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A B S T R A C T   

The Full of Economic-Environment Linkages and Integration dX/dt (FeliX) model is a System Dynamics-based 
Integrated Assessment Model (IAM), explicitly incorporating human behaviors and their dynamic interactions 
among global systems. This paper presents FeliX 2.0, describing the detailed framework and key interactions 
among nine integrated modules. FeliX 2.0 refined its original version in population dynamics, food and land use 
systems, and socioeconomic settings for poverty analysis. Robust calibration is applied to key variables against 
their historical data since 1950. Future projections of multiple variables up to 2100 demonstrate coherences 
between FeliX 2.0 and the IAMs used in IPCC assessments. Both outputs (the robust calibration results and future 
projections) underscore the efficacy of FeliX 2.0 in capturing complex interdependencies within global systems. 
FeliX 2.0 stands as an informative tool and offers insights into interactions within the human-Earth system and 
the analysis of complex economic-environmental-social challenges in short- and long-term future.   

1. Introduction 

Integrated Assessment Models (IAMs) are computational tools 
designed to simulate linkages in economic-environmental-social systems 
(Nordhaus, 1993; Schneider, 1997; Schwanitz, 2013; Van Beek et al., 
2020). They aim to capture and represent in a simplified way to 
encompass a multitude of interconnected variables from diverse disci-
plines, such as greenhouse gas emissions, energy systems, land use, and 
economic growth. The greatest strength of IAMs lies in their ability to 
facilitate scenario planning, enabling decision-makers to explore various 
policy alternatives and understand the trade-offs involved in each option 
(IPCC, 2022a). By far, IAMs have been widely used for modeling and 
simulating global challenges such as climate change (IPCC, 2022a; 
2022b; Lontzek et al., 2015), sustainable development (Moallemi et al., 
2022a; Pedercini et al., 2020), and energy transitions (Pye et al., 2015; 
Van Vuuren et al., 2016). However, most of existing IAMs tend to 
overlook feedback perspectives and nonlinear interactions among 
different real-world systems, potentially introducing inaccuracies into 

their predictions (Beck and Krueger, 2016; Schneider, 1997). For 
example, most IAMs don’t endogenize feedback between economy and 
society or simplify human behavior as stylized demand assumptions 
driven by externally imposed macro-demographic and socioeconomic 
trends and/or models (Calvin and Bond-Lamberty, 2018; Van Vuuren 
et al., 2012). Uncertainties in model inputs and assumptions further 
complicate their outputs, and the extensive data requirements can be a 
hurdle in their applications. 

A particular way to address IAMs’ limitations in recognizing 
nonlinear interdependencies and feedback within real-world systems is 
applying System Dynamics (SD) modelling. SD is a well-established 
methodology with notable applications in understanding and man-
aging systems that change over time (Meadows and Wright, 2008; 
Sterman, 2000). Widely recognized for its effectiveness, SD has been 
used in modeling feedback interactions, delayed responses, and 
non-linear behaviors. Its applications are not only in decision sciences 
but also within the broader context of the climate and sustainability 
(Moallemi et al., 2021). Illustrative examples of SD models include the 
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World3 (Meadows et al., 1972), the Integrated Sustainable Development 
Goals (Millennium Institute, 2021), and the Earth4All (Dixson-Declève 
et al., 2022). These models simulate how various policies affect human 
wellbeing, societies, and ecosystems in the short and long term. Two 
unique features have been recognized, especially for climate- and 
sustainability-oriented SD models. One is the endogenous modeling of 
interactions between social, economic, and environmental systems in 
one integrated model. This feature is in line with the main purpose of 
IAMs, which seeks to recognize the interlinkages between 
economic-environmental-social systems. The other feature is the 
development of representations where relationships between observed 
outcomes and modeling assumptions are transparent and relatively easy 
to understand. Aggregate and descriptive SD models can provide valu-
able complements to insights derived from other Earth system models 
and detailed IAMs (e.g., partial or general equilibrium) that focus more 
on a detailed perspective on biophysical and socioeconomic systems but 
may lack the explicit modelling of feedback between systems. 

The Full of Economic-Environment Linkages and Integration dX/dt 
(FeliX) model is a SD-based IAM that simulates complex interactions 
among global systems, including population, education, economy, en-
ergy, water, land, food, carbon cycle, climate, and biodiversity. The 
FeliX model is one of the very few models that explicitly incorporate 
human behavior in the human-Earth systems, considering comprehen-
sive dynamic interactions of socio-economic and environmental sectors. 
It addresses a key limitation of conventional IAMs (i.e., the limited 
feedback and nonlinear interactions among systems) and covers the 
breadth of social, economic, and environmental aspects, and their in-
teractions, in one integrated model. The FeliX model is a continuous 
model, operating on an annual time scale, and is designed to project 
global-scale future socioeconomic development and environmental 
conditions over the long term up to 2100. All the modules in the FeliX 
model have been calibrated to the historical data. This ensures the 
reliability of FeliX model in reproducing historical trends and producing 
plausible projections for the future. 

This paper aims to present a systemic and comprehensive framework 
of the FeliX 2.0 model (shortened to FeliX 2.0 from here on) and describe 
key interactions among system elements included in FeliX 2.0. The 
remainder of this paper is organized as follows: Section 2 provides a 
brief overview of the previous research that used FeliX. Section 3 de-
scribes the model by elaborating on variables, functions, and in-
teractions among different modules of FeliX 2.0. Section 3 presents the 
results about fitness of FeliX 2.0 outputs against historic data, and a 
comparative analysis of the model’s future projections against those of 
other existing IAMs. Limitations, outlooks, and conclusions of FeliX 2.0 
will be summarized in Section 4. 

2. Overview of the previous research with the FeliX model 

The initial version of FeliX model was presented by Obersteiner et al. 
(2012) and Rydzak et al. (2013), providing a conceptual description of 
the dynamic interactions and feedback loops of the model, along with 
mathematical formulations for all model variables. Based on the FeliX 
model, researchers have conducted scenario analyses on different global 
socio-economic and environmental problems. Thereafter, two main 
research directions, climate change mitigation and sustainable devel-
opment, have been explored using FeliX. 

Climate change mitigation. This direction aims to narrate emission 
pathways based on different mitigation measures. Walsh et al. (2015) 
analyzed emission pathways if microalgae was used as a feedstock for 
livestock and found that up to 2 billion hectares of land currently used 
for pasture and feed crops could be freed. In a subsequent study, Walsh 
et al. (2017) projected energy and land-use emissions mitigation path-
ways through 2100 and found that anthropogenic emissions need to 
peak before 2025 to maintain realistic pathways to meeting the COP21 
emissions and warming targets. Thereafter, the model was extended to 
FeliX 2.0, focusing on population dynamics, education levels, food and 

land use systems including explicit fertilizer use and behavior-driven 
diet shifts, and socioeconomic settings for global poverty elimination. 

