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Abstract
Global hydrological models (GHMs) are widely used to assess the impact of climate change on
streamflow, floods, and hydrological droughts. For the ‘model evaluation and impact attribution’
part of the current round of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3a),
modelling teams generated historical simulations based on observed climate and direct human
forcings with updated model versions. Here we provide a comprehensive evaluation of daily and
maximum annual discharge based on ISIMIP3a simulations from nine GHMs by comparing the
simulations to observational data from 644 river gauge stations. We also assess low flows and the
effects of different river routing schemes. We find that models can reproduce variability in daily
and maximum annual discharge, but tend to overestimate both quantities, as well as low flows.
Models perform better at stations in wetter areas and at lower elevations. Discharge routed with the
river routing model CaMa-Flood can improve the performance of some models, but for others,
variability is overestimated, leading to reduced model performance. This study indicates that areas
for future model development include improving the simulation of processes in arid regions and
cold dynamics at high elevations. We further suggest that studies attributing observed changes in
discharge to historical climate change using the current model ensemble will be most meaningful
in humid areas, at low elevations, and in places with a regular seasonal discharge as these are the
regions where the underlying dynamics seem to be best represented.

1. Introduction

The water cycle is particularly susceptible to cli-
mate change, leading to changes in river flow with

far-reaching consequences for water availability for
humans (e.g. hydrological droughts), for climatic
hazards such as river floods, but also for ecosystems
(Schewe et al 2014,Maxwell et al 2019, Gudmundsson
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et al 2021, Thompson et al 2021, Van Vliet 2023).
Fluvial floods led to the death of more than 200 000
people and incurred damages of 790 billion USD
from 1980 to 2016 (Munich 2016). In addition, it
has been estimated that floods and droughts resul-
ted in 25 million people living in extreme poverty
(Hallegatte et al 2017).Model-based projections show
a strong increase in land area and population exposed
to river floods and droughts due to increased global
warming (Lange et al 2020).

Hydrological models are an important tool for
decision-making in flood and drought management
and preparedness and are used to make projections
under different climate, land-use, and management
scenarios. Global hydrological models (GHMs) in
particular have been used, for example, to assess the
impact of global warming on the availability of water
resources (Schewe et al 2014, Liu et al 2017a, Pokhrel
et al 2021), and on flood hazards (Dankers et al 2014,
Hirabayashi et al 2021). In addition, GHMs can be
used to attribute changes in the hydrological system
to climate change. For example, Gudmundsson et al
(2021) showed that observed changes in river flow
are consistent with climatic changes, and Sauer et al
(2021) found a climate signal in the trends in dam-
ages caused by river floods.

The evaluation of hydrological models is a crit-
ical first step towards impact attribution and future
projections as for both purposes we need to under-
stand to what degree models capture the pro-
cesses determining discharge at individual locations,
regions or globally. To this end, GHMs have been
forced by observational climate data and observa-
tional direct human forcings (e.g. land use, loca-
tion of dams and reservoirs) in Inter-Sectoral Impact
Model Intercomparison Project (ISIMIP2) already.
These previous ISIMIP2 simulations have been eval-
uated, for example, regarding the influence of river
routing on simulated discharge (Zhao et al 2017),
the incorporation of human impact parameteriza-
tions (Liu et al 2017b, Veldkamp et al 2018), drought
characteristics (Kumar et al 2022), or the seasonality
of mean and extreme runoff (Zaherpour et al 2018).
It has been shown that GHMs can simulate the extent
of flooded areas, but for some events, GHMs overes-
timate the flood extent (Mester et al 2021). In addi-
tion, studies on economic damages caused by river
floods showed that interannual variability of observed
damages can be captured at least in some large scale
areas (Sauer et al 2021). Deviations at the damage
level could be due to either the discharge simulated by
GHMs or from other sources in the modelling chain
(e.g. assumed river protection levels, estimated distri-
bution of assets, local physical vulnerabilities, Sauer
et al 2021).

For ISIMIP3a, the climate input data and inform-
ation on direct human forcings have been updated.

