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A B S T R A C T   

Thousands of people are injured every year from explosive remnants of war which include unexploded ordnance 
(UXO) and abandoned ordnance. UXO has negative long-term impacts on livelihoods and ecosystems in 
contaminated areas. Exact locations of remaining UXO are often unknown as survey and clearance activities can 
be dangerous, expensive and time-consuming. In Vietnam, Lao PDR and Cambodia, about 20% of the land re
mains contaminated by UXO from the Vietnam War. Recently declassified historical KH-9 satellite imagery, taken 
during and immediately after the Vietnam War, now provides an opportunity to map this remaining contami
nation. KH-9 imagery was acquired and orthorectified for two study areas in Southeast Asia. Bomb craters were 
manually labeled in a subset of the imagery to train convolutional neural networks (CNNs) for automated crater 
detection. The CNNs achieved a F1-Score of 0.61 and identified more than 500,000 bomb craters across the two 
study areas. The detected craters provided more precise information on the impact locations of bombs than target 
locations available from declassified U.S. bombing records. This could allow for a more precise localization of 
suspected hazardous areas during non-technical surveys as well as a more fine-grained determination of residual 
risk of UXO. The method is directly transferable to other areas in Southeast Asia and is cost-effective due to the 
low cost of the KH-9 imagery and the use of open-source software. The results also show the potential of inte
grating crater detection into data-driven decision making in mine action across more recent conflicts.   

1. Introduction 

Unexploded ordnance (UXO) refers to explosive munitions, including 
bombs, artillery projectiles and cluster submunitions that have been 
deployed during military conflicts but did not explode. UXO continues to 
present significant humanitarian and environmental challenges. In 2022 
alone, the United Nations Mine Action Service (UNMAS) reported more 
than 3000 casualties from explosive remnants of war, which include 
UXO and abandoned explosive ordnance, across 15 countries and 
numbers of UXO are increasing due to ongoing conflicts such as in 
Ukraine (Cluster Munition Coalition, 2023; UNMAS, 2019). UXO has 
negative long-term impacts on public health, livelihoods and ecosystems 
in contaminated areas (Frost et al., 2017; Hofmann and Juergensen, 
2017; Lin et al., 2020; Nguyen, 2020; Ounmany and Andriesse, 2018). 

Moreover, the removal of UXO remains technically challenging, 
expensive and hazardous, particularly in conflict and post-conflict en
vironments where access to reliable data on contamination is limited. 

Mainland Southeast Asia has one of the highest UXO contamination 
rates in the world, mainly originating from the aerial bombardment by 
the U.S. military during the Vietnam War, also known as the American 
War in Vietnam or the Second Indochina War which took place between 
1955 and 1975 (Martin et al., 2019). During the war, the U.S. Air Force 
dropped approximately eight million tons of bombs on the countries of 
Vietnam, Cambodia and Lao PDR (Anderson, 2002; High et al., 2013). 
Today, about 20% of the land in these countries is thought to still be 
contaminated by UXO (Martin et al., 2019). However, the exact loca
tions and extents of contaminated areas mostly remain unknown, 
despite being essential for an efficient allocation of limited resources for 
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UXO clearance. Non-technical survey is commonly used as a first step 
when assessing explosive ordnance contamination. It typically consists 
of a set of non-technical methods, such as desk assessments, physical 
visits to field locations and the analysis of historical records to identify 
contaminated land and categorize it into suspected or confirmed haz
ardous areas. It is cheaper than technical survey and clearance, as it does 
not rely on expensive technical assets to be deployed to the field. An 
accurate non-technical survey can therefore ensure a more efficient 
allocation of these limited technical assets to the most affected areas 
(Bold and Avenell, 2021; Lin et al., 2020; UNMAS, 2019). 

U.S. bombing records are one of the most comprehensive data 
sources used for non-technical survey in Southeast Asia. In 2016, the 
United States Department of Defense released these records to the public 
as part of the Theater History of Operations (THOR) data, an attempt to 
record all air operations by the United States since World War I. The 
THOR data includes the geographical coordinates of target locations, the 
type and number of weapons dropped on each target and the time of the 
attack. The bombing records have been a valuable data source for non- 
technical surveys (Bold and Avenell, 2021) and for research into the 
political, economic and health impacts of the Vietnam War (Le et al., 
2022; Le and Nguyen, 2020; Yamada and Yamada, 2021). However, 
High et al. (2013) suggest the bombing data should only be used as one 
source among many, after identifying multiple issues, including missing, 
corrupted and actively falsified records. An overview of THOR bombing 
targets in Southeast Asia during the Vietnam War is shown in Fig. 1a. 