Sustainable development. This direction explores how FeliX 2.0 
can be employed in assessing the progresses of Sustainable Development 
Goals (SDGs). Eker et al. (2019) extended the FeliX model by developing 
a behavioral diet shift module in addition to the food, land use, and 
agricultural fertilizer consumption modules, and identified the main 
drivers of global diet change and its implications for the food system. 
Eker et al. (2019) showed that the social norm effect (for instance, the 
extent of vegetarianism in the population that accelerates a further 
switch to a vegetarian diet) and self-efficacy are the main drivers of 
widespread dietary changes. Moallemi et al. (2022b) implemented the 
global change scenarios in FeliX 2.0 to explore the impacts of model 
uncertainty and its structural complexity on the projection of sustain-
able development under these scenarios. Furthermore, Moallemi et al. 
(2022a) explored the drivers of progress of global SDGs and found that 
early planning for systems change into more sustainable pathways was 
important for accelerating the progress toward increasingly ambitious 
sustainable targets. Liu et al. (2023) further extended the FeliX 2.0 
model with a global poverty module, to assess the effectiveness of 
different socioeconomic and environmental policies in eliminating 
poverty and quantified their impacts on the Earth system by 2050. More 
recently, an indicator for measuring human wellbeing, the global years 
of good life (YoGL) indicator, was estimated using the FeliX 2.0 model 
and found to increase by on average about twice the rate by 2100 (Kuhn 
et al., 2023). The model has been used in further applications to explore 
sustainable development pathways (Ruan et al., 2023), poverty allevi-
ation strategies (Liu et al., 2023b), and food system transformation 
(Yang et al., 2023). 

3. Structure and module descriptions of FeliX 2.0 

The structure of FeliX 2.0 represents relations and interactions be-
tween nine real-world global systems: population (including education), 
economy, energy, water, land, food (including diet change), carbon 
cycle, climate, and biodiversity. The model outcomes are determined by 
many interacting feedback loops within and between these systems as 
shown in Fig. 1 and Table 1. 

FeliX 2.0 consists of nice modules, that is, population and education, 
economy, energy, water, land use and fertilizer use, diet change, carbon 
cycle, climate, and biodiversity, to stimulate the ten real-world global 
systems. Key interactions among different modules are listed in Table 1. 

3.1. Population and education 

In contrast to many IAMs that take population projections as an 
exogenous input based on different Shared Socioeconomic Pathway 
(SSP) narratives (Kc et al., 2018; Riahi et al., 2017), the population 
module is endogenous and conceptualized based on dynamic mecha-
nisms of population development and population ageing. Population 
development is governed by the population growth mechanism and the 
balancing effect of economic growth and education. The growth mech-
anism captures how a growing population leads to a higher economic 
output and how the economic growth increases the life expectancy at 
birth, reduces mortality, and hence further increases the population. The 
balancing effect mainly describes effects of increasing economic outputs 
and educational attainment decreasing fertility rates. The interaction of 
the feedback mechanism allows for simulation of population ageing. 

3.1.1. Ageing structure 
Population growth is based on an ageing chain and computes the 

male and female population size of 5-year age groups between 0 and 
100+ years old (Fig. 2). The ageing chain represents the transition of 
newborns through the age cohorts as they age. It means that each age 
cohort (except the “0–4” cohort) has one inflow (maturation of the 
previous cohort) and two outflows (maturation to the next cohort and 
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mortality). Population of each gender and age interval (Popgender,age, Eq. 
(1)) accumulates by three flows, determining the net rate of change 
(dPop/dt). These three flows are birth rate (Birthgender,age), death rate 
(Deathgender,age), and maturation rate (Maturgender,age) by gender and age. 

Maturgender,age is formulated as the division of population by the in-
terval duration (Intvl Dur, 5 years). It assumes a homogenous distribu-
tion of population within the age group. 

3.1.2. Birth rate and fertility 
The birth rate (Birthgender, Eq. (2)) is the main factor affecting popu-

lation dynamics, alongside the reproductive female population repre-
sented by gender and age-cohort segmentation. The birth rate is driven 
by education, and wealth represented by gross world product (GWP) per 
capita (GWP per Cap). 

Birthgender(t) = ggender ×

∑˝45− 49˝
age=˝15− 19˝Popfemale,age(t) × Fertage(t)

Intvl Dur
(2)  

where ggender denotes the birth gender fraction, i.e., gender fraction of 

registered newborns. Fertage refers to the age-specific fertility rate, which 
is the number of births per woman in a particular age group during a 5- 
year period. Fertage is formulated as a function of total fertility (Tot Fert). 

Fertage(t) = L0age +
Lage

1 + e− kage×(Tot Fert(t)− x0age )
(3) 

Eq. (3) is formulated as a logistic function, with parameters, L0age, 
Lage, kage, and x0age, calibrated based on historical data obtained from the 
Wittgenstein Centre Human Capital Data Explorer (Wittgenstein Centre, 
2020). This formula of logistic functions is extensively used in FeliX 2.0 
to estimate impacts of a certain factor on interested variables. In 
consideration of the space limit in the main text, we refrain from 
providing a detailed elaboration of each logistic function from here on. 
Details about the logistic functions are available in the supplementary 
model documentation (Ye and Eker, 2024). 

Tot Fert represents the number of births per woman at reproductive 

Fig. 1. Overview of FeliX 2.0. We include 11 components in the figure to better illustrate interactions within and among the modules. As such, education shows as a 
separate component from population, and fertilizer use shows separate from land use. Source: Moallemi et al. (2022). 

dPopgender,age

dt
=

⎧
⎨

⎩

Birthgender(t) − Maturgender,age(t) − Deathgender,age(t); if age = ˝0 − 4˝
Maturgender,age− 1(t) − Maturgender,age(t) − Deathgender,age(t); if ˝5 − 9˝ < age < ˝95 − 99˝
Maturgender,age− 1(t) − Deathgender,age(t); if age = ˝100 + ˝

(1)   
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Table 1 
Main interactions within and among modules in FeliX 2.0. The interactions are direct interactions, always from the row modules to the column modules.  

From To 
Population and 
education 

Economy Energy Water Land use and fertilizer 
use 

Diet change (food 
demand) 

Carbon cycle Climate Biodiversity 

Population 
and 
education  

• Demographic 
dynamics  

• Population 
cohorts to 
graduates from 
different 
educational levels  

• Population and 
education levels 
determining skill- 
differentiated labor 
force as a driver of 
economic output.  

• Population and 
education levels 
determining poverty 
rate  

• Total 
population to 
estimate total 
energy demand  

• Total population 
to estimate total 
water demand   

• Age and gender- 
differentiated 
population to esti-
mate total caloric 
demand  

• Age, gender and 
education levels 
influencing diet 
shifts    

Economy  • Wealth 
influencing 
fertility, life 
expectancy and 
education 
enrollment rates   

• Wealth 
influencing per- 
capita energy 
demand  

• Economic 
development 
influencing 
industrial water 
demand  

• Economic 
development 
influencing land 
management, 
agricultural 
management 
practices and 
fertilizer 
consumption  

• Wealth 
influencing per- 
capita caloric 
demand  

• Wealth 
influencing per- 
capita meat 
consumption    

Energy   • Investment in energy 
technologies driving 
the capital and 
technology 
components of 
economic output  

• Energy 
production 
requiring 
investment in 
energy 
technology  

• Market 
competition 
among energy 
technologies   

• Biomass-based 
energy demand 
determining biomass 
production and land 
use change   

• Energy production 
contributing CO2 

emissions   

Water  • Water quality 
impacting human 
health     

• Water supply 
influencing crop 
yields     

Land use, 
fertilizer 
use and food 
production  

• Food availability 
impacting 
population via life 
expectancy   

• Land 
availability 
affecting 
biomass-based 
energy 
production  

• Agricultural 
production 
determining 
agricultural 
water demand  

• Land pressure 
influencing fertilizer 
demand  

• Fertilizer use 
influencing crop 
yields  

• Food supply and 
health impacts 
affecting diet 
change  

• Land use change 
contributing CO2 

emissions   

• Land use 
change 
impacting 
biodiversity  

• Biomass 
production 
(both forest and 
crop) impacting 
biodiversity  

• N and P 
leaching from 
fertilizer use 
impacting 
biodiversity 

Diet change      • Food demand 
determining 
production of animal 
and plant foods     

Carbon cycle         • CO2 emissions 
contributing  

(continued on next page) 
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ages (between 15 and 50). It considers the effects of education 
(Imp Edu on Fert) and wealth on fertility (Imp GWP on Fert). 