For example, the data cover three additional years
(2017–2019), accordingly more recent observational
data has been used for bias adjustment, and an update
in the bias adjustment method reduced excessively
high daily maximum temperature values (Lange et al
2021, table 1 in Frieler et al 2024 shows details on
data provided for daily climate, land use, irrigation,
dams and reservoirs, and water abstraction). This
study comprehensively evaluates the performance of
nine GHMs that have contributed discharge data to
ISIMIP3a so far. Five of these models were updated
in terms of improving the representation of hydrolo-
gical processes, and three models improved the rep-
resentation of land cover (details in table 1). The effect
of these improvements has been evaluated elsewhere
(Müller Schmied et al 2023, Tsilimigkras et al 2023,
Boulange et al 2023, Yoshida et al 2022).

The aim of this study is to intercompare model
performance regarding daily and maximum annual
discharge as well as low flow and compare the per-
formance of the models’ internal routing schemes
to discharge generated from runoff by CaMa-Flood
(Yamazaki et al 2011). We investigate which catch-
ment properties correlate withmodel performance to
suggest areas of model development and to identify
stations that are particularly suitable for potential
attribution studies or assessments of changes under
future global warming as considered in ISIMIP3.

2. Methods

2.1. Simulated runoff and river discharge
We use daily runoff and river discharge provided by
nine modelling groups based on the ISIMIP3a simu-
lation round (Frieler et al 2024): CLASSIC, CWatM,
H08, HydroPy, JULES-W2, MIROC-INTEG-LAND,
ORCHIDEE-MICT, WaterGAP2-2e, and WEB-
DHM-SG (table S1). WaterGAP2-2e is calibrated
with observed discharge data (Müller Schmied
et al 2023), and H08 uses parameters optimized to
reproduce observed discharge in each climatic zone
(Yoshida et al 2022). Simulated data are from the
‘obsclim + histsoc’ experiment that is designed for
model evaluation and uses observation-based daily
atmospheric climate forcing (GSWP3-W5 × 105,
Lange et al 2023) and varying direct human forcings
provided by ISIMIP (Frieler et al 2024). According
to ISIMIP model documentation (www.isimip.org),
all GHMs use land-use data, five models use data on
water-use (CWatM, H08, HydroPy, MIROC-INTEG-
LAND, WaterGAP2-2e) and four models use data on
dams and reservoir (CWatM, H08, MIROC-INTEG-
LAND, WaterGAP2-2e). Simulations are done on a
0.5◦ × 0.5◦ grid and are available for the years 1901–
2019.

It has been shown that modelled peak river dis-
charge using the river routing model CaMa-Flood
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Figure 1. The location of the 644 GRDC stations used for model evaluation.

(Yamazaki et al 2011) can perform better than the
model’s internal routing scheme (Zhao et al 2017).
CaMa-Flood differs from other routing schemes in
that it explicitly also parameterizes flood inundation
dynamics and provides water depth and inundation
extent as output variables (Yamazaki et al 2011). It
is therefore often used in combination with GHMs
for flood modelling. CaMa-Flood provides its own
routing scheme on a 15′ grid. However, CaMa-Flood
does not include the lakes and reservoirs routines sim-
ulated by GHMs, which can result in some mod-
els performing better without CaMa-Flood. Thus,
in addition to discharge routed with each model’s
internal routing scheme (specified in table S1), we
use each model’s simulated runoff to drive CaMa-
Flood and then derive river discharge. Daily run-
off is provided by all nine models listed above, and
discharge modelled with the model’s internal rout-
ing scheme is provided by seven models. JULES-W2
provides discharge routed with the ‘native JULES’
river topography (Total Runoff Integrating Pathways
scheme) that includes spatially distributed meander-
ing and velocity data (Tsilimigkras et al 2023), and
has been shown to improve the accuracy of river flow
simulations (Tsilimigkras et al under review). In addi-
tion, JULES-W2 provides discharge routed with the
DDM30 river topology.

2.2. Station selection and observed discharge data
To evaluate model performance, we use daily dis-
charge data from the Global Runoff Data Centre
(GRDC). GHMs use different river routing schemes
(detailed in table S1) and the spatial coordinates of
stations with observational data often do not match
the coarser gridded river networks (Müller Schmied
and Schiebener 2022). To ensure comparability, we
base the selection of stations on a previously pub-
lished report that analysed how well ISIMIP GHMs’

routing schemes align with the location of a selection
of GRDC stations and are thus suitable for evaluat-
ing river discharge (Müller Schmied and Schiebener
2022). 1096 out of 1509 stations were found to be
compatible (Müller Schmied and Schiebener 2022).
Of those, we select stations for which daily data was
available for at least five years, andwe only retain years
with less than 10 d ofmissing data, which are the same
criteria as used by Zhao et al (2017). In the end, we
use 644 stations for model evaluation (figure 1), cor-
responding to 106 basins according to HydroBASINS
level 3 from the HydroSHEDS database (figure S1,
Lehner and Grill 2013).