Remote sensing data can provide a valuable alternative data source 
where bombing records are unavailable or inaccurate (Bennett et al., 
2022). Lin et al. (2020) used recent, very high resolution (<1 m) satellite 
imagery to detect bomb craters from the Vietnam War in Cambodian 
agricultural land. However, detecting bomb craters from past conflicts 

in more recent satellite images can be challenging as the appearance of 
bomb craters changes over time due to erosion, vegetation growth and 
human intervention (Lin et al., 2020). Historical aerial wartime imagery 
has been used as an alternative to detect and analyze World War II bomb 
craters in Europe (Clermont et al., 2019; Kruse et al., 2019; Waga et al., 
2022), but its availability is often restricted to small areas. Declassified 
historical U.S. satellite imagery (USGS EROS Center, 2018), taken dur
ing and immediately after the Vietnam War, now presents an opportu
nity to overcome some of these challenges. The KH-4a/b CORONA 
missions provide high resolution imagery (1.8–2.8 m) between 1963 and 
1972 which, since its declassification in 1995, has been used in a variety 
of applications that range from the discovery of archaeological sites to 
land cover change detection (Deshpande et al., 2021; Lasaponara et al., 
2018; Nita et al., 2018). Recently, it was used to classify land affected by 
bombing in a part of Quang Tri province, Vietnam (Munteanu et al., 
2024). The KH-9 HEXAGON stereo-panoramic imagery provides almost 
complete coverage of the Earth’s land area between 1971 and 1984 at a 
spatial resolution of 0.6–1.2 m. Due to its recent declassification in 2011 
and the technical challenges associated with orthorectifying the imagery 
(Zhou et al., 2021), researchers have only recently begun to explore its 
use in a diverse range of applications such as archaeology (Hammer 
et al., 2022) and glaciology (Ghuffar et al., 2023). 

Previous studies on the automatic detection and counting of bomb 
craters in remotely sensed imagery have relied on methods developed 
for detecting extra-terrestrial craters on planetary surfaces (Clermont 
et al., 2019; Lin et al., 2020). In this field, convolutional neural networks 
(CNNs) are increasingly replacing applications that rely on the extrac
tion of manually specified features such as crater shape and shadows. 
U-Nets, a type of CNN architecture originally developed for segmenting 
medical imagery (Ronneberger et al., 2015), have been successfully 

Fig. 1. (a) THOR bombing targets over Southeast Asia during the Vietnam War. (b) and (c) show the two study areas, including points of interest during the war. The 
cities of Dong Ha, Quang Tri, Dak To and Kon Tum were locations of larger military bases whereas Khe Sanh, Dak Seang and Ben Het contained smaller mili
tary camps. 
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applied to segment extra-terrestrial craters (Chen et al., 2023; Silburt 
et al., 2019) and more recently to detect artillery craters in Ukraine 
(Duncan et al., 2023). To achieve instance segmentation, a method for 
identifying individual instances of an object, methods are often adjusted 
by introducing a boundary class (Duncan et al., 2023) or by using 
template matching on the semantic segmentation product (Chen et al., 
2023; Silburt et al., 2019). 

In this study, we investigated whether Vietnam War-era bomb cra
ters can be automatically detected in declassified KH-9 imagery using 
machine learning methods and we analyzed whether these detected 
craters add value to non-technical surveys in Southeast Asia beyond 
existing data sources. Additionally, we hypothesized that variations in 
crater appearance in the imagery affect model performance, which 
could lead to biased crater predictions, thereby impacting prioritization 
of clearance activities. Our study was structured in the following way. 
First, we acquired KH-9 imagery for two study areas in Southeast Asia 
and orthorectified the imagery using open-source tools. We manually 
labeled craters on a subset of the imagery. To ensure objective labeling 
we defined key appearance characteristics of craters visible in the im
agery which we used to categorize each crater. This crater categoriza
tion was later used to identify any biases in model performance. To 
automate crater detection, we used an instance segmentation workflow 
using CNNs with a U-Net architecture. Model performance was 
analyzed, revealing differences by crater appearance. Finally, we 
compared detected crater locations to U.S. bombing records, identifying 
multiple issues with the bombing records in the process. Our results 
show that craters visible in the KH-9 imagery provide more precise in
formation about where bombs landed than target locations of declas
sified bombing records. Additionally, our findings demonstrate how 
methods to automatically detect these craters can improve data-driven 
decision making within the mine action sector in Southeast Asia. 

2. Materials and methods 

2.1. Study areas 

Two study areas across Southeast Asia were selected (Fig. 1). The 
first study area covers a total of 4148 km2 of Quang Tri (QT) province, 
the most heavily bombed province in Vietnam during the war (Miguel 
and Roland, 2011), as it contained the 17th parallel, the dividing line 
between North and South Vietnam at the time. The second study area, 
here referred to as the tri-border area (TBA), is located around the 
meeting point of the borders of Vietnam, Lao PDR, and Cambodia. 
Encompassing 17,285 km2 of predominantly mountainous and densely 
vegetated land, the TBA contained sections of the Ho Chi Minh Trail, the 
principal supply route for the North Vietnamese Army, including a vital 
entry point of the trail into South Vietnam in Kon Tum province. The 
KH-9 images were taken on November 4, 1972 (TBA) and on March 20, 
1973 (QT province). 

2.2. Processing the KH-9 imagery 

A total of 20 KH-9 images, forming 10 stereo pairs of forward and aft 
looking cameras, were used for the study. The U.S. Geological Survey 
provided photogrammetric film scans of the archived KH-9 film sources 
at a resolution of 7 μm and a cost of 30$ per image. Previously digitized 
images, now including all images used in this study, are available at no 
cost via the Earth Explorer platform. 

The film scans were provided in multiple sections and were not 
georeferenced. The open-source Nasa Ames Stereo Pipeline (ASP) (Beyer 
et al., 2021) was used to process and orthorectify the imagery. The ASP 
implements a rigorous camera model including motion compensation 
(Sohn et al., 2004) for the panoramic cameras used by the KH-9 satel
lites. We adapted the example workflow described in section 8.26 of the 
ASP manual (Beyer et al., 2021), as we integrated manual ground con
trol points (GCPs) to improve accuracy. 