Tot Fert(t) = Norm Fert × Imp Edu on Fert(t) × Imp GWP on Fert(t)
(4)  

where Norm Fert is the reference value of fertility, equal to the historical 
value of 2.63 births per woman in year 2000. This formulation also 
prevents a strong assumption on the monotonic dependence of fertility 
solely on education or solely on economic output. Imp Edu on Fert and 
Imp GWP on Fert are formulated as logistic functions based on mean 
years of schooling and GWP per Cap, respectively. 

3.1.3. Mortality rate and life expectancy at birth 
Death rate (Deathgender,age) refers to the number of people who pass 

away in each gender and age group per year. It is formulated as a 
fraction of the population of each group. 

Deathgender,age(t) = Popgender,age(t) × Mortgender,age(t) (5)  

where Mortgender,age is the mortality fraction by gender and age cohort. 
Mortgender,age is calculated as a logistic function of global average life 
expectancy at birth (LE). LE is derived through a multiplicative function 
considering impacts of wealth, education, total food supply, and climate 
change on a reference value of LE–the observed life expectancy at birth 
in 2000. The impacts on life expectancy stemming from wealth, edu-
cation, and total food supply are estimated by logistic functions based on 
GWP per Cap (The World Bank, 2020), mean years of schooling (Witt-
genstein Centre, 2020), and total daily calorie supply per capita (FAO-
STAT, 2020a), respectively. The last impact, climate change’s effect on 
LE (Imp CC on LE), is estimated depending on future temperatures. 
Global temperature rise is the main driver of climate mortality–the 
death rate directly attributed to the impacts of climate change such as 
extreme weather events, rising temperatures, and related environmental 
changes (IPCC 2022b). Meanwhile, education is expected to mediate 
climate mortality. To quantify Imp CC on LE, climate change impacts on 
mortality (Imp CC on Mort) is estimated firstly, by taking into account 
both temperature and education and calibrated to the estimates of 
Bressler et al. (2021). Imp CC on LE is inversely proportional to 
Imp CC on Mort. 

Imp CC on LE =
1

1 + IMP CC on Mort(t) (6) 

Finally, LE is converted to life expectancy for each gender and age 
group (LEgender,age) with constant coefficients, which are estimated as the 
mean of historical values between 1990 and 2020. Associated data is 
obtained from the Global Burden of Disease dataset (Lopez and Murray, 
1998). 

3.1.4. Educational attainment and mean years of schooling 

3.1.4.1. Educational attainment. Population by age cohort serves as 
input into the education module to compute the population of primary, 
secondary, and tertiary education graduates according to the enrollment 
rates and graduation rates (Fig. 1). Population with each educational 
attainment level, similar to the population chain, accounts for the ageing 
of people who graduate from each level and for transitions between the 
education levels. In detail, primary, secondary, and tertiary education 
graduates accumulate by each gender and 5-year age group corre-
sponding to the respective education level. The assumptions regarding 
the age groups corresponding to education levels are as follows: children 
aged 5–9 enroll in primary education, with an average duration of 6 
years. Subsequently, primary graduates, aged 10–14 or 15–19, may 
proceed to secondary education for another 6 years. Tertiary education 
enrollment is limited to the “15–19”, “20–24”, and “25–29” age groups, 
with an average duration of 5 years. 
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Net change rate of primary education graduates (dPEG/ dt) for each 
gender-age group is formulated as: 

where Grad Primgender,age is graduation rate from primary education, 
which is equal to enrollment rate to primary education (Enrl Primgender) 
yet after a delay of average duration of primary education. 
Enrl Primgender is calculated by multiplying the population at the age of 
5–9 with the primary education enrollment fraction for each gender 
(PEFgender). PEFgender is defined as a reference value (Ref PEFgender, as the 
maximum possible enrollment fraction) multiplied by the impact of 
wealth (Imp GWP on Primgender). Imp GWP on Primgender is formulated 
as a logistic function and calibrated based on GWP per Cap. 

PEFgender(t) = Ref PEFgender × Imp GWP on Primgender(t) (8) 

Matur Primgender,age and Death Primgender,age in Eq. (7) are maturation 
and death rates of primary education graduates, respectively, which is 
proportionally to the ratio between PEGgender,age and Popgender,age. 

The formulation of secondary and tertiary education graduates fol-
lows Eqs. (7) and (8), with differences in the age groups explained in the 
list of assumptions above. Enrollment to secondary (tertiary) education 
is assumed to be fraction of the primary (secondary) education gradu-
ates, implying that the previous education level is a prerequisite for 
enrollment. The effect of GWP on enrollment for each education level is 
calibrated to historical data from WCDE for the period 1950–2020 
(Wittgenstein Centre, 2020). 

3.1.4.2. Mean years of schooling (MYS). Mean years of schooling serves 
as a crucial metric in delineating the effect of education on fertility rates 
and life expectancy. Mean years of schooling is formulated as the 
weighted average of the duration of each education level. The weights 
are determined by the total number of graduates for the respective ed-
ucation level relative to the population aged 15 and above. 

3.1.5. Labor force 
Labor force is distinguished as skilled (LFskilled) and unskilled labor 

force (LFunskilled). The skilled labor force is the sum of total population 
aged 15–64 with tertiary education and half of the population aged 
15–64 with secondary education. The unskilled labor force is deter-
mined by the remaining population aged 15–64. 

3.2. Economy 

The economy module is based on the Cobb-Douglas production 
function, where Gross World Product (GWP), that is, global total GDP, is 
computed from labor input, total capital input from the energy and non- 

energy sectors, and total factor productivity from energy and non- 
energy technologies. The Cobb-Douglas function is also incorporated 

the impacts of changes in ecosystems and climate change on the eco-
nomic outputs. The assessment of global poverty rate is also included in 
the economy module. 

3.2.1. Gross world product (GWP) 
GWP is determined by the total reference economic output (REO). 

The total REO is the sum of the REO generated by the labor force by skill 
(REOskill). Skilled and unskilled labor force are distinguished. REOskill are 
computed based on a Cobb-Douglas production function, depending on 
the technology (φ Techskill) and capital (φ Kskill) allocated to the labor 
force, and the size of the labor force. 

REOskill(t) = REO Init1900,skill × φ Techskill(t) × Tech(t)

×

(

φ kskill(t) ×
K(t)
KInit

)CEOskill

×
∑

gender

∑˝60− 64˝

age=˝15− 19˝
LFgender,age,skill(t)(1− CEOskill) (9)  

where CEOskill is the capital elasticity output for skilled and unskilled 
labor force. REO Init1900,skill, φ Techskill, φ Kskill, and CEOskill are exoge-
nous parameters determined by model calibration based on historical 
data of GWP and GWP per Cap from The World Bank (2020). K and 
K Init are annual capital stock and initial capital stock in 1900, 
respectively. Technology-related factor productivity (Tech) is distin-
guished into energy technology (Tech Eng) and all other technology 
(Tech Oth). Particularly, Tech Eng is endogenously determined by in-
vestments in the energy module while Tech Oth follows an exogenous 
trend and data. The labor force (LFgender,age,skill) is the corresponding labor 
force by different skills multiplied by the labor force participation rates 
for the respective groups (by gender and age cohort), which is set to be 
34–78% depending on genders and age cohorts following The World 
Bank (2020). 