2.3. Model evaluation
We analyse the extent to which model simula-
tions can reproduce variability in daily discharge
and maximum annual discharge. For both these
metrics, and for each station and each GHM, we
compare observed discharge to discharge routed with
the model’s internal routing scheme, and discharge
routed with CaMa-Flood, respectively. To evaluate
model performance, we calculate the Kling–Gupta
efficiency (KGE) and its three components: correla-
tion (r), bias ratio (β), and variability ratio (γ) (Kling
et al 2012). The KGE is used to evaluate hydrolo-
gical models (e.g. Krysanova et al 2017, Veldkamp
et al 2018) and measures the ability of a model to
reproduce observed values. It is calculated by equally
weighing the three components, where r is the linear
correlation between observed and simulated values, β
is the ratio of the mean simulated value to the mean
observed value, and γ is the ratio of the standard devi-
ation of simulated values to the standard deviation of
observed values (Knoben et al 2019). The KGEmetric
is dimensionless. We calculate the KGE for daily and
maximum annual discharge for each model and each
station.

4
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For daily discharge, we also evaluate timing differ-
ences by testing whether shifting the simulated time
series by up to 31 d (back- and forward) improves cor-
relation, as has been suggested by Zhao et al (2017).

For maximum annual discharge, we quantify
which part of the distribution is over- or underestim-
ated. For each station, we first identify the lower 50%
of observational values and count the years where the
simulated values are lower or higher, and then we do
the same for the upper 50% of observed values.

To assess the capability of models to simulate low
flow, we first determine the tenth quantile of daily dis-
charge, i.e. the amount of discharge that is exceeded
90% of the time (Q90, Gosling et al 2017, Krysanova
et al 2017). We then divide the difference between
simulated tenth percentile and observed tenth per-
centile by observed tenth percentile. Thus, a value of
zero implies a perfect match between observation and
simulation, negative values imply that the simulated
low flow is too low, while positive values indicate that
the simulated low flow is simulated as too high. This
is implemented for discharge routed with the model’s
internal routing scheme, and discharge routed with
CaMa-Flood.

To depict spatial heterogeneity inmodel perform-
ance, we calculated for each model the mean low flow
index and mean KGE for maximum annual discharge
for each of the 106 basins (figure S1, Lehner and Grill
2013).

2.4. Station characteristics
We use station characteristics data from the Global
Streamflow Indices and Metadata Archive (GSIM)
that provides metadata for more than 30 000 stations
(Do et al 2018, Gudmundsson et al 2018). GSIM data
is only available for a subset of stations in this study.
We use the following catchment properties from the
database (number of stations with data available
in parentheses): clay content (432), drainage dens-
ity (379), elevation (436), irrigated area [%] (436),
nightlight development index (176), number of dams
upstream (436), population count (435), population
density (435), sand content (432), silt content (433),
slope (436), storage volume (total upstream stor-
age volume, 436), and topographic index (436). The
upstream catchment area from the gauge is taken
from the GRDC database. To characterize how dry
or wet the area is where a station is located, we used
data from the Global Aridity Index and Potential
Evapotranspiration Database (Zomer et al 2022).
This aridity index is defined as the ratio of precipit-
ation to potential evapotranspiration and is unitless
(Zomer et al 2022). Both, catchment area and aridity
index are available for all stations.

To further investigate model performance at
(sub-)arid stations, we first identified all stations with
an aridity index less than or equal to 0.5 (Zomer et al

2022). For these 236 stations, we calculated the KGE
and its three components for daily discharge, max-
imum and mean annual discharge, mean monthly
and long-term mean monthly discharge.

