corrects for spatial correlation in the error term. If the null hypoth-
esis of no spatial autocorrelation is rejected, we proceed with the spatial Durbin model.
The advantage of the spatial Durbin model is that it produces unbiased coefficient esti-
mates, even when the true model includes a spatial error term, that is, k 6¼ 0 (LeSage
and Pace 2009). We therefore believe that our results are more reliable than the results
published by other scholars who have considered spatial dependence but applied less
rigorous approaches. A disadvantage of the spatial Durbin model is that coefficients
may be estimated less efficiently (i.e. standard errors are higher), especially for small
sample sizes. However, we do not expect this to be a problem because our sample size
is relatively large.

A weighting matrix W describing the spatial relationship between geographic
units must be specified before estimating a spatial econometrics model. Following
Salda~na-Zorrilla and Sandberg (2009), we adopt a binary N�N matrix, in our case, a
2767-by-2767 matrix, where 1 indicates that two counties are neighbors and 0 indi-
cates otherwise. We define two counties as neighbors when they share a border. Two
advantages of this specification are (i) this type of weighting matrix is relatively
sparse, which makes estimation faster, and (ii) the coefficients of the spatial terms are
easily interpreted. For estimation, W is row normalized such that every row in W sums
to 1. This way, the number of neighbors does not affect the estimation results.

Whereas Salda~na-Zorrilla and Sandberg (2009) estimate a spatial model on cross-
sectional data, our dataset has a time dimension of 13 years, allowing us to control for
both spatial and temporal heterogeneity. We, therefore, estimate a fixed effects model
with spatial and time fixed effects. We also considered the random effects model, but
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the Hausman test indicated that this model produces biased coefficients. This bias
occurs when the spatial effects, time effects, and error terms are correlated, which is
not an issue in the fixed effects model (Elhorst 2014).

The spatial Durbin model for out- and in-migration rates is as follows:

Rateit ¼ q1WiRatet þ b1Incomeit þ b2Unemploymentit þ b3Damageit þ h1WiIncomet

þ h2WiUnmploymentt þ h3WiDamaget þ li þ /t þ eit

(2)

The terms with Wi are the spatial terms. q1WiRatet is the spatial lag, which can be
interpreted as the weighted average over the migration rates of the neighboring coun-
ties, because Wi is the i-th row of the row-normalized matrix W. Similarly,
h1WiIncomet, h2WiUnemploymentt and h3WiDamaget can be interpreted as the aver-
ages of income, the unemployment rate and household damage in neighboring
counties.

2.3. The gravity model

In the gravity model, migration flows (Flowij) are positively related to the population
size in the origin and destination (Popbi and Popcj ), but negatively related to the dis-
tance between them (Disdij), see Equation (3) below. G is a scaling factor.

Flowij ¼ G
Popbi Pop

c
j

Disdij
(3)

In the gravity model, a person migrates to the destination that maximizes their util-
ity, given that this utility is higher than the current utility in the origin. To estimate
the multiplicative gravity model given in Equation (3), it is common practice to first
log linearize the model (Santos Silva and Tenreyro 2006). The log-linearized version
of the gravity model is provided in Equation (4):

lnFlowij ¼ aþ b lnPopi þ c lnPopj − d lnDisij þ ln eij (4)

where a replaces ln G. However, Santos Silva and Tenreyro (2006) find overwhelming
evidence that the error terms, ln eij, are heteroskedastic in the usual log-linearized
model of the gravity equation, which could lead to inconsistent OLS estimates of the
parameters. They, therefore, propose a Pseudo Poisson Maximum Likelihood (PPML)
estimation technique that is consistent under heteroscedasticity. The Poisson regression
is shown in Equation (5). Additionally, because we take the exponent on both sides of
the equation, the PPML technique circumvents the problem of taking the logarithm of
zero flows, which are often present in migration flow data.