3.2.2. Climate change impacts on GWP 
Impacts of climate change on economy (Imp CC on GWP) assumes 

that the temperature change has a direct impact on the economic output, 
following the commonly used ‘damage function’ forms presented by 
Nordhaus (2017), Dietz and Stern (2015), Burke et al. (2015), and a 
custom function defined in a flexible logistic form. The baseline damage 
assumption follows the estimates of Burke et al. (2015) which reach 
almost 75% of GDP loss at 5 ◦C of warming for the case where long-run 
(5 year) effects of temperature change are considered and countries give 
differentiated adaptation response. Details about the damage functions 

Fig. 2. Inflows and outflows to different population cohorts in the population module. Population cohorts also distinguish gender into male and female. According to 
the System Dynamics methodology, boxes represent stocks/accumulations of elements while the arrows represent in-flows and out-flows indicating the direction of 
movement of quantities between stocks. 

dPEGgender,age(t)
dt

=

⎧
⎨

⎩

0; if age in {˝0 − 4˝, ˝5 − 9˝}
Grad Primgender,age(t) − Enrl Secgender,age(t) − Matur Primgender,age(t) − Death Primgender,age(t); if age in {˝10 − 14˝, ˝15 − 19˝}
Matur Primgender,age− 1(t) − Matur Primgender,age (t) − Death Primgender,age (t); if age > ˝20 − 24˝

(7)   
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(DFs) are available in (Eker et al., 2023) and Ye and Eker (2024). 

3.2.3. Poverty 
The global poverty rate (PR) is defined as the proportion of the 

population aged 15+ living below the international extreme poverty line 
(PL). The global PR is calculated as the sum of the poverty rates across 
the different population groups aged over 15 (PRgender,age) weighted by 
their corresponding population shares. In addition, PL is defined as 
minimum consumption or income of a person per day and set as $2.15 
per capita per day in 2017 PPP by The World Bank (2022). Income per 
capita by gender and age cohort (Income per Capgender,age) is used to 
calculate PRgender,age (Fig. 3, Fosu, 2010; Hughes, 2015). 
Income per Capgender,age is assumed to follow a log-normal distribution 
characterized by the mean μgender,age and standard deviation σgender,age of 

the normal distribution function of ln
(

Income per Capgender,age

)
, based 

on previous research (Fosu, 2010; Lakner et al., 2022; Liu et al., 2023a). 

PRgender,age(t)
(

Income per Capgender,age ≤ PL
)
= ∅

(ln(PL) − μgender,age(t)
σgender,age(t)

)

(10) 

The value of a standard normal cumulative distribution function can 
be obtained by looking up the standard normal distribution table. 
Income per Capgender,age is related to the GWP per capita. 

Income per Capgender,age(t) = GWP per Cap(t) × Real Income Paramgender,age

(11)  

where Real Income Paramgender,age is determined by model calibration 
according to the data from The World Bank (2020). 

3.3. Energy 

The energy module includes total energy demand and energy supply 
from different fossil fuels (oil, gas, coal) and renewable energy (wind, 
solar, biomass). 

3.3.1. Energy demand 
Global energy demand is determined by the per-capita energy de-

mand and the global population. The energy demand per capita 
(En Dem per Cap) is determined by the wealth of the population. 

En Dem per Cap(t) = Imp GWP on En Dem(t) × En Dem per Cap Max
(12) 

Imp GWP on En Dem represents the impact of GWP on 
En Dem per Cap. It is modeled as a non-linear relationship–initially 
increasing at a low rate, then at an increased rate and eventually flattens 
out over the long run. Furthermore, Imp GWP on En Dem is calibrated 

according to the historical energy demand pattern obtained from Energy 
Institute (2023). En Dem per Cap Max is the maximal reference of en-
ergy demand per capita. 

3.3.2. Energy production 
Energy production comes from three fossil fuels (coal, oil, and gas) 

and three renewable (solar, wind, and biomass) sources, to meet the 
total energy demand. The production of any type of energy is deter-
mined by its identified resource and production capacity, and its market 
share. 

3.3.2.1. Energy production from fossil fuels. The production of fossil fuels 
is modeled as a supply chain structure, adapted from Sterman and 
Richardson (1985) and Davidsen et al. (1990). This section uses oil as an 
example to explain main components of the energy production structure 
for fossil fuels. In general, oil is produced from identified oil resources, 
which grows based on oil exploration through existing technologies 
from undiscovered oil resources. 

Oil exploration (Exploil) is counted as the lower value of a potential 
exploration rate of oil (Expl Potoil) and a desired exploration rate of oil 
(Expl Desoil). Expl Potoil represents the exploration possible due to 
effective investments in oil exploration (Eff Expl Invoil) and productivity 
of available technologies (Prodvty Expl Invoil) which encapsulates the 
resource depletion effect. 

Expl Potoil(t)= Eff Expl Invoil(t) × Prodvty Expl Invoil(t) (13) 

Expl Desoil represents the amount of oil resources that would ensure 
continued production at the current rate. Unit cost of oil exploration is 
then estimated depending on the remaining undiscovered oil resources 
and advances in exploration technologies. The cost of oil exploration in 
turn determines the desired investment in oil exploration. 

Similarly, the oil production is counted as the lower value of either 
total oil demand or a potential oil production rate. The total oil demand 
is calculated as the market share of oil in total energy demand. The 
potential oil production rate equals to the production due to effective 
investments in oil production and available resources. Similar to the 
costs of exploration, the unit cost of oil production is then dependent on 
the productivity of investment in oil production which encapsulates the 
resource availability effect. It is important to note that production costs 
also include the policy-set carbon price. The cost of both oil exploration 
and production determines the oil price, which affects the market share 
of oil demand in total energy demand (see section 2.3.3 Market shares 
of energy sources in total energy demand). 

3.3.2.2. Energy production from renewable sources. There are several 
main factors that affect the production of renewable energy from wind, 
solar, and biomass sources. They are resource characteristics (e.g., 
average sun radiation for solar energy), efficiency and aging of tech-
nology, land availability, installation cost, investment in installation and 
efficiency, and the impact of technological learning on unit costs of 
installation. This section uses solar energy as an example to explain 
important dynamics in the structure underlying renewable energy 
production. 

Firstly, total solar demand equals to the market share of solar energy 
multiplied by the total energy demand. Secondly, the solar production 
capacity is calculated to meet total solar demand but constrained by the 
potential solar energy production. The potential solar energy production 
depends on the available solar resource and technological constraints of 
average intensity of the resource, annual availability of the resource 
considering weather impacts, changing efficiency of solar radiation 
conversion at the current state of technical developments, and the 
installed capacity to convert solar radiation into energy. The installed 
solar capacity changes according to the new installation of solar ca-
pacity, which is influenced by the productivity of solar investments and 
the adjustment of existing solar infrastructure. Lastly, the unit cost of 

Fig. 3. The lognormal probability density function of income. The shaded area 
is equal to the poverty rate. 
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solar energy is estimated as a sum of the unit costs of installation and 
production. 

3.3.3. Market shares of energy sources in total energy demand 
The total energy demand is allocated to different energy sources 

based on their respective market shares (MS). MS is calculated based on 
indicative market shares (MS Ind) of energy sources which are defined 
to represent accumulated market shares of different energy sources over 
time. 