3. Results

3.1. Daily discharge
In general, models can reproduce the variability of
daily river discharge at most stations (e.g. time-series
plot with corresponding KGE values in figures S2
and S3). The median KGE across all stations ranges
from −0.43 for model WEB-DHM-SG to 0.46 for
WaterGAP2-2e (figure 2(a), table S2). The median
correlation ranges from 0.17 for the model CLASSIC
to 0.68 for WaterGAP2-2e (figure 2(b), table S2).
Most models (seven out of nine) tend to overes-
timate daily discharge at a majority of stations (bias
ratio β larger than one), but there is a large vari-
ation in the magnitude of overestimation between
models, as well as between stations (figure 2(c), table
S2). Results for the variability ratio (γ) are mixed,
with two (out of nine) models overestimating variab-
ility (e.g. HydroPy), while the remaining models tend
to underestimate variability (e.g. MIROC-INTEG-
LAND, figure 2(d), table S2).

Models tend to perform well at stations in wet-
ter areas (i.e. higher aridity index, table S3, figure 3),
and less well at stations at higher elevations (table
S3, figure 4), while in drier areas and at lower elev-
ations there is a large spread across stations includ-
ing good and poormodel performance. The bias ratio
tends to be larger at stations in drier areas (figure S4,
table S5). For several models (six out of nine), the
variability ratio is larger at higher catchment eleva-
tions (table S6, figure S5) and steeper slopes (table
S6, figure S6). Stations for which models perform
best (i.e. highest KGE and correlation across all mod-
els) are, for example, located at the Mekong River
in Southeast Asia, and the Amazon River in South
America.

Shifting the time series can lead to improved cor-
relation (figure S7), but the more shifting is required
the worse model performance of shifted time-series is
(figure S8).

Regarding the use of river routing schemes, dis-
charge routed with CaMa-Flood performs better for
three out of sevenmodels, especially for ORCHIDEE-
MICT and WEB-DHM-SG (figure 2(a)). For these
cases, KGE and especially its first component (cor-
relation) is higher (figures 2(a) and (b)), but at the
same time bias and variability are more strongly
overestimated (figures 2(c) and (d)). In contrast, for
HydroPy and to a lesser extent also for CWatM, dis-
charge routed with CaMa-Flood tends to be worse
compared to the model’s internal routing scheme
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Figure 2. Evaluation of daily discharge routed by the model’s internal routing scheme (Mir) and CaMa-Flood (CaMa) across 644
stations for Kling–Gupta efficiency (KGE) and its three components. JULES-W2 provides discharge routed with two routing
schemes (Mir, Mir2, details in table S1). Thick lines: median, box: first and third quartile, whiskers: 10th and 90th percentile.
Details table S2.

(figure 2(a)), likely because variability is overestim-
ated (figure 2(d)). For CWatM, HydroPy, and JULES-
W2, CaMa seems to particularly overestimate variab-
ility at higher elevations and steeper slopes (table S7).

3.2. Low flow
Most models (six out of nine) do not capture the
strength of low flow events, i.e. their magnitude of
low flow is simulated too high (figures 5, S9 and S10).
However, HydroPy and JULES-W2 are often close
to observed low flow, while WEB-DHM-SG tends
to underestimate low flow (figure S9). Consistent
with the above results, low flow is overestimated in
arid regions, especially in the Australian and African

basins (figures 5 and S10). The exception is WEB-
DHM-SG, which tends to underestimate low flow in
these regions as well.

3.3. Maximum annual discharge
Model performance is often worse for maximum
annual discharge compared to daily discharge (seven
of nine models, figures 6, S11 and S12). The median
KGE of annual maximum discharge across all sta-
tions ranges from −0.94 for WEB-DHM-SG to 0.24
forWaterGAP2-2e (figure 6(a), table S8), andmedian
correlation ranges from 0.31 for CLASSIC to 0.58 for
WaterGAP2-2e (figure 6(b), table S8). There is a tend-
ency to overestimation (six of nine models), and for
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Figure 3. Relationship between aridity and model performance for daily discharge routed by the model’s internal routing scheme
(Mir) and CaMa-Flood (CaMa) across 644 stations. The aridity index is the ratio of precipitation to potential evapotranspiration
(unitless, lower values correspond to more arid conditions, details in Zomer et al 2022).

Figure 4. Relationship between mean catchment elevation and model performance for daily discharge routed by the model’s
internal routing scheme (Mir) and CaMa-Flood (CaMa) across 436 stations.

five models, river routing with CaMa-Flood leads to
a stronger overestimation compared to the model’s
internal routing scheme (figure 6(c), table S8). The
maximum annual discharge is more strongly overes-
timated at stations in dry areas (figure S13, table S11).
Spatial analysis shows that eight out of nine models
have a low KGE for most African basins, but a high

KGE for most basins in Asia (figures 7 and S14). At
the same time, performance for the other regions is
more heterogeneous.