Flowij ¼ expðaþ blnPopi þ clnPopj − dlnDisij þ ln eijÞ (5)

In the gravity model, migration flows are assumed to be independent of each other,
but literature shows that they can exhibit network autocorrelation (Chun 2008).
Consider, for example, a highly urbanized region that generates a large influx of
migrants where some of the migrants move into neighboring regions of the urban
region. This leads to spatial dependence between the migration flow to the urban
region and the migration flows to regions surrounding the urban region. Again, this
dependence could lead to inefficient and biased estimators. To account for spatial
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dependence, spatial econometrics techniques can be applied. However, the weighting
matrix of the gravity model is not N � N, that is, 2767� 2767, because the weighting
matrix needs to specify the spatial relationship between pairs of counties. This means
that W has a size of N(N-1) � N(N-1), approximately 7.65 million by 7.65 million,
which makes estimation infeasible.

To circumvent this issue, we calculate a spatial lag of the dependent variable (i.e.
the migration flow) in advance and include it as an explanatory variable. Following
LeSage and Pace (2008), we calculate the logarithm of the average of flows from the
origin to the destination’s neighbors, referred to as destination-based spatial depend-
ence, and the logarithm of the average of flows from the origin’s neighbors to the des-
tination, referred to as origin-based spatial dependence. Both explanatory variables are
included in the regression. In Figure 2, we show the two sources of spatial depend-
ence: The dashed lines are the flows from the origin’s neighbors to the destination
county, and the dotted lines are the flows from the origin to the destination’s
neighbors.

The Poisson regression for migration flows that takes into account the spatial cor-
relation is given by

Flowijt ¼ expðaþ b1lnPopit þ b2lnPopjtþb3ln Incit þ b4ln Incjt þ b5lnUnemployit

þ b6lnUnemployjt þ b7Damageit þ b8Damagejt þ b9SpatDepDijt

þ b10SpatDepOijt þ lij þ /t þ eijtÞ
(6)

We include time fixed effects, /t and origin-destination fixed effects, lij, in
the gravity model to control for spatial and temporal heterogeneity. We decided to use
origin-destination fixed effects because 98% of the county pairs experienced no migra-
tion between them during the time span of this study. Removing these county pairs
could result in biased estimates, as they are not randomly distributed. However, we
cannot include them either because the size of the dataset would explode, rendering
estimation infeasible. Therefore, we resolve the issue by including origin-destination
fixed effects, which are essentially (unobserved) constants per origin-destination pair.
When the constant of an origin-destination pair goes towards minus infinity, the
expected flow is zero, regardless of the value the other variables in the model take. As
a result, we can safely remove the county pairs without migration from the dataset and
without introducing a bias to the model. Also note that the origin-destination fixed
effects capture the distance between two counties, so distance does not need to be
included.1 Following Gr€oschl and Steinwachs (2017), we do not take the natural loga-
rithm of the disaster variables. The reason lies in the interpretation of the coefficients.

Figure 2. Spatial dependence in the gravity model.
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If one takes the natural logarithm of household damage, then an increase in disaster
damage from $10 to $100 has the same impact on migration flows as an increase in
damage from $1,000 to $10,000. This is not realistic, because especially large and dev-
astating disasters are expected to have an impact on migration, whereas small disasters
are likely to have no or little impact.

3. Results

In the first two subsections, we present the results of the spatial Durbin model and the
gravity model. Moreover, we show the results of similar models when spatial depend-
ence is not, or differently, taken into account. In Section 3.3, we compare the results
of the two modeling approaches.

3.1. Spatial Durbin model results

First, we test whether spatial autocorrelation is present in the error terms by estimating
a spatial error model, which only controls for spatial correlation in the error term. We
find that in the spatial error models for out-migration and in-migration, SEM1 and
SEM2, spatial correlation in the error terms is significant against a 5% level, and
according to Debarsy and Ertur (2010), the null hypothesis of no spatial autocorrel-
ation can be rejected. Therefore, we proceed with the spatial Durbin model for both
out-migration (SDM1) and in-migration (SDM2). Table 2 presents the coefficient esti-
mates of the spatial Durbin models and the spatial error models. Additionally, in the
final two columns of Table 2, we report the results of two fixed effects models where
spatial dependence is not considered (FE1 and FE2). We use standard errors that are
robust against heteroskedasticity and are clustered at the county level.

The coefficients can be interpreted as follows: According to SDM1, an increase in
income of $1,000 is associated with an out-migration rate that is 0.0187 lower on
average, ceteris paribus. In other words, the increase in income induces 19 “extra”
inhabitants per 100,000 inhabitants to stay in the county. The effect of income on in-
migration is insignificant. Unemployment rates have a significant impact on both
out-migration and in-migration rates. An increase in the unemployment rate of 1% is
associated with an increase in the out-migration rate of 0.0405, which means that per
100,000 inhabitants, 41 additional people move out. According to SDM2, an increase
in the unemployment rate of 1% discourages 38 individuals per 100,000 inhabitants
from migrating into the county.