MSenergy(t) =
MS Indenergy(t)

∑

energy
MS Indenergy(t) (14) 

MS Ind of a specific energy is determined by effects of price on the 
market share (Eff MS Price) and time to adjust the market share 
(Time Adj). 

dMS Indenergy(t)
dt

=
MS Refenergy × Eff MS Priceenergy(t) − MS Indenergy(t)

Time Adj  

where MS Refenergy is the reference market share of a specific energy 
source. Time Adj is set as 10 years for all energy sources. Eff MS Price 
depends on the competitive price factors and prices of energy sources. 
The price of each energy source is averaged over a period, and all the 
prices result in the average energy price. The price competitive factor is 
calculated for all energy sources as a ratio of the averaged price of each 
energy source and the average energy price. The price competitive factor 
is further adjusted by the elasticity of that energy source price to de-
mand. 

3.4. Water 

The water module mainly quantifies global average water scarcity, 
that is, the balance between water availability and use. Water avail-
ability is a function of available water resources, water recovery of used 
water in economic sectors, and a drought rate for the impact of climate 
change. Total water use considers water withdrawal by three economic 
sectors (agriculture, industry, and domestic) to meet their water 
demands. 

3.4.1. Water supply and water availability 
Available water resources consist of water supply rate of fresh and 

non-conventional water, water recovery rate of used water resources by 
the three economic sectors, and drought out rate representing extreme 
drought events. Water supply is estimated by multiplying desired water 
supply rate and water supply fulfillment rate (describing water supply 
fulfillment as a relation of water supply and demand). Desired water 
supply rate 

(
Wat Sup Des) is to cover water consumption (Wat Cons, i. 

e., water use decreased by recovery of used water resources of three 
economic sectors) and available water resources adjustment 
(Wat Avail Adj, taking into account dynamics of total water demand 
and water safety stock coverage). 

Wat Sup Des(t)=MAX(0,Wat Cons(t)) + Wat Avail Adj(t) (15) 

With growing water demand, the supply fulfillment might be 
impaired which relates to infrastructure design and its operating limits. 
This relationship is modeled as a logistic function dependent on the 
amount of water that can be reliably provided on annual basis for 
agricultural, industrial, and domestic sectors due to resources and 
infrastructure availability. Associated data are obtained from 2030 
Water Resources Group (2009). 

3.4.2. Water demand, water withdrawal, and water use 
Water is demanded for economic production by agriculture, indus-

trial, and domestic sectors. Agricultural water demand (Wat Dem Agri) 
is dependent on two ways of land watering–irrigation and rainfed. 

Wat Dem Agri(t) = Wat Int Irr(t) × Area Irr(t) + Wat Int Rfed(t)

× Area Rfed(t)
(16)  

where Wat Int Irr and Wat Int Rfed represent average agricultural 
water demand per square (i.e., water intensity, Wat Int) agricultural 
land areas of irrigation (Area Irr) or rainfed (Area Rfed), respectively. 
Area Irr is calculated by multiplying total agricultural land areas with 
the percentage of irrigated land areas, which is estimated by considering 
the impact of wealth (represented by GWP per Cap) and their upper and 
lower limits. This approach is also applied to estimate Wat Int Irr, 
Wat Int Rfed, and total water demand for industrial sector based on 
their own upper and lower limits, respectively. Domestic water demand 
is quantified based on total population and average domestic water 
demand per capita. Domestic water demand per capita is estimated by 
considering the impact of wealth (represented by GWP per Cap) and 
their upper and lower limits. 

Agricultural, industrial, and domestic water demand drives water 
resources withdrawal from available water resources. Similar to water 
supply, agricultural, industrial, and domestic water withdrawal rates 
slow down when their demands approaching max water withdrawal 
rate. This process is represented by water withdrawal fulfillment rate 
(Fulf Rat Withd). Particularly for agricultural water withdrawal 
(Wat Withd Agri), impacts from extreme drought (Drght Rat) is also 
considered to simulate the decrease in Wat Withd Agri and available 
water resources due to drought. 

Wat Withd Agri(t)=Wat Dem Agri(t)×Fulf Rat Withd(t)×(1 − Drght Rat)
(17) 

Agriculture, industrial, and domestic water withdrawal rates accu-
mulate as total used water resources. As mentioned in the section Water 
supply and water availability, a fraction of total used water resources 
can be recovered and supplied as available water resources. 

3.5. Land use and fertilizer use 

The global land use and land use change dynamics are represented 
based on four main categories of land use as defined by FAO (FAOSTAT, 
2020a): agricultural, forest, urban/industrial, and the other land that 
does not fall into any of the first three categories. Land use change refers 
to the conversion of land among these four categories. Considering the 
historical and expected dynamics, a bi-directional conversion between 
the agricultural land and forest land and between the agricultural land 
and other land is assumed. The rest of land use changes are considered 
one directional conversion, that is, from agricultural land to urban and 
industrial land, from forest land to urban and industrial land, and from 
other land to forest land (Fig. 4). 

Fig. 4. Stylized stock-flow diagram of the land use module.  
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3.5.1. Land conversion 
The main underlying driver of land use change is the food system, in 

addition to bioenergy and forest management practices (Fig. 4). Each 
land category is modeled as a stock. Apart from urban and industrial 
land, which is set to increase only, all other types of land can gain more 
space or lose it due to land conversion. For instance, abandoning any 
human activities in a part of agriculture land and allowing certain 
duration of time the agriculture land will be covered by grass, later by 
shrubs, yet later by trees and eventually it will be classified as forest. The 
easier it is for the natural process to transform the area the trans-
formation time is set to a lower value. In case of forest‒agriculture land 
conversion, agriculture‒other land conversion, and other‒forest land 
conversion, there are additional forces apart from natural conversion 
processes that drive and increase the rate of expansion or shrinking of 
the forest, other and agriculture land areas. A constant ratio is set for 
other land and forest land areas as protected land, respectively. In case 
of forest land, the protected area increases successively. The protected 
areas are excluded from any transformation processes. The agricultural 
land requirements and its estimates will be especially elaborated in the 
next section due to the key link with diet change module (Fig. 1). 

3.5.2. Agricultural land requirements 
Agricultural land requirement increases due to the growing popu-

lation and income levels which lead to more food demand (Fig. 5). 
Agricultural land is further divided into three sub-categories as arable 
land, permanent cropland, and permanent meadows and pastures. Land 
use shifts due to food demand are considered based on plant- and 
animal-based food that have their own land allocation and yields. Eight 
categories of food products are specified and sorted into plant-based and 
animal-based food. Plant-based food include pulses, grains, vegetables 
and fruits, and other crops such as sugar and oil crops. Animal-based 
food are pasture-based meat, crop-based meat, dairy, and eggs. This 
categorization of especially animal products were motivated by the land 
use shares: The pasture-based meat category includes the red meat 
sources such as beef, sheep and goat, since 96% of the global average 
land use per unit of beef production is attributed to pasture land, that is, 
12 of 12.5 ha per million kcal (Ranganathan et al., 2016). As for poultry 
and pork, the average land use footprint is less than 2 ha, while a large 
portion of this is on cropland (Ranganathan et al., 2016), since grains 
provide the 71% of the total feed demand (FAOSTAT, 2020a). 

For each plant-based food, the arable land needed (ALN) is formu-
lated according to the desired production rate (Prod Des) and the ex-
pected crop yield (Yield Exp), which is a 1-year time-averaged value of 

the crop yield over time. 