First, image parts were stitched together and cropped to the image 
extent using the image_mosaic and historical_helper tools in ASP. QGIS 
(QGIS Association, 2023) and Google Earth imagery were used to 
identify approximately 15 ground control points (GCPs) per image. The 
GCPs, in combination with locations of image corners provided in the 
image metadata, were used to initialize intrinsic and extrinsic camera 
parameters for each individual image. In a next step, tie points between 
the images of each stereo pair were computed. The tie points, in com
bination with the GCPs, were used to optimize the initial camera pa
rameters using a joint bundle adjustment for each stereo pair. Each 
image was subsequently orthorectified by projecting it onto a digital 
elevation model (NASA Shuttle Radar Topography Mission (SRTM), 
2013) using the optimized camera parameters and the mapproject tool in 
ASP. While the original image resolution can change between and 
within images, to ensure consistency during crater prediction, all images 
were orthorectified at the same resolution of 1 m per pixel. 

The resulting images were cropped to the study areas introduced in 
Section 2.1. The QT imagery was mosaicked into one image, while the 
TBA images, being larger in size, were not mosaicked. A further 60 
validation GCPs (QT province: 20, TBA: 40) were collected for valida
tion of the orthorectification process and showed a mean absolute hor
izontal error of 7.0 m (25th percentile: 3.4 m, median: 5.8 m, 75th 
percentile: 8.8 m) for QT province and 17.5 m (25th percentile: 8.6 m, 
median: 13.7 m, 75th percentile: 21.4 m) for the TBA. 

2.3. Labeling of bomb craters 

The processed KH-9 imagery was divided into image tiles with a 
width and height of 256 pixels. From the QT imagery, 1000 random 
image tiles were chosen and divided into sets of 600 for training, 200 for 
validation, and 200 for testing. From the TBA imagery, 1400 tiles were 
selected, with 600 allocated for training, 200 for validation, and 600 for 
testing. The decision to increase the number of test tiles for the TBA was 
driven by its lower density of bomb craters, aiming to ensure a more 
representative test score. 

Craters visible in the selected image tiles were manually labeled if 
they were larger than 25 pixels (equivalent to 25 m2). Smaller ground 
features were excluded as they were difficult to reliably identify given 
the image resolution and quality. The threshold of 25 pixels was selected 
based on visual inspection. Each labeled crater was assigned one of five 
classes based on its appearance in the imagery which varied substan
tially (Fig. 2). 

Labeling proved particularly challenging in mountainous areas with 
heavy vegetation and in areas featuring houses, trees or graves that 
could resemble craters in the imagery. Where necessary, the context 
visible in the KH-9 and current satellite imagery was used to make a 
better-informed decision. Notably, the crater prevalence was much 
lower for the TBA where 964 craters were identified compared to 10,132 
craters in QT province. Additional details on the crater labeling and the 
different crater classes are provided in the Supplementary Materials. 

2.4. Detection of bomb craters 

An instance segmentation workflow was used to predict individual 
craters in the imagery. The instance segmentation was implemented as a 
semantic segmentation problem by adding a boundary class, an 
approach commonly used in biomedical applications such as nucleus 
segmentation (Caicedo et al., 2019), where large amounts of densely 
packed objects have to be separated. For this approach, the area of each 
labeled crater was expanded by two pixels which were assigned to the 
new boundary class. All crater pixels that were touching neighboring 
craters were also labeled as boundary pixels. 

2.4.1. Neural network architecture and training 
A U-Net with a Resnet50 backbone, pre-trained on the Imagenet 

dataset, was used for the segmentation (Deng et al., 2009; He et al., 
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2015; Ronneberger et al., 2015). While multiple improvements to the 
standard U-Net architecture have been suggested, in most settings they 
only lead to minor or no accuracy improvements at a larger computa
tional cost (Gut et al., 2022; Kugelman et al., 2022; Wang and Miao, 
2022). Therefore, instead of comparing different model architectures, 
the analysis in this paper focuses on different bomb crater appearances, 
which have a large impact on model accuracy, and the comparison of 
detected craters with historical bombing records. 

The model was implemented using the pytorch and segmenta
tion_models_pytorch packages in Python (Iakubovskii, 2019; Paszke et al., 
2019). An initial model was trained using data from both study areas 
before the model was fine-tuned for each study area independently, 
using only the training data for the respective study area. Min-max 
scaling was applied to individual image tiles. During model training, 
the images were augmented by applying random vertical and horizontal 
flips as well as random brightness and contrast adjustments. As the 
pre-trained model expected color images with three channels as input, 
whereas the KH-9 images are grayscale with a single channel, an addi
tional layer was added in front of the pre-trained model to map from one 
to three channels. 

The models were trained on a Nvidia RTX 2060 GPU using an Adam 
optimizer (Kingma and Ba, 2014) and a focal loss function (Lin et al., 
2017), which assigned more weight to training examples that were not 
well classified. Focal loss has been shown to work well for imbalanced 
data (Lin et al., 2017; Mulyanto et al., 2021) which was a problem here 
as more than 99% of all labeled pixels were background pixels. A focal 
loss alpha value of 1 was used for the background class and 3 for all other 
classes based on the model performance on the validation images. A 
batch size of 8 and a learning rate of 1e-3 was used during initial model 
training and the learning rate was reduced to 1e-5 for the fine-tuning of 
each study area. Early stopping was used to stop model training if the 
validation loss did not decrease for 50 epochs in a row. 