In comparison to income and unemployment, household damage has a much
greater effect, especially on out-migration. A $1,000 dollar damage (1 unit) leads to an
additional 928 individuals moving out of a county of 100,000 inhabitants. When all
neighboring counties have a damage of $1,000 dollars, another 951 individuals per
100,000 inhabitants would move out, irrespective of disaster damage in the county
itself. However, it should be noted that both coefficients are only significant at a sig-
nificance level of 10%. The effect of disaster damage on in-migration appears to be
insignificant.

The estimation results of the fixed effects models, where we ignore the spatial cor-
relation, are substantially different from the results obtained by using the spatial
Durbin model. According to FE1, a $1,000 dollar damage is associated with the
relocation of 1,651 individuals per 100,000 inhabitants, whereas this was 928

Journal of Environmental Planning and Management 9



T
ab
le

2.
E
st
im

at
ed

co
ef
fi
ci
en
ts

of
th
e
sp
at
ia
l
D
ur
bi
n
m
od
el
,
sp
at
ia
l
er
ro
r
m
od
el

an
d
fi
xe
d
ef
fe
ct
s
m
od
el

fo
r
ou
t-
m
ig
ra
ti
on

(S
D
M
1,

S
E
M
1,

F
E
1)

an
d
fo
r
in
-

m
ig
ra
ti
on

(S
D
M
2,

S
E
M
2,

F
E
2)
.

S
D
M
1

S
D
M
2

S
E
M
1

S
E
M
2

F
E
1

F
E
2

O
ut
-m

ig
r

In
-m

ig
r

O
ut
-m

ig
r

In
-m

ig
r

O
ut
-m

ig
r

In
-m

ig
r

E
xp

la
n
at
or
y
va
ri
ab

le
s

In
co
m
e
pe
r
ca
pi
ta

(i
n
$1
,0
00
)

−
0.
01
87

��
�

0.
01
30

−
0.
01
62
��
�

0.
01
77

−
0.
03
61

��
�

−
0.
01
60

��
�

(0
.0
05

4)
(0
.0
11
2)

(0
.0
04
6)

(0
.0
11
3)

(0
.0
01
8)

(0
.0
03
6)

U
ne
m
pl
oy
m
en
t
ra
te

pe
r
ca
pi
ta

0.
04
05

��
�

−
0.
03
80
��
�

0.
04
51
1�

��
−
0.
06
08
��
�

−
0.
02
95

��
�

−
0.
11
95

��
�

(0
.0
08

4)
(0
.0
09
2)

(0
.0
06
9)

(0
.0
08
8)

(0
.0
02
7)

(0
.0
04
5)

D
is
as
te
r
da
m
ag
e
pe
r
ca
pi
ta

(i
n
$1
,0
00
)

0.
92
84

�
−
0.
16
52

1.
43
21

��
−
0.
10
89

1.
65
09
��
�

−
0.
03
62

(0
.5
25
9)

(0
.1
17
3)

(0
.6
24
4)

(0
.1
24
3)

(0
.4
82
7)

(0
.0
96
7)

S
p
at
ia
l
te
rm

s
S
pa
ti
al

in
co
m
e

0.
01
85

�
0.
01
80
�

(0
.0
09

8)
(0
.0
10
6)

S
pa
ti
al

un
em

pl
oy
m
en
t

0.
00
10

−
0.
01
63

(0
.0
11
9)

(0
.0
14
1)

S
pa
ti
al

di
sa
st
er

da
m
ag
e

0.
95
13

�
0.
22
32

(0
.5
07

6)
(0
.1
60
3)

S
pa
ti
al

la
g

0.
24
42

��
�

0.
47
10

��
�

(0
.0
51
8)

(0
.0
25
7)

S
pa
ti
al

er
ro
r

0.
27
57

��
�

0.
47
86
��
�

(0
.0
79
4)

(0
.0
25
4)