ALNfood(t) =
Prod Desfood(t)
Yield Expfood(t)

,

where food ∈ [pulses, grains, vegetables and fruits, other crops]
(18) 

Prod Desfood of each plant crop is the sum of the demand for that crop 
to be used as food, livestock feed, and in other sectors. The estimate 
procedures of crops to be used as food and livestock feed are described in 
section 2.6 Diet Change. Crop to be used in other sectors is quantified as 
a constant ratio of total plant-based food demand. The actual production 
of each plant crop is the lower value of Prod Desfood and the production 
volume calculated as crop yield multiplied by the area harvested. Crop 
yield is formulated with respect to a reference yield values in 2016 with 
the dynamic multiplicative impact of fertilizer application, water 
withdrawal rate and technology change. The total agricultural land re-
quirements are estimated by dividing ALNfood by the annual share of 
arable land in the total agricultural land. The rest of agricultural land is 
proportionally distributed as permanent cropland and permanent 
meadows and pastures according to their annual share in agricultural 
land. 

The discrepancy between agricultural land requirement and avail-
able agricultural land pushes agricultural production systems either 
towards more fertilizer use to increase the crop yields and reduce the 
land requirement, or to deforestation and other land requisition to 
expand the agricultural land. Eventually, food supply is dependent on 
the land available, hence harvested, for each food category, and the crop 
(or meat) yields that depend on fertilizer use, water availability and 
other agricultural management practices. 

3.5.3. Fertilizer use 
Nitrogen and phosphorus fertilizer use in agriculture, from com-

mercial sources or livestock manure, is explicitly modeled. Both nitro-
gen and phosphorus use, as well as their impacts, are modeled in a 
similar framework that focuses on chemical inflows to and outflows 
from agricultural land. This section uses phosphorus (P) as an example 
to explain the framework. 

Global P balance with major inflows and outflows (Fig. 6) is based on 
an input and output framework (MacDonald et al., 2011) and a former 
modeling study about the biochemical processes of phosphorus (Dumas 
et al., 2011). In general, the global P residual in soil grows due to the 
application of commercial P fertilizers and the application of manure as 
a fertilizer, and decreases due to the uptake by crops and the loss of P via 
erosion, leaching to freshwater systems and surface runoff. The residual 
P and flows are reported in terms of the volume of elemental P, except 
the commercial fertilizer production and application, which are 

Fig. 5. Stylized feedback loops driving the land use change in FeliX.  

Fig. 6. Agricultural phosphorus inflows and outflows.  
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reported as the volume of P2O5 content. The application of commercial P 
fertilizers is modeled as the minimum of P demand from agriculture and 
P supply for agriculture. P demand from agriculture is formulated based 
on a reference application rate, taking into account the effect of income 
levels and land scarcity. Both effects are formulated as logistic functions 
based on GWP and the ratio between global agricultural land demand 
and the available agricultural land, respectively. Supply for agriculture 
is a fraction of the total P via P rock extraction. This fraction is set as 0.9, 
since the agricultural use has been on average 90% of the total P2O5 
produced between 2002 and 2015 (FAO, 2018). P uptake by crops are 
estimated as a weighted average of the P contents in individual food 
category, using the data from USDA Food Composition Databases 
(USDA, 2020). We assume a nonlinear relation between P uptake and 
crop yields, based on the agronomic nonlinear dynamics of crop growth 
(Yin and Struik, 2010) that result in sigmoid growth. 

3.6. Diet change 

Food demand is quantified based on the total caloric demand for 
eight main food categories. Total caloric demand is based on dietary 
choices of different population segments. Population segments of di-
etary choices are represented by the followers of the meat-based and 
vegetarian diets for each age cohort and gender (Eker et al., 2019). The 
shifts between these two dietary choices depend on income (represented 
by GWP per Cap) and social and behavioral factors such as climate and 
health risk perception, self-efficacy and social norms that underly 
pro-environmental behavior. 

Followers of meat-based and vegetarian diets are assumed to eat a 
standard mix of eight food categories. Typical United States’ diets 
(Pimentel and Pimentel, 2003), a reference world diet and the global 
average supply statistics, were used as benchmarks to understand how 
meat-based and vegetarian diets differ globally. Based on such propor-
tional differences of meat-based and vegetarian diets, the reference 
meat-based and vegetarian diets were formed by decomposing the 
world’s average diet according to the population fraction of the two 
groups. 

3.6.1. Caloric demand 
Total annual caloric demand for plant-based food (Cal Dem) is the 

sum of total plant-based caloric intake by the vegetarian population 
(Pop Veg) and meat-eating population (Pop Meat). 

Cal Demfood(t)= Intk Vegfood(t)×Pop Veg(t)+Intk Meatfood(t)×Pop Meat(t),
wherefood∈[pulses, grains, vegetablesandfruits, othercrops]

(19)  

where Intk Vegplant and Intk Meatplant are the annual per-capita intake of 
plant-based calories in the vegetarian diet and meat-based diet, 
respectively. Both are assumed as a constant fraction of the annual total 
caloric intake per capita. Annual total caloric intake per capita is 
formulated as the multiplication of a reference intake per capita and the 
effect of income. The latter is a logistic function based on GWP per Cap. 

Total annual caloric demand for animal-based food is simplified as 

Cal Demfood(t) = Intk Meatfood(t) × Pop Meat(t),
where food ∈ [pasture − based meat, crop − based meat, dairy, eggs]

(20)  

where Intk Meatmeat is the annual per-capita intake of meat-based calo-
ries in the meat-based diet. 

3.6.2. Food demand and food production 
Food demand is calculated as Cal Demfood divided by the caloric 

value of associated food category. In addition, plant-based food cate-
gories are also be used as livestock feed. The amount of plant-based food 
used for feed depends on crop-based meat demand, feed share of four 
plant-based food, and unit-feed requirement for livestock. Food pro-

duction is eventually steered by waste-adjusted food demand, which is 
calculated as food demand divided by a waste fraction of supply. The 
waste fraction is set as 0.30 for grains, 45% for pulses, vegetables and 
fruits the waste fraction is 45%, and 20% for other food categories. 

The production of animal-based food products (pasture-based meat, 
crop-based meat, dairy, and eggs) follows a similar approach based on 
grassland availability, food demand and land yield. Dairy production is 
aligned with meat production, and the production of eggs is formulated 
with respect to crop-based meat production, which depends on the feed 
fraction of crop production. 

3.7. Carbon cycle 

CO2 emissions are calculated based on representations of carbon 
emissions from the energy and land-use change sectors. These emissions 
accumulate in the atmosphere until they are absorbed into the 
biosphere, pedosphere or oceans based on C-ROADS (Sterman et al., 
2012, 2013). 

3.7.1. Carbon emissions 
Total carbon emission rates from the energy sector include carbon 

emission rates from fossil and renewable sources. Carbon emissions of a 
specified energy (C Emis Enenergy) are based on the carbon intensity of 
energy production (C Intenergy), which is calibrated to historical emis-
sions within the uncertainty ranges of the unit emissions of energy 

Fig. 7. Carbon stocks and associated flux among the stocks. Carbon accumu-
lation in deep ocean is taken into account at four distinct ocean layers, yet not 
visualized for simplicity. 
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production (IPCC, 2014). 

C Emis Enenergy(t) = C Intenergy × Prodenergy(t) (21)  

where Prod represents the annual production of different types of en-
ergy. Carbon emissions of fossil fuels also include the effect of carbon 
capture and storage technology. 

Carbon emissions from land-use change (C Emis Land) includes 
emissions from agricultural land change (C Emis Agri), and forest land 
change due to deforestation and forest conversion to managed forests 
and plantations (C Emis Frst). 

C Emis Land(t) = C Int Agri × Land Chg Agri(t) + C Int Frst

× Land Chg Frst(t) (22)  

where C Int Agri and C Int Frst represent carbon intensity of agricul-
tural land use and forest land use, respectively. Land Chg Agri and 
Land Chg Frst represent ratio of agricultural and forest land area change 
compared to its initial area in year 1900. 