2.4.2. Semantic segmentation evaluation 
The segmentation results were evaluated using a pixel-to-pixel 

comparison on the test images. We used precision, recall and F1-score 
which are commonly applied in settings of class imbalance and which 
are defined as: 

Precision =
TP

TP + FP
(1)  

Recall =
TP

TP + FN
(2)  

F1 =
2TP

2TP + FN + FP
, (3)  

where TP denotes true positives, FN denotes false negatives and FP de
notes false positives. We calculated these metrics for each individual 
crater class, and additionally calculated one combined score that only 
considers whether a pixel had been correctly identified as a crater pixel, 
even if the crater class of predicted and labeled pixels differed. 

2.4.3. Instance segmentation 
Multiple post-processing steps were applied to transform the se

mantic segmentation output into individual crater instances (Fig. 3). 
Connected crater pixels were considered as one crater instance even if 
they belonged to different crater classes. Pixels of class Boundary were 
treated as background pixels at this stage. Each predicted crater instance 
was assigned the majority class of its pixels. All predicted crater in
stances smaller than 25 pixels were removed. 

The accuracy of crater instances was evaluated using the metrics 
described in Section 2.4.2. A predicted crater (A) was considered correct 
if it had an Intersection over Union (IoU) of 0.5 or more with a labeled 
crater (B), where IoU is defined as: 

IoU(A,B) =
A ∩ B
A ∪ B

. (4) 

Accuracy scores were calculated for each individual crater type and 
for a combined crater class that only considered whether a crater 
instance had been correctly identified even if the crater class of the 
predicted and labeled craters differed. 

2.4.4. Model prediction 
The trained models were applied to the entire study areas using a 

sliding window approach with an overlap of 64 pixels. Only the center 
192 × 192 pixels of each predicted 256 × 256 image tile were retained 
to avoid artefacts and improve performance at tile edges. When 

Fig. 2. (a) Different crater types defined based on their appearance characteristics in the KH-9 imagery. (b) Examples of the crater types in context for an area in 
Quang Tri province. 
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identifying individual crater instances on the predicted segmentation 
masks the tile size of 1024 × 1024 with an overlap of 512 pixels was 
used to avoid mistakenly separating large craters that crossed one or 
more image tiles. As the images, and therefore crater predictions, in the 
second study area were overlapping, we only kept predicted craters of 
one of the images in these overlapping areas. This was not necessary for 
QT province, where the KH-9 images were mosaicked before crater 
detection, resulting in the same outcome. 

2.5. THOR bombing data 

The THOR bombing data was used as a comparison for the crater 
predictions as declassified bombing records are one of the main data 
sources currently used for non-technical survey in Southeast Asia. 
Multiple issues with the THOR bombing data were identified and 
addressed before the analysis. The target coordinates were labeled as 
using the WGS84 datum while analysis suggested they were provided in 
the Indian 1960 datum. We transformed the coordinates from 
EPSG:4131 to EPSG:4326 which led to a shift of about 500 m. Moreover, 
B-52 bombing missions were counted twice from 1971 onwards as they 
seemed to be included in both the SACCOACT and SEADAB databases 
which were both used for THOR. Therefore, all B-52 bombing missions 
originating from the SACCOACT database that occurred after 1971 were 
removed. The analysis was limited to large aircraft bombs which would 
result in craters larger than 25 m2, and the provided weapon type in
formation was used to identify the corresponding records. Where no 
information on weapon type was available, as was the case for a large 
amount of SEADAB records, the weapon type was imputed based on the 
provided weight of the weapon used. More details on the identified is
sues and applied corrections, including checks to the robustness of our 
results based on alternative processing, are provided in the Supple
mentary Materials (Text S2, Figs. S1–S2, Tables S2–S5). 

All records of bombing that occurred after the respective KH-9 im
ages were taken were dropped. The resulting records are referred to as 
total bombing. The data were further split into (1) bombs dropped within 
the year before the respective KH-9 images were taken (previous year 
bombing) and (2) bombs dropped more than a year before the imagery 
was taken (bombing before previous year). The resulting numbers of 
bombs dropped were directly compared to the number of detected cra
ters in each study area. Additionally, aggregated counts of detected 
craters and bombs dropped for grid cells of various cell sizes between 
100 m and 4 km were compared using the Spearman correlation coef
ficient r (Schober et al., 2018). To allow for a direct comparison between 
the number of detected craters and the number of bombs dropped during 
previous year bombing, excluding the influence of older craters, a distinct 
analysis was undertaken. This analysis focused on grid cells (2 km × 2 
km) within QT province, where previous year bombing constituted at least 

90% of total bombing. 