M
od

el
p
er
fo
rm

an
ce

O
bs
er
va
ti
on
s

35
,9
71

35
,9
71

35
,9
71

35
,9
71

35
,9
71

35
,9
71

R
2
ov
er
al
l

0.
02
26

0.
01
26

0.
01
92

0.
03
61

0.
03
43

0.
03
65

A
IC

65
,7
12
.4
6

74
,6
72
.8
3

67
,3
79
.9
4

74
,8
63
.5
0

70
,3
63
.1
5

81
,6
36
.3
9

B
IC

65
,7
80
.3
8

74
,7
40
.7
5

67
,4
22
.3
9

74
,9
05
.9
5

70
,3
88
.6
2

81
,6
61
.8
6

H
0:

h
þ
q
�b

¼
0

8.
19

39
.9
2

(0
.0
42

3)
(0
.0
00
0)

N
ot
e:

� ,
��
,
an
d
��
� i

nd
ic
at
e
si
gn
if
ic
an
t
va
lu
es

at
10
%
,
5%

,
an
d
1%

le
ve
ls
,
re
sp
ec
ti
ve
ly
.

10 M.J. Ton et al.



individuals according to SDM1. In general, the coefficients in the fixed effects models
are not consistent with the spatial Durbin model and sometimes even counterintuitive.
In FE1, higher unemployment rates are associated with lower out-migration, and in
FE2, higher income levels are associated with lower in-migration. These results are
contrary to what the spatial Durbin models predict, and they are not in line with eco-
nomic logic.

Additionally, we see a large difference in the estimated impact of hazard damage
on out-migration in SDM1 and SEM1. As mentioned in Section 2.2, LeSage and Pace
(2009) have shown that the spatial Durbin model is the only spatial model that produ-
ces unbiased coefficient estimates regardless of the true spatial data-generating process
in the data. Hence, even when the correct model is a spatial error model, the spatial
Durbin model produces unbiased coefficient estimates. On the other hand, the spatial
error model will yield biased estimates when the true model is not a spatial error
model. We can actually test whether the spatial error model is the true model, because
the spatial Durbin model can be reduced to the spatial error model when h ¼ −qb
(LeSage and Pace 2009). In the last row of Table 2, we report the test statistic and p
value of the null hypothesis that hþq � b¼ 0. In both tests, we can reject the null
hypothesis against a 5% significance level, which suggests that the spatial error model
is not the appropriate model, and we should proceed with the Spatial Durbin model.

Finally, we formally test whether the estimated coefficients of the three models
(SDM, SEM and FE) are significantly different from each other. The results of the t-
tests are given in Table S4 in the online Supplementary Information. The test results
indicate that the coefficients of disaster damage are not statistically different from each
other in the three models (SDM1, SEM1, FE1). In other words, even though we do
find considerable difference between the estimated coefficients, and the impact of nat-
ural hazards on out-migration is overestimated when spatial correlation is not taken
into account (FE1) or not correctly taken into account (SEM1), the differences between
coefficients are not statistically significant.

3.2. Gravity model results

In Table 3, we report the estimated coefficients of two gravity models. In Gravity1,
we account for spatial dependence, and in Gravity2 we do not consider spatial depend-
ence. Again, we use standard errors that are robust against heteroskedasticity and clus-
tered at the county pairs.

The coefficients of the logarithmic variables in the gravity model can be inter-
preted as elasticities: For example, when the population in the origin increases by 1%,
then the flow increases by coefficient �b %, that is, �0.80% according to Gravity1.
More specifically, when the population increases by x %, the flow increases by

1þ x
100

� �b − 1
� �

� 100%: For the damage variables, the interpretation is somewhat dif-

ferent: For example, when hazard damage increases by c US dollars, the flow

increases by ebc − 1ð Þ � 100%: When c is $1,000 damage in the origin county, it

results in a e0:0867�1 − 1ð Þ � 100% ¼ 9:06% increase in the (outward) flow.
A comparison of the two gravity models in Table 3 highlights major differences in

the estimates. When spatial dependence is not considered, the gravity model seems to
overestimate the parameters. For example, the coefficient of disaster damage in the ori-
gin is 0.0867 in Gravity1 and 0.1398 in Gravity2 and a t-test demonstrates that this
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difference is statistically significant, see Table S4 in the online Supplementary
Information. These results show that incorporating spatial dependence can significantly
influence the coefficient estimates.