The analysis of which part of the distribu-
tion of annual maxima is over- or underestimated
shows that five models (of nine) overestimate low
and high maximum discharge (figure 8). Except
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Figure 5. Low flow index (Q90) derived from daily discharge simulated by model’s internal routing scheme, shown as basin
average. Low flow index of zero implies perfect match between observation and simulation, negative values imply that low flow is
simulated as too low, and positive values that low flow is simulated too high.

for MIROC-INTEG-LAND, discharge routed with
CaMa-Flood tends towards a stronger overestima-
tion when compared to the model’s internal routing
scheme. There are some cases where models overes-
timate low values of annual maximum discharge and
underestimate high values. In those cases, the aver-
age correlation between observed and simulated dis-
charge is around 0.5. There are only individual sta-
tions wheremodels consistently overestimate low val-
ues of annual maxima and underestimate high values
(example in figures S15 and S16).

3.4. Arid stations
Analysis of model performance across arid stations
shows that all models perform better for mean
monthly and mean annual discharge than for daily
discharge due to a higher correlation coefficient
(tables S13–S17, figures S17–S21). The correlation
is highest for all models for long-term monthly
discharge (table S15, figure S19), suggesting that
models can reproduce the seasonal flows.

4. Discussion

We demonstrate that in general, the evaluated mod-
els are able to reproduce observed time series of daily
and maximum annual discharge. The performance
of ISIMIP3a models is similar to evaluation studies
of earlier simulation rounds. For example, Veldkamp
et al (2018) estimated for monthly discharge simu-
lated by ISIMIP2a models a median correlation of
more than 0.6, andHou et al (2023) derived very sim-
ilar results for monthly runoff simulated by ISIMIP2a
GHMs.

In line with previous studies (Veldkamp et al
2018), the bias ratio is the evaluation parameter that
contributed most to a reduced performance in KGE.
We find that most models overestimate discharge

and that the overestimation tends to be stronger for
maximum annual discharge. For ISIMIP2a models,
Hattermann et al (2017) also identified that models
tend to overestimate monthly discharge, and simil-
arly Zaherpour et al (2018) found that models over-
estimate extreme runoff. This suggests that applica-
tions further down the modelling chain, for example,
for flooded areas or flood damages could be affected
as well as other sectors such as agriculture or energy
production. This is in line with a study showing that
simulations with some GHMs led to an overestima-
tion of flooded areas (Mester et al 2021).

Our further investigation of model performance
for maximum annual discharge reveals that both low
and high values are either over- or underestimated
(figure 8) as has been found by Zaherpour et al (2018)
for ISIMIP2a models. Thus, contrary to the sugges-
tion byMester et al (2021), we identify only a few cases
where a model overestimates low values and underes-
timates high values, i.e. a ‘too flat’ simulation. This
implies that we find no evidence for the proposal by
Mester et al (2021) that the flood return period by
GHMs is simulated too short.

Our evaluation setup of including seven GHMs
with discharge routed by both, the model’s internal
routing scheme and CaMa-Flood, allows for invest-
igating the role of the routing scheme. While Zhao
et al (2017) detected that routing with CaMa-Flood
led to a lower multi-year mean maximum dis-
charge (ISIMIP2a models), we here find that CaMa-
Flood routing results in a higher proportion of years
being overestimated for maximum annual discharge
(figure 8). Also, except for WEB-DHM-SG, routing
with CaMa-Flood has a higher bias ratio than the
model’s internal routing (figure 6(c)). Other stud-
ies found mixed performances for CaMa-Flood. Yang
et al (2019) demonstrated that CaMa-Flood performs
well for the amplitude of peak discharge but not the
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Figure 6. Evaluation of maximum annual discharge routed by the model’s internal routing scheme (Mir) and CaMa-Flood
(CaMa) across 644 stations for Kling–Gupta efficiency (KGE) and its three components. JULES-W2 provides discharge routed
with two routing schemes (Mir, Mir2, details in table S1). Thick lines: median, box: first quartile and third quartile, whiskers: 10th
and 90th percentile. Details table S8.