3. Results and discussion 

3.1. Model evaluation 

The trained models achieved an F1-Score of 0.61 (precision: 0.67, 
recall: 0.56) when predicting craters of all types across the test sets and 
predicted a total of 541,398 craters (QT: 442,157, TBA: 99,241) across 
the full study areas (Fig. 4). The model performance differed between 
the two study areas with an F1-Score of 0.64 for QT province and 0.44 
for the TBA (Table 1). The model performed better in image tiles with a 
high number of predicted craters with an F1-Score of 0.66 (QT: 0.66, 
TBA: 0.71) compared to an F1-Score of 0.32 (QT: 0.43, TBA: 0.25) in 
images with a low number of predicted craters (Table S6). We present 
detailed metrics by study area and crater types in Table 1. Most of the 
predicted craters were of type Pattern (QT: 229,467, TBA: 67,985), Rim 
(QT: 91,112, TBA: 9995) and Crescent (QT: 71,364, TBA: 16,836). The 
model only predicted a small number of craters of type Group (QT: 
9,645, TBA: 46) and Bowl (QT: 40,569, TBA: 4379). Fig. 5 shows the 
detected crater locations by crater type for the QT study area. 

3.1.1. Model performance across study areas 
Model performance is comparable between image tiles of both study 

areas with a high number of predicted craters (Table S6). The difference 
in F1-Scores for the two study areas is therefore likely due to the lower 
prevalence of craters in the TBA where only 1 in 1434 pixels were crater 
pixels compared to 1 in 90 for QT province. The lower prevalence results 
in a smaller number of labeled craters and a higher influence of every 
false positive crater prediction on the evaluation metrics, which has 
been identified as a challenge in previous research on bomb crater 
detection (Clermont et al., 2019; Lin et al., 2020). As a random sample of 
images was used in each study area, the test data had a realistic class 
distribution, and the results for the TBA reflect the difficulty of pre
dicting bomb craters over large, mostly unaffected areas. Further, land 
cover can influence the accuracy of predictions; in the TBA, land cover 
mostly consisted of heavily vegetated land and mountainous terrain, 
with only small amounts of agricultural land in which bomb craters are 
generally easier to identify and segment (Duncan et al., 2023). 

The lower F1-Score in areas with lower crater prevalence is less 
problematic when trying to identify areas with a high likelihood of 
unexploded bombs, which tend to be areas with a high number of bomb 
craters. When considering crater predictions as correct if any overlap 
with a labeled crater exists (IOU >0), which is still sufficient to identify 
risk areas, the F1-Score increased to 0.70 (QT: 0.72, TBA: 0.53). Addi
tionally, the model favored precision over recall (Table 1), which also 
holds for low prevalence areas (Table S6). This reduced false positive 

Fig. 3. Crater prediction and post-processing workflow.  
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predictions in areas where no bombing happened. 

3.1.2. Model performance across crater types 
Model performance varied between the different crater types 

(Table 1), with higher F1-scores for craters of type Pattern and Rim 
compared with Group, Crescent and Bowl. This could be attributed to the 
lower prevalence for these crater types, resulting in fewer training data 
for the model to learn from. However, we also identified issues with 
some of the crater types that are unlikely to be resolved by increasing the 
training data. Understanding these limitations is important as crater 
appearance depends on spatial characteristics such as land cover and 
terrain which could introduce spatial bias into the crater predictions. 
Previous work has often circumvented these issues by restricting the 
analysis to agricultural land where craters are easier to identify (Duncan 
et al., 2023; Lin et al., 2020). However, this is not an option for the 

Vietnam War where much of the bombing happened in mountainous and 
densely vegetated regions. 

Visual inspection and the pixel level accuracy assessment highlighted 
that the model detected Group craters in the correct areas (Fig. 5). 
However, the model did not accurately separate individual crater in
stances, a challenge that we also encountered during crater labeling. 
One way to address this could be to use an area-based approach that 
treats overlapping craters as one object and uses the total covered area 
instead of the crater count as a metric. Crescent craters were often 
located in areas with steep slopes and dense vegetation which meant 
that the appearance of these craters varied substantially, making reliable 
labeling difficult. Bowl craters were often old craters that had eroded and 
blended into the surroundings, which made labeling and detection 
challenging. These craters often occurred along rivers and canals where 
they were filled with water and only visible as dark circular blobs that 

Fig. 4. Comparison of predicted bomb craters (blue) and THOR bombing targets (red) during the year preceding the KH-9 image acquisition in Quang Tri province. 
(a) Shows a high density of bomb craters and bombs dropped close to Quang Tri city. (b) Shows multiple lines of bomb craters matching B-52 bombing targets 
recorded in THOR. (c) Shows an area with large amounts of craters but little bombing during the year before the KH-9 images were taken, indicating the craters 
originated from earlier in the war. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
Bomb crater detection results showing F1-score (precision/recall) and the number of labeled craters N in the test data. For the Craters category, all crater classes are 
considered as one combined crater class.   

Craters Pattern Rim Group Crescent Bowl Boundary Background 

Quang Tri 
Pixels 0.65 (0.70/ 

0.61) 
0.63 (0.62/ 
0.64) 

0.59 (0.60/ 
0.58) 

0.13 (0.45/ 
0.07) 

0.35 (0.31/ 
0.40) 

0.27 (0.35/ 
0.22) 

0.45 (0.44/ 
0.46) 

0.99 (0.99/ 
0.99) 

Craters (IOU 
>0.5) 

0.64 (0.68/ 
0.60) 
N¼1712 

0.70 (0.68/ 
0.73) 
N = 748 

0.55 (0.58/ 
0.52) 
N = 449 

0.07 (0.33/ 
0.04) 
N = 247 

0.30 (0.25/ 
0.37) 
N = 111 

0.24 (0.30/ 
0.20) 
N = 157 

– – 

Tri-border area 
Pixels 0.41 (0.61/ 

0.31) 
0.53 (0.56/ 
0.50) 