3.3. Comparing the results

The spatial Durbin model and the gravity model have different dependent variables,
which affect the interpretation of the coefficients and prohibit a direct comparison of
the models. To facilitate comparison of the effect of the explanatory variables on the
migration flow and migration rates, we convert the coefficients to percentage change
effects. The percentage change in the migration rates is calculated at the median value
of the out- or in-migration rate. Table 4 presents the percentage change in the flow,
out-migration rate and in-migration rate in response to an increase in one of the
explanatory variables (ceteris paribus).

Table 4 shows that disaster damage has a relatively large impact on out-migration.
For example, in the gravity model, a $1,000 dollar household damage per capita
increases the outward flow of migrants by 9.06%. To achieve a similar effect, the
unemployment rate has to increase from 5.4% (the median unemployment rate) to
19.98%, or the population has to grow from 29,861 to 34,251 inhabitants (i.e.
11.47%).2 Interestingly, an increase in income in the origin county leads to higher out-
migration in the gravity model (þ1.51%), whereas SDM1 indicates that an increase in

Table 3. Estimated coefficients of the gravity model with and without accounting for spatial
dependence.

Gravity1: with
spatial dep.

Gravity2: without
spatial dep.

Explanatory variable coefficient coefficient

Origin Log population 0.7984��� 1.1392���
(0.0391) (0.0381)

Log income 0.0809�� 0.1118��
(0.0241) (0.0308)

Log unemployment rate 0.0663��� 0.0746���
(0.0081) (0.0128)

Disaster damage per capita
(in $1,000)

0.0867��� 0.1398���
(0.0111) (0.0170)

Destination Log population 0.0260 0.1066��
(0.0331) (0.0376)

Log income 0.2774��� 0.1118���
(0.0330) (0.0308)

Log unemployment rate −0.1136��� −0.2019���
(0.0096) (0.0113)

Disaster damage per capita
(in $1,000)

−0.0642��� −0.0962���
(0.0178) (0.0160)

Spatial Destination-based 0.2233���
spatial dependence (0.0119)
Origin-based 0.2592���
spatial dependence (0.0081)

Pseudo R2 0.9533 0.9507
Observations 1,746,251 1,746,251

Note: �, ��, and ��� indicate significant values at 10%, 5%, and 1% levels, respectively.
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income leads to lower out-migration (−1.62%). The result of SDM1 seems more plaus-
ible: When individuals are able to earn a higher income in their county, they have an
incentive to stay. However, it is also worth considering that an increase in income
could provide individuals with the financial means to relocate to another county, as
suggested by the gravity model. In any case, the impact of income is considerably low
in both models.

Interestingly, the impact of hazard damage is much higher in the spatial Durbin
model than in the gravity model: In SDM1, the out-migration rate increases by
16.04% after a hazard with $1,000 damage per capita, whereas in Gravity1 the migra-
tion flows increase by 9.06%. We believe that the reason for this difference lies in the
different model specifications; the spatial Durbin model is a linear model, whereas the
gravity model has a Poisson specification.

In Figure 3, we plot the impact of different values of hazard damage on the per-
centage change out-migration according to the two models. Given the linear model
specification of the spatial Durbin model, the change in out-migration rates increases
linearly with hazard damage. On the other hand, the change in out-migration flows
increases exponentially with hazard damage. Hence, for low hazard damage, the
impact of natural hazard damage is comparatively larger in the spatial Durbin model
than in the gravity model; however, this changes after 13,900US dollars.

3.4. High-risk versus low-risk counties

In this subsection, we evaluate whether the response to a natural hazard varies between
counties where the risk of natural hazards is high and counties where the risk is low.
On the one hand, we could expect that the migration response is lower in high-risk
counties because people are more aware of the risk and therefore better prepared,
reducing the need for migration. On the other hand, we could expect that the migration
response is higher because the experience of another disaster might be the tipping
point to decide to relocate to a safer area. To test these hypotheses, we construct a
dummy variable that is one in case of a high-risk county and zero in case of low-risk
counties. Then, we create an interaction variable by multiplying the risk dummy with
the damage variable. Since we introduce the interaction variable alongside the original
damage variable, we can investigate whether there is an “additional” response for
high-risk counties compared to counties with low or no risk. To identify high-risk
counties, we use the national risk index provided by FEMA. The risk index classifies
counties into five categories: very high, relatively high, relatively moderate, relatively
low, and very low. We set our dummy to 1 when the county falls in the very high,
relatively high, or relatively moderate category. This leads to 538 counties out of the
total 2,767 having a value of 1 in the dummy variable.3