3.7.2. Carbon stock 
Stocks of carbon are considered in the atmosphere, biosphere, mixed 

ocean layer, and four deep ocean layers (Fig. 7). Carbon in the atmo-
sphere (C Stk Atm) accumulates through total carbon emissions 
formulated above. Carbon in biosphere is captured in biomass 
(C Stk Biom) and soil (C Stk Soil). C Stk Biom includes carbon stock in 
leaves, branches, stems and roots, whereas C Stk Soil includes carbon 
stock in litter and humus. As the concentration of C Stk Atm rises, it 
forces increase of the uptake by ocean and biosphere. Carbon flux from 
the atmosphere to the biomass is modeled according to the formula in 
Wullschleger et al. (1995) and grows logarithmically as the concentra-
tion of C Stk Atm increases. The residence of C Stk Biom depends on 
average lifespan. The outflow of C Stk Biom is partitioned between 
carbon flux from the biomass to the atmosphere and to the humus ac-
cording to humification fraction. The outflow from C Stk Soil is equal to 
its content divided by its average lifespan in the humus. The flux be-
tween C Stk Atm and carbon stock in the mixed ocean layer (C Stk Ocn) 
adjusts to an equilibrium that considers buffer factor, a measure of the 
resistance to atmospheric carbon dioxide being absorbed by the ocean 
surface layer. The buffer factor itself rises with the atmospheric con-
centration which decreases ocean absorption capacity. Deep ocean 
diffusion fluxes are modeled as a simple eddy-diffusion structure. 

3.8. Climate 

The climate module is based on the C-ROADS model (Sterman et al., 
2012), which in turn refers to FREE model (Fiddaman, 2002) and DICE 
model (Nordhaus, 1992, 1994). The Earth’s radiation budget is con-
strained to the temperature change due to carbon dioxide (CO2), 
methane (CH4), nitrous oxide (N2O), halocarbons and other forcings (e. 
g., aerosols, O3, etc.) CO2 emissions are endogenous variables as 
described in the section Carbon cycle. The rest of forcings are generated 
exogenously based on historical data and the future projections from 
Representative Concentration Pathways (RCPs) (Byers et al., 2022). The 
temperature change is governed by radiative forcings, feedback cooling 
due to outbound longwave radiation, and heat transfer from the atmo-
sphere and upper ocean to deep ocean layers. 

3.8.1. Radiative forcing 
Total radiative forcing consists of CO2 radiative forcing due to 

increasing concentration of carbon in atmosphere, and other forcings 
which includes variables representing forcings from CH4, N2O, halo-
carbons and other gases and aerosols. 

3.8.2. Feedback cooling 
Feedback cooling due to outbound longwave radiation governs 

feedback mechanism of the atmosphere and the upper ocean. The rate of 
cooling is determined by the climate sensitivity—a metric used to 
characterize the response of the global climate system to a given forcing. 
It is broadly defined as the equilibrium global mean surface temperature 
change following a doubling of atmospheric CO2 concentration. 

3.8.3. Heat transfer 
The heat transfer into deeper layers of the ocean is modeled as a 

function of the eddy diffusion, which controls the movement of carbon 
through the deep ocean. Four different layers of deep ocean are 
considered. 

3.9. Biodiversity 

The biodiversity module is a simple structure representing popula-
tion carrying capacity. The population is represented by global and 
encompassing all biomes mean species abundance (MSA). MSA is 
increased by species regeneration rate and decreased by species 
extinction rate. In addition, MSA approaching species carrying capacity 
(Spec Capa) limits species regeneration and intensifies species extinc-
tion. This process is quantified as logistic functions and based on the 
ratio between MSA and Spec Capa, and the regeneration factor and the 
extinction factor, respectively. 

3.9.1. Species carrying capacity 
Spec Capa is calculated based on reference species carrying capacity 

(Spec Capa Max), representing maximum sustained population size, and 
influencing factors related to fertilizers consumption (Imp Fertz on Biodiv), 
biomass production for energy purposes (Imp Biom on Biodiv), climate 
damage (Imp CC on Biodiv) and land use change (Imp Land on Biodiv). 

Spec Capa(t)= Spec Capa Max× Imp Fertz on Biodiv(t)
×Imp Biom on Biodiv(t)× Imp CC on Biodiv(t)× Imp Land on Biodiv(t)

(23) 

The four influencing factors are estimated by logistic functions. In 
detail, Imp Fertz on Biodiv is a logistic function of fertilizer consumption 
(including nitrogen, phosphate, and potash fertilizers). Imp Biom on Biodiv 
consists of impacts from forest agriculture biomass production, which are 
logistic functions of related land areas. Imp CC on Biodiv is adopted from 
climate impact on economy, as a logistic function of temperature change 
from preindustrial. Imp Land on Biodiv takes into consideration changes of 
agricultural land, forest land, and other land compared to their initial 
areas. 

4. Model outputs of FeliX 2.0 

4.1. Calibration to the historic data 

Simulation trajectories of key variables from different modules in 
FeliX 2.0 demonstrate a strong alignment with their respective historic 
data (Fig. 8). Fifteen key variables are selected from different modules 
based on the best availability of their historic data and their in-
terdependencies with other variables in the whole FeliX 2.0. The model 
is calibrated for the period 1900–2022, mostly 1960–2022 depending on 
the data availability, and then projects to the future. The historic data for 
these variables are sourced from reputable repositories, including 
Wittgenstein Centre Human Capital Data Explorer (Wittgenstein Centre, 
2020) for population, total fertility rate, education graduates; the World 
Bank Data (The World Bank, 2020) for GWP, GWP per capita, and global 
poverty rate; International Energy Agency (IEA, 2020) for energy de-
mand; FAOSTAT (FAOSTAT, 2020b) for agricultural land, and total 
daily calorie supply per capita; IPCC (2014) for total C emission from 
energy sector; NASA GISS (2023) for temperature change from prein-
dustrial; and European Environment Agency (EEA, 2020) for atmo-
spheric concentrations of CO2. 
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The R square (R2) values between trajectories simulated by FeliX 2.0 
and historic data of these variables are more than 0.93 except of agri-
cultural land (R2 = 0.81) and temperature changes from preindustrial 
time (R2 = 0.84). For the agricultural land, the low R2 value can be 
attributed to the assumption that land use change, i.e. deforestation, is 
captured at higher aggregation level between forest and agricultural 
land, and a constant fraction of the total agricultural land is allocated to 
cropland and grassland. As for temperature changes from preindustrial 
time, the historic data per se were modeled such as observed with ±10% 
range of uncertainty according to (EEA, 2020; IPCC 2021). The best 
fitness is observed for the total population, total secondary graduates, 
total tertiary graduates, GWP, GWP per capita, and atmosphere CO2 
concentration. Their R2 values are all more than 0.99. The best fitness of 

these variables results from relatively more available data. As such, 
given the good reproduction of historical trends in FeliX 2.0, the model 
is able to capture the dynamic connections and interactions of the 
complex socio-economic and environmental system for simulating 
future development. 