0.38 (0.67/ 
0.27) 

0.00 (0.00/ 
0.00) 

0.17 (0.21/ 
0.14) 

0.06 (0.47/ 
0.03) 

0.29 (0.39/ 
0.23) 

1.00 (1.00/ 
1.00) 

Craters (IOU 
>0.5) 

0.44 (0.58/ 
0.35) 
N¼314 

0.58 (0.59/ 
0.57) 
N = 142 

0.37 (0.64/ 
0.26) 
N = 54 

0.00 (0.00/ 
0.00) 
N = 15 

0.20 (0.25/ 
0.17) 
N = 36 

0.03 (0.20/ 
0.02) 
N = 67 

– –  
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could be confused with other ground features like trees. Therefore, 
Crescent or Bowl craters might be easier to detect in images taken closer 
to the date of the bombing. 

3.2. Comparison of detected bomb craters with THOR bombing data 

The THOR bombing records show that around 1 million bombs (QT: 
654,730, TBA: 321,504) were dropped across the two study areas during 
the year preceding the KH-9 image acquisition (previous year bombing) 
and more than 3 million bombs (QT: 2.23 million, TBA: 1.13 million) 
during the entire conflict before the respective KH-9 images were taken 
(total bombing). Comparisons between detected craters and number of 
dropped bombs over grid cells of 2 km × 2 km (Table 2) indicated that 
craters were positively correlated with previous year bombing (QT: r =
0.76, TBA: r = 0.51) and total bombing (QT: r = 0.58, TBA: r = 0.51) and 
correlation coefficients increased with grid cell size (Fig. 6). 

A visual comparison showed that detected craters were located close 
to THOR target locations and were often organized in lines of craters 
characteristic for the B-52 bombing strikes (Fig. 4). The predicted crater 
locations are overlayed with aggregated bombing data for QT province 
(grid size: 2 km × 2) and the TBA (grid size: 4 km × 4 km) in Fig. 7. In 
grid cells in QT province for which more than 90% of total bombing 

happened during the year before KH-9 image acquisition, the model 
detected a total of 157,846 craters, accounting for 46% of the 344,135 
bombs dropped during previous year bombing (44% of total bombing). 

3.2.1. Spatial precision 
Craters identified in the KH-9 imagery can offer more precise infor

mation about impact locations of bombs compared to target locations 
from bomb strikes in the THOR data. Bomb strikes, which were less 
accurate at the time of the Vietnam War, did not always exactly hit their 
targets. Additionally, each bomb strike in the THOR data is confined to a 
single target location, but often encompasses tens or hundreds of 
dropped bombs. Fig. 8, depicting three target locations of B-52 bombing 
missions, shows resulting craters for the bombing of one target location 
spanning across several kilometers. Only few of these craters lie within a 
hundred-meter radius of the target location. This could explain the 
lower correlations between detected bomb craters and dropped bombs 
for smaller grid sizes of 100–500 m compared to grid sizes larger than 
1000 m (Fig. 6). 

While some uncertainty about the exact locations of bomb craters 
visible in the KH-9 imagery remains due to positional errors when 
georeferencing the KH-9 imagery, these are on a much smaller scale of 
on average less than 20 m. This is negligible for our application as 

Fig. 5. Predicted craters by crater class in Quang Tri province. The total number of detected craters N is provided for each class. There is a clear difference in the 
distribution of the crater classes. Rim and Bowl craters were mostly located in the paddy fields closer to the coast, where the Rim craters seem to match better with 
previous year bombing. Group craters were rare and only predicted in very specific locations that have seen the heaviest bombing. Pattern and Crescent craters were 
spread across the whole study area. 

Table 2 
Spearman correlation coefficients between detected craters and number of bombs dropped (THOR) aggregated across grid cells of 2 km × 2 km. For the Craters 
category detected craters of all crater classes were aggregated.   

Craters Pattern Rim Group Crescent Bowl Number of bombs dropped 

Quang Tri 
Previous year bombing 0.76 0.74 0.78 0.68 0.52 0.62 654,730 
Total bombing 0.58 0.55 0.46 0.33 0.61 0.41 2,232,280 
Number of detected craters 442,157 229,467 91,112 9645 71,364 40,569 – 
Tri-border area 
Previous year bombing 0.51 0.52 0.42 0.11 0.47 0.34 321,504 
Total bombing 0.51 0.51 0.40 0.09 0.44 0.34 1,133,025 
Number of detected craters 99,241 67,985 9995 46 16,836 4379 –  
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detected bomb craters only serve as an indicator of risk for an area and 
not as exact locations of unexploded bombs, because bombs that created 
a crater already exploded. As bombs were dropped in groups it is still 
reasonable to assume that unexploded bombs would be located close to 
bomb craters from the same strike that often form distinct patterns 

(Fig. 8). In the instance illustrated in Fig. 8, our estimation indicates that 
identifying the impact crater locations from the B-52 bomb strikes re
duces the potential area for locating unexploded bombs from those 
strikes to about 9% of the area derived from the THOR target locations 
alone. 

Fig. 6. Spearman correlations of the aggregated number of detected craters against bombs dropped (THOR) within grid cells of multiple sizes.  