The complete results of the spatial Durbin models and the gravity model are
reported in the online Supplementary Information, see Table S2 and S3.The coeffi-
cients, along with the standard errors of the damage variables, are given in Table 5
below. We still find that disaster damage is associated with higher out-migration
(SDM1 and Gravity1), although the coefficients have dropped considerably compared
to the original models without the interaction variable. The coefficients of the inter-
action variables in SDM1 and Gravity1 are positive and significant, which suggests
that disaster damage has a higher impact in high-risk counties compared to low-risk
counties. This implies support for the second hypothesis – people in high-risk areas
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are more inclined to migrate after a natural hazard than in low-risk areas. This is in
line with the survey results of Correll et al. (2021) in southern Louisiana: they found
that relocation is positively correlated to the number of floods experienced and the per-
ceived risk of floods. Finally, we want to point out that the coefficient estimates of
SDM1 and SDM2 are more significant than in the original models where we did not
differentiate between high and low-risk counties. This suggests that controlling for
high-risk counties leads to more accurate estimates because we are better capturing the
dynamics between damage, risk level and migration.

4. Discussion and conclusion

In this study, we assessed the effect of spatial dependence on estimating the impact of
natural hazards on migration in US counties. We apply two modeling approaches to
examine whether and how the results change when different measures of migration are
used and when spatial dependence is taken into account. In the spatial Durbin model,
$1,000 dollar damage per capita is associated with out-migration of roughly 1% of the
county’s population. This corresponds to an increase in the out-migration rate of
16.0%. In the gravity model, $1,000 dollar disaster damage per capita increases the
outflow of migrants by 9.1%. This seems like a large difference in estimated impacts,
but the difference is due to the different model specifications: the spatial Durbin model
is a linear model, whereas the gravity model follows a Poisson distribution. Hence, for
low values of natural hazard damage, the estimated impact of hazard damage is

Table 5. Coefficients of disaster damage for low-risk and high-risk counties.

Disaster damage Interaction: damage� high risk dummy

SDM1 0.6503��� (0.1277) 1.5097��� (0.2593)
SDM2 −0.1293�� (0.0517) −0.2828��� (0.0704)

Origin Destination Origin Destination
Gravity1 0.0362��� (0.0120) −0.0325�� (0.0136) 0.0614��� (0.0173) −0.0429��� (0.0172)

Note: �, ��, and ��� indicate significant values at 10%, 5%, and 1% levels, respectively.

Figure 3. The impact of different levels of hazard damage on out-migration according to the
gravity model and the spatial Durbin model.
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relatively high in the spatial Durbin model, but this effect reverses for high values of
natural hazard damage (see Figure 3).

The impact of natural hazards on in-migration is lower compared to the impact on
out-migration. Only the gravity model suggests a significant decrease in in-migration
in the event of a natural hazard. However, it is important to acknowledge that existing
literature has suggested that natural hazards could actually attract migrants to a disas-
ter-hit area due to employment opportunities in reconstruction work. Nevertheless,
these migrants are mostly from Central America and undocumented, so they are not
present in the IRS tax records data and, consequently, we are not able to detect this
effect (Brown et al. 2022).

Comparing the spatial Durbin models and gravity model, we find that using a grav-
ity model increases the probability of finding significant impacts of climate factors on
migration. This is in line with the findings of Beine and Jeusette (2021). The reason
could be that the gravity model makes use of more granular data (migration flows
instead of migration rates), providing more information about the mechanisms behind
the effects of natural hazards on migration. Because we utilize more information in the
gravity model, we can expect better accuracy of the estimated coefficients. Therefore,
we find that the null hypothesis of no relationship between disaster damage and migra-
tion is more strongly rejected in the gravity model compared to the other models
employing migration rates and thus utilizing less information. Hence, we can confi-
dently conclude that there is a significant relationship between natural hazards and
migration flows.