4.2. Future projections based on FeliX 2.0 

The strong alignment of key variables with the historic data enables 
FeliX 2.0 to provide a more plausible future compared to existing IAM 
(Fig. 9). The projection outcomes of six variables in FeliX 2.0 are 
compared to those of key IAMs, namely the Global Change Assessment 
Model (GCAM), MESSAGE-GLOBIOM (Krey et al., 2020), 

Fig. 8. Calibration results of key variables in FeliX 2.0. In the labels of ordinate, B stands for billions, Deg stands for degree, Dmnl stands for dimensionless, ha stands 
for hectare, Kcal stands for kilocalorie, Mtoe stands for million tonnes of oil equivalent, ppm stands for parts per million, T stands for trillions, and TonC stands for 
tonne of carbon. 
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WITCH-GLOBIOM (Bosetti et al., 2006, 2009), AIM_CGE (Fujimori et al., 
2017), IMAGE (Bouwman et al., 2006), and REMIND-MAgPIE (Luderer 
et al., 2013) using the IPCC AR6 Scenario Database (Byers et al., 2022). 
All projections follow the Shared Socioeconomic Pathway 2 (SSP2, 
O’Neill et al., 2017). Moreover, given that FeliX 2.0 particularly con-
siders different damage functions in the economy module (see section 
2.2.2. Climate change impacts on GWP), projection results from FeliX 
2.0 are further distinguished between FeliX 2.0 with and without dam-
age functions (DFs). 

The comparison shows that FeliX 2.0’s projections fall within the 
ranges of results from selected IAMs, except for the total radiative 
forcing and GWP from FeliX 2.0 without DFs. Future total radiative 
forcing in both FeliX 2.0 is lower than those in other models. This can be 
attributed to our choice to use RCP4.5 projections for the non-CO2 GHGs 

in the baseline scenario of FeliX 2.0, in line with the current policies, 
while the SSP2 baseline corresponds approximately to RCP7.0. When 
considering DFs in economic outputs, future GWP would decrease by 
more than 50%. Whereas, if no DFs are considered in FeliX 2.0 either, 
future GWP would still be consistent with the SSP inputs to the other 
models (Dellink et al., 2017) which do not take climate impacts on 
economy into account. Total CO2 emissions from the energy sector 
before 2080 in FeliX 2.0 are projected to be higher than those in other 
IAMs. The exclusion of carbon removal technologies such as carbon 
capture and storage under SSP2 is the main reason for the highest CO2 
emissions in FeliX 2.0. Coal production is relatively low while wind 
energy production is relatively high in FeliX 2.0 compared to the pro-
duction in other selected models. It is because the market share of coal 
would shrink to 24% in 2100 while the share of coal in energy supply in 

Fig. 9. Future projections of key variables under the shared socioeconomic pathway 2 (SSP2) in FeliX 2.0 and five existing IAMs. FeliX 2.0 Ref represents outputs 
from FeliX 2.0 without considering the climate impacts on economy, that is, the damage function (DF), while FeliX 2.0 with DF represents outputs from FeliX 2.0 with 
climate impacts. SSP2 projections by other models are obtained from the AR6 Scenario Database (Byers et al., 2022). 

Q. Ye et al.                                                                                                                                                                                                                                       



Environmental Modelling and Software 179 (2024) 106121

14

GCAM would be 30–50%. In addition, the market share of wind would 
expand to 12% in 2100 in FeliX 2.0. FeliX 2.0 results in relatively higher 
market shares of renewable energy (especially wind), resonating with 
the finding in Jaxa-Rozen and Trutnevyte (2021) about underestimation 
of the fast development of renewables by most IAMs. Projection results 
of crop production and forest land in FeliX 2.0s are both in line with 
results from other IAMs. 

5. Limitations, outlooks, and conclusions 

5.1. Limitations and outlooks 

As a model developed for the purpose of capturing complex bio-
physical and socioeconomic mechanisms at an aggregate level, FeliX 2.0 
offers a comprehensive framework that addresses the limitations of 
conventional IAMs, notably the inattention to feedbacks and nonlinear 
interactions. The applications of FeliX 2.0 (see Section 2) in scenario 
analyses, emissions pathways, and sustainability assessments have 
proved its reliability as a useful tool for understanding global system 
dynamics and human well-being. However, FeliX 2.0 is also subject to 
several limitations. The first limitation arises from its global scale, pre-
venting fine-scale analysis of socioeconomic-environmental dynamics. 
This hampers the effectiveness of FeliX 2.0 in devising targeted policies 
for localized challenges (e.g., water scarcity and deforestation) and 
hindering comprehensive solutions tailored to specific geographic con-
texts, given high heterogeneity across regions and nations. In addition, it 
also prevents FeliX 2.0 from adequately capturing the diverse contri-
butions of specific regions, to specific global problems such as climate 
change. To address this limitation, it requires to add a regional dimen-
sion in associated modules in FeliX 2.0 such as population, economy, etc. 
In addition, each regionalized module should follow the global structure 
and be calibrated by historical data of each region, to make sure the 
consistency and robustness of generated results. 

The second limitation is the relatively macro-modeling approach of 
different sectors in FeliX 2.0 that does not involve a high level of tech-
noeconomic detail. This reduces FeliX 2.0’s ability to adequately capture 
the diverse contributions of specific sectors to specific global problems. 
For example, the end use sectors leading to the primary energy con-
sumption are not modeled endogenously in FeliX 2.0. The transportation 
sector, for instance, accounted for around 30% and 20%, respectively, of 
global total energy consumption and CO2 emissions in 2020 (IEA, 2022). 
Hence, it is also critical for climate mitigation through transitioning to 
electric vehicles, investing in public transportation, implementing sus-
tainable traffic planning, and decarbonization in shipping and aviation 
(Jaramillo et al., 2022). To address the second limitation, more key 
sectors and factors of human-earth system can be added into FeliX 2.0 
while focusing on the feedbacks rather than technoeconomic detail, as 
the distinguishing feature of FeliX. Lastly, FeliX 2.0 is a publicly avail-
able model, yet it requires a licensed software (Vensim DSS) for full 
functionality. A fully open access version of FeliX 2.0 can enhance its 
accessibility, transparency, open review, and collaboration, that are 
critical for robust and inclusive research. 

5.2. Conclusions 

The development and utilization of FeliX 2.0 have enabled under-
standing of global socioeconomic-environmental dynamics and their 
multilateral interactions. The robust calibration results of key variables 
within FeliX 2.0 modules against historic data highlights the model’s 
efficacy in capturing the complex interdependencies of global systems 
since the beginning of the 20th century as they have been observed. 
Moreover, future projections from FeliX 2.0 exhibit coherence across 
multiple variables, including emissions, energy sector developments, 
crop production and forest land, compared to other existing IAMs. These 
insights highlight the strengths of FeliX 2.0 while also signaling avenues 
for refinement to enhance its usefulness and policy relevance, offering a 

promising trajectory for robust long-term scenario simulations of global 
dynamics. The diverse applications of FeliX 2.0 in areas such as climate 
change, sustainable development, and global poverty elimination have 
provided evidence of its efficacy as a powerful tool for short- and long- 
term analyses of interested economic-environmental-social systems and 
existing global problems. However, FeliX 2.0 also have limitations that 
require future enhancements. Examples are its global scale and limited 
sector coverages. In summary, FeliX 2.0 stands as an informative tool for 
both SD and IAMs, and offers insights into the human-Earth system 
feedbacks. Overcoming its limitations will boost more potential of FeliX 
2.0, enabling future research to design targeted policies and compre-
hensive solutions for a sustainable future. 

Code and data availability 

The FeliX model is publicly available at https://github.com/iiasa/Fe 
lix-Model. The model is developed in Vensim DSS, a licensed software, 
hence the full functionality of the model requires this software whereas 
it can be displayed freely by using Vensim Model Reader. Online model 
documentation can be seen at https://iiasa.github.io/felix_docs/. 
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