Fig. 7. Comparison of predicted bomb craters (blue) and THOR bombs dropped (red) aggregated across grid cells of 2 km × 2 km for Quang Tri province and 4 km ×
4 km for the tri-border area. Bombs dropped during the year preceding the KH-9 image acquisition are shown in (a) and (b) whereas (c) and (d) show all bombing that 
happened more than a year before the image acquisition. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version 
of this article.) 
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Moreover, the KH-9 imagery can be useful to identify and correct 
errors in the THOR data. The imagery in Fig. 8 revealed a discrepancy 
with the THOR data, where no nearby craters were visible for one target 
location. According to the THOR records, this mission had been diverted 
with some bombs supposedly dropped on the target visible in Fig. 8 and 
the remainder on a second target. However, the KH-9 imagery suggests it 
is more likely that all bombs were dropped at the second target and none 
at the first. This highlights the advantages of having multiple indepen
dent data sources that can be cross-referenced for a more thorough 
analysis. 

3.2.2. Temporal analysis 
Bomb craters can become increasingly difficult to detect from space 

over time. In Southeast Asia, with its dense rainforests and regular 
flooding, craters can quickly become covered up by vegetation, 
deformed by erosion or filled up by humans (Lin et al., 2020). Our 
analysis underscores that these effects impact detection results even 
after short periods of time, not only limiting the utility of current sat
ellite imagery but emphasizing the need for additional imagery taken 
during the earlier stages of the war. 

Our models detected a high concentration of craters near the cities of 
Quang Tri and Kon Tum, which were subject to heavy bombing during 
the year preceding the KH-9 image acquisition. Comparatively fewer 
craters were detected in areas targeted earlier during the war (Fig. 7). 
This is reflected by a higher correlation of detected craters with previous 
year bombing compared to total bombing in QT province, albeit not for the 
TBA (Table 2). Notably, we encountered challenges labeling and 
detecting partly eroded craters formed by bombs dropped earlier in the 
war, which we associated with the crater types Bowl and Crescent. To 
mitigate this bias towards areas bombed later in the war, we propose the 
use of the CORONA imagery captured during the earlier phases of the 
conflict (Munteanu et al., 2024). 

Even in cases where bombings occurred near the time of image 
acquisition, not every dropped bomb recorded in THOR resulted in a 
crater detected by our model. In areas in QT province where bombing 
almost exclusively happened in the year before image acquisition, our 
model detected 150,895 craters, equivalent to 46% of bombs dropped 
that year. Several factors contribute to the lower number of detected 
craters, including: (1) bombs that left no craters, either because they 

exploded on water or failed to explode altogether; (2) craters that 
initially formed but vanished within less than a year due to human ac
tivities, natural events like landslides or consecutive bombing of the 
same location; (3) craters that were obscured in the imagery by clouds, 
vegetation, or flooding; and (4) craters that were visible in the imagery 
but not detected by our models. 

While some of these limitations can be addressed, many are inherent 
to the approach. However, their impacts can be mitigated if they are 
recognized and dealt with correctly. Typically, bombing strikes involved 
dropping numerous bombs on a single target, and identifying half of the 
resulting craters can provide a sufficiently accurate representation of the 
affected area. The main challenge lies in recognizing and compensating 
for factors that introduce bias, such as crater visibility and model per
formance variations across different soil and land cover types. Further 
research is needed to investigate these factors and should incorporate 
multiple data sources including the THOR bombing data, historical land 
cover maps and confirmed locations of UXO. Future studies should make 
use of these data sources in a stratified random sampling approach to 
identify biases based on a more representative subset of areas in Viet
nam, Lao PDR and Cambodia. 

3.3. Implications for mine action 

The use of KH-9 imagery and derived crater locations could offer 
significant advantages to the mine action sector in Southeast Asia, 
extending beyond the capabilities of existing data sources used for non- 
technical surveys. Notably, our analysis revealed shortcomings of the 
THOR bombing data, emphasizing its lower precision compared to the 
detected crater locations. Additionally, the THOR data excludes 
weapons used by ground forces on both sides, such as artillery pro
jectiles. Reports from local population carry a subjective element and 
are susceptible to recall bias, particularly when recounting events that 
happened 50 years ago. Additionally, their utility may be limited in 
previously unpopulated areas or where significant population shifts 
have happened since the war. Similarly, visual observations of UXO are 
invariably biased towards more populated areas. In contrast, the KH-9 
imagery offers a more objective perspective, presenting an opportu
nity to address and overcome some of these challenges. 

Despite the discussed benefits, the KH-9 imagery comes with its own 

Fig. 8. KH-9 imagery for an area in Kon Tum province showing three target locations of B-52 bombing missions that occurred during the month preceding the image 
acquisition. Overlayed on the imagery are estimated risk areas, delineating areas where unexploded bombs resulting from the bombing strikes could be located. These 
risk zones were determined by a 2.5 km radius around the THOR target locations (red) and rectangles drawn around the visible impact craters (blue). (For inter
pretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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biases and limitations. Due to their danger, mine action in Southeast 
Asia focuses on contamination with cluster submunitions which are only 
about the size of a tennis ball (McCosker et al., 2020). While patterns of 
smaller craters, that might be linked to artillery fire or cluster bomb 
strikes, were visible in certain areas of the imagery, these craters would 
have been too small to be detected by our models. However, even where 
impact craters are not directly visible in the KH-9 imagery, the presence 
of other objects, such as larger craters or military infrastructure, could 
be indicators for the presence of cluster submunitions. More research is 
needed to explore this possibility and should make use of existing 
clearance data. Additionally, despite the current focus on cluster sub
munitions, there are increasing efforts to understand and manage the 
residual risk from other weapon types (Stauffer and Mestre, 2020). The 
number of craters, as detected by our models, could be a valuable in
dicator to help determine the residual risk level for an area at a more 
fine-grained level than would be possible using only the bombing 
records. 