In addition, when we differentiate between counties with a high risk of natural haz-
ards and counties with a low risk of natural hazards, we obtain more accurate esti-
mates in the spatial Durbin models. This suggests that we previously ignored certain
non-linear dynamics in the relationship between hazard damage and migration, with
the county’s risk levels playing a key role in shaping the migration response. We find
that high-risk counties exhibit a higher migration response to natural hazards compared
to counties with a low risk of natural hazards. At the same time, there is a more pro-
nounced decline in in-migration in the event of a natural hazard in high-risk counties
compared to low-risk counties. These results are encouraging, as it suggests that indi-
viduals move away from disaster-prone counties and are deterred from moving to
high-risk counties.

Compared to the impact of natural hazard damage, the impact of changes in income
levels and unemployment rates is relatively small. For example, an increase of $5,000 in
the income level is associated with a decrease in the out-migration rate of 1.61% in the
spatial Durbin model. Interestingly, in the gravity model, an increase in the income level
is associated with an increase in migration outflows. The estimated impact of income in
the spatial Durbin model is more in line with the literature; for example, Piras (2017) and
Salda~na-Zorrilla and Sandberg (2009) find that higher income levels provide an incentive
to stay in the area. On the other hand, we could argue that higher income levels could
provide the financial resources to relocate to other areas (Cattaneo et al. 2019), although
we would expect that this effect requires a longer timeframe and does not occur within a
year. The estimated impact of income and unemployment on in-migration is intuitive. In
both modelling approaches, higher income levels and lower unemployment rates attract
migrants to an area (except for the fixed effects model).

While the choice of the dependent variable had a marginal impact on the results,
we found that taking spatial dependence into account does have a large impact on the
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results. As explained in the Introduction, spatial correlation in the data could result in
wrong point estimates and invalid confidence intervals, if ignored. When we compared
the spatial Durbin model with a regular fixed effects model, the impact of natural haz-
ard damage on out-migration was overestimated by a factor of 1.8. Also, the coeffi-
cients of other variables were not in line with the spatial Durbin model. In addition,
we found that the choice regarding the method of taking spatial dependence into
account affects the results. Using statistical tests, we showed that the spatial error
model is not the correct model for the data and, consequently, using this model could
result in biased estimates. Indeed, the impact of natural hazards on out-migration was
overestimated by a factor of 1.5 when compared to the spatial Durbin model. These
results suggest that different treatments of spatial dependence in regression models
could also have contributed to the mixed findings in the literature. However, we
should add some nuance to our findings, as the coefficients in the models using migra-
tion rates did not appear to be significantly different based on t-tests. For the gravity
model, we were not able to test several model specifications, but taking a spatial lag
into account had a great impact on the estimated coefficients. The impact of natural
hazards in the origin on migration flows was overestimated by a factor of 1.6 in the
gravity model without considering spatial dependence, and this difference was statistic-
ally significant. Given these results, we agree with Hoffmann, �Sedov�a, and Vinke
(2021) and �Sedov�a, �Cizmaziov�a, and Cook (2021) that a stronger focus on spatial
dependence in statistical modeling is a necessary direction for further empirical
research in the climate-migration literature.

Notes
1. In the online Supplementary Information, Table S1, we report the coefficient estimates of

the gravity model when separate origin and destination fixed effects are included. The
results are very similar, suggesting that the bias from removing the county pairs without
migration is small.

2. A $1,000 dollar damage in the origin leads to a e0:0867�1 − 1ð Þ � 100% ¼ 9:06% increase
in the flow. To calculate which percentage increase in the unemployment rate gives the
same increase, we have to determine x in the following equation: 1þðð
x

100 Þ0:060−1Þ�100% ¼ 9:06%: This gives an x of 269.77. So $1,000 dollar damage is the
same as an increase of 269.77% in the unemployment rate. Evaluated at the median, this is
an unemployment rate of 5.4 � 3.70¼ 19.98%. For population we can do the same.

3. We checked whether the 538 counties identified as high-risk counties overlap with the
counties experiencing the highest cumulative damage during 1998-2010, but this was not
the case. Only 117 high-risk counties are among the 538 with the highest cumulative
damage; hence we are not capturing non-linear effects of economic damage that were
previously ignored. In fact, when we replace the high risk dummy with a dummy for the
highest damage counties, the interaction variables are insignificant.
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