timing. In another study, the magnitude of 100 years
floods was overestimated in Western and Central
USA but underestimated in Eastern USA (Devitt et al
2021). However, in these studies, either CaMa-Flood
was used as the only routing model (Yang et al 2019)
or combinations of differentGHMs, routing schemes,
and climate forcing data were compared (Devitt et al
2021). Therefore, it is not clear which components
of the modelling chain contribute errors. Our find-
ing that CaMa-Flood tends to overestimate peak
discharge, especially at higher elevations with steep
slopes, suggests that too much water is transported in
the river and floodplain during peak discharges. This
may be explained by the fact that evapotranspiration

over floodplains and transmission losses are not
included in CaMa-Flood (Zhao et al 2017). In addi-
tion, routing by CaMa-Flood could be too efficient
(i.e. water reaches a station too quickly), suggesting
that flow velocity in the river channel or floodplain
is overestimated. Unlike kinematic wave approaches,
CaMa-Flood includes a diffusion term that allows the
wave to spread spatially. While capturing the spatial
variability of flow velocity within the channel, the dif-
fusive wave equation tends to concentrate the flow
more rapidly in the case of rapid changes in flow,
e.g. due to sudden changes in channel slope or rapid
increases in discharge. As a result, peak discharges
may be overestimated, particularly in higher elevation
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Figure 7. Kling-Gupta efficiency (KGE) for maximum annual discharge simulated by model’s internal routing scheme, shown as
basin average.

Figure 8. Proportion of years for which the annual maximum is overestimated for years with low annual maximum (years for
which the annual maximum is below the observed median across the entire time series) and high annual maximum (years for
which maximum is above median). Bars above the horizontal line at 50% show that the respective model tends towards
overestimation.

areas. In addition, flow velocity is influenced by river
channel and floodplain characteristics, some of which
are derived empirically in CaMa-Flood. This leads to
uncertainties and potential biases in the estimation of
peak discharges (Yamazaki et al 2011).

When analysing which catchment properties are
linked tomodel performance we find that two natural
features, and not anthropogenic ones, are especially
relevant. First, it is well established that hydrological
models perform less well in arid and semi-arid
regions (Zaherpour et al 2018, Hou et al 2023). We
find that this is also the case for ISIMIP3a GHMs

(figure 3). Dry areas have a low runoff coefficient
meaning that a large proportion of the precipitation
evaporates, and thus a small underestimation of
evapotranspiration by a model can lead to a strong
overestimation of discharge (Hattermann et al 2017).
As we find that discharge is more strongly overestim-
ated in arid areas compared to humid areas (figure
S4), this could mean that evapotranspiration may
be underestimated particularly in arid areas. Given
the relevance of hydrological modelling for project-
ing climate change impacts on drought prevalence
in (semi-) arid areas (Wang et al 2022), reducing
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bias in simulating discharge under dry conditions
is an important area of future model improvement.
However, as we find that the models show a high
correlation for long-term mean monthly discharge,
GHMs could be used to analyse changes in seasonal
flows in (semi-) arid areas.

Second, we find that models perform less well at
higher elevations, as has been shown for ISIMIP2a
(Yang et al 2019). This suggests that cold dynamics,
i.e. glaciers, permafrost, and snowmelt, are import-
ant hydrological processes that are not yet adequately
included in many models and are thus a fur-
ther relevant area of model development (Gädeke
et al 2020).

As the output of GHMs is used to answer a range
of different research questions including the impact
of climate change on various aspects of the water
cycle (Krysanova et al 2020), it is important to assess
additional hydrological variables. For example, there
is ongoing work evaluating terrestrial water storage
and soilmoisture simulated byGHMs from ISIMIP3a
(Tiwari et al under review). A next step would
be to validate other GHM output variables, such
as evapotranspiration and groundwater recharge,
as has been done in ISIMIP2 assessment studies
(Wartenburger et al 2018, Pokhrel et al 2021, Gnann
et al 2023).

We conclude that our results help to identify areas
where we have greater confidence in the ability of
GHMs to simulate hydrological processes, particu-
larly in humid areas, at low elevations and in areas
with strong and regular seasonality. Stations in these
areas are therefore likely to be best suited to studies
aimed at attributing historical climate change based
on the output of the investigated GHMs. We also
identify areas where improved process simulation is
needed, i.e. evapotranspiration, transmission losses
and cold dynamics.
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