One of the key strengths of the KH-9 imagery lies in its cost- 
effectiveness and ease of integration into existing workflows. Each 
image, covering a large area, only costs $30 on first request and previ
ously requested images are freely available. The main limitation is the 
additional processing needed to orthorectify the images, including the 
time-consuming manual creation of ground control points. However, as 
demonstrated in our research, open-source tools can be used for this 
processing which reduces the cost. Products derived from our analysis 
can easily be integrated into existing mine action tools through imagery 
base layers for the KH-9 imagery and risk maps derived from detected 
bomb craters. The availability of the imagery for large parts of Southeast 
Asia makes it a useful tool for detailed analysis at both large (Fig. 7) and 
small (Fig. 8) scales. 

3.4. Implications for sustainable development 

Our work is directly aligned with Goal 16.1 of the Sustainable 
Development Goals (SDGs), which aims to “significantly reduce all 
forms of violence and related death rates everywhere”. Additionally, 
mine action has been shown to have a direct impact on 12 out of the 17 
SDGs (Hofmann and Juergensen, 2017). Notably, Lao PDR and 
Cambodia went as far as introducing an 18th SDG that specifically ad
dresses the legacy of unexploded ordnance. The craters detected in this 
study allow for a detailed analysis of the impact of bombing on 
post-conflict land-use changes, which have previously been linked to 
deforestation (SDG 13, SDG 15), reduced agricultural productivity (SDG 
2) and hindered infrastructure development (SDG 1, SDG 9, SDG 11) 
(Clerici et al., 2020; Lin, 2022; Martin et al., 2019; Munteanu et al., 
2024; Ounmany and Andriesse, 2018). 

In addition to supporting mine action, our work extends to other 
domains. While bomb craters have been identified as biodiversity hot
spots (SDG 15) (Vad et al., 2017), they could also present potential 
public health hazards (SDG 3), as the stagnant water they collect can 
become breeding sites for mosquito larvae (Wimberly et al., 2021). 
Moreover, sediment buildup within these craters may contain concen
trated levels of dioxins from herbicide spraying during the Vietnam War, 
posing a risk to individuals (SDG 3), particularly when the craters are 
repurposed as fish ponds (Olson and Morton, 2019). Bomb craters have 
been shown to alter hydrology and soil development in affected areas 
(Certini et al., 2013; Hupy and Koehler, 2012; Kiernan, 2015), but it 
remains unclear whether this could relate to the prevalence of landslides 
and flooding (SDG 13, SDG 15). More research is needed to understand 
these effects, and the bomb crater locations identified in this study could 
serve as a valuable resource for such investigations. 

4. Conclusions 

The presence of UXO in Vietnam, Lao PDR, and Cambodia continues 
to pose a significant threat to both public health and economic 

development. However, due to the expense and time required for 
detailed surveys, the exact locations of UXO often remain unknown. This 
study developed a workflow to orthorectify and automatically detect 
bomb craters in the declassified KH-9 imagery. The models achieved an 
overall F1-Score of 0.61 and predicted more than 500,000 bomb craters 
across the two study areas. The results demonstrate how the identified 
bomb craters can complement existing data sources such as the THOR 
bombing records. We estimate this could allow for more precise locali
zation of suspected hazardous areas during non-technical surveys as well 
as a more fine-grained determination of residual risk of UXO in areas 
where extensive clearance operations are deemed too expensive. The 
developed methods are scalable to large regions at low cost and directly 
transferable to other affected areas in Southeast Asia. The instance 
segmentation workflow for the crater detection is also applicable to 
more recent conflicts including the ongoing war in Ukraine. 
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csv, last accessed 5. September 2023), download requires setting up a 
free account with data.world. Version 4.1 of the GADM administrative 
units used for creating some of the figures in this study are freely 
available for academic and other non-commerical use at www.gadm.org 
(last accessed: 2. February 2024). The SRTM GL1 dataset used for the 
orthorectification of the KH-9 imagery is available at OpenTopography 
via https://doi.org/10.5069/G9445JDF (NASA Shuttle Radar Topog
raphy Mission (SRTM), 2013). Version 3.0.0 of the Nasa Ames Stereo 
Pipeline used for orthorectification of the KH-9 imagery is preserved at 
https://doi.org/10.5281/ZENODO.5140581, available via Apache Li
cense 2.0 and developed openly at https://github. 
com/NeoGeographyToolkit/StereoPipeline (Beyer et al., 2021). 
Version 3.16.9 of QGIS used for the creation of ground control points is 
preserved at https://download.qgis.org/downloads/qgis-3.16.9.tar.bz2 
(last accessed 2. Feburary 2024), available via GNU-General-Public- 
License and developed openly at https://github.com/qgis/QGIS (QGIS 
Association, 2023). The U-Net was implemented using the Python 
packages pytorch-cuda v11.7 (Paszke et al., 2019) and segmentation- 
models-pytorch v0.3.3 (Iakubovskii, 2019). 
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