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Abstract: This paper aims to determine whether there is a case for promoting a new benchmark for
forecasting practice via the innovative application of generative artificial intelligence (Gen-AI) for
predicting the future. Today, forecasts can be generated via Gen-AI models without the need for an
in-depth understanding of forecasting theory, practice, or coding. Therefore, using three datasets,
we present a comparative analysis of forecasts from Gen-AI models against forecasts from seven
univariate and automated models from the forecast package in R, covering both parametric and
non-parametric forecasting techniques. In some cases, we find statistically significant evidence to
conclude that forecasts from Gen-AI models can outperform forecasts from popular benchmarks like
seasonal ARIMA, seasonal naïve, exponential smoothing, and Theta forecasts (to name a few). Our
findings also indicate that the accuracy of forecasts from Gen-AI models can vary not only based on
the underlying data structure but also on the quality of prompt engineering (thus highlighting the
continued importance of forecasting education), with the forecast accuracy appearing to improve
at longer horizons. Therefore, we find some evidence towards promoting forecasts from Gen-AI
models as benchmarks in future forecasting practice. However, at present, users are cautioned against
reliability issues and Gen-AI being a black box in some cases.

Keywords: ChatGPT; forecasting; benchmark; Microsoft copilot; generative AI; artificial intelligence

1. Introduction

OpenAI succeeded in making artificial intelligence (AI) accessible to the world (n.b.,
it is only available to the population with access to the internet) and has demonstrated
how generative AI (Gen-AI), a subset of deep learning, can transform our lives [1]. As a
result, since its launch in November 2022, the natural language model Chat Generative
Pre-trained Transformer (ChatGPT) continues to disrupt industries across the globe [2],
with other models like Microsoft Copilot and Google’s Gemini emerging since.

Given its popularity as the first to market, researchers have already delved into
many aspects of ChatGPT, from its potential impact on education [3] and research [4]
to its impact on various fields ranging from marketing [5] to forensics [6], to name a
few. However, the rapid adoption of Gen-AI is also highlighting its many shortcomings,
which range from hallucinations [7] to bias and ethical issues [8] and to the negative
environmental impact [9,10]. Furthermore, concerns about AI making certain job functions
obsolete are also rapidly emerging [11]. Therefore, the importance of promoting the use of
AI for intelligence augmentation, i.e., enhancing human intelligence and improving the
efficiency of human tasks as opposed to being a replacement, is crucial [12]. In this regard,
recent experimental evidence points towards an opportunity for using Gen-AI to reduce
productivity inequalities [13].

A few months after ChatGPT was launched, Hassani and Silva [14] discussed the
potential impact of Gen-AI on data science and related intelligence augmentation. Building
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on that work, here, we focus our attention on “forecasting”, which is a common data science
task that helps with capacity planning, goal setting, and anomaly detection [15]. Today,
Gen-AI tools offer the capability for non-experts to generate forecasts and use these in their
decision-making processes. Nvidia’s CEO Jensen Huang recently predicted the death of
coding in a world where “the programming language is human, [and] everybody in the world is
now a programmer” [16].

In a world where humans can now generate forecasts without an in-depth knowledge
or understanding of forecasting theory, practice, or coding, we are motivated to determine
whether there is a need to rethink forecasting practice concerning the benchmarks that are
used to evaluate forecasting models. Benchmark forecasts are meant to have significant
levels of accuracy and be simple to generate with minimal computational effort. It is
an important aspect of forecasting practice as investments in new forecasting models
should only be entertained if there is sufficient evidence of a proposed model significantly
outperforming popular benchmarks. As outlined in [17], when proposing a new forecasting
model or undertaking forecast evaluations for univariate time series, it is important to
consider the naïve, seasonal naïve, or ARIMA model as a benchmark for comparing
forecast accuracy. The random walk (i.e., the naïve range of models) is known to be a tough
benchmark to outperform [18]. Exponential smoothing, Holt–Winters and Theta forecasts
are also identified as benchmark methods in one of the most comprehensive reviews of
forecasting theory and practice [18].

Recent research confirms the superiority of AI models across various computational
tasks by building on theories of deep learning, scalability, and efficiency [19,20]. As
discussed, and evidenced below, these computational tasks now include forecasting using
historical data. Given that large language models can generate forecasts based on AI
prompts, this study is grounded by the following research question:

RQ: Should forecasts from Gen-AI models (for example, forecasts from ChatGPT or Microsoft
Copilot) be considered a new benchmark in forecasting practice?

To the best of our knowledge, there exists no published academic work that seeks to
propose or evaluate forecasts from Gen-AI models as a benchmark or contender in the field
of forecasting. In contrast, machine learning models have been applied and compared with
statistical models for time series forecasting [21], whilst deep learning models have also
received much attention in the recent past [22]. Some studies propose hybrid forecasting
models that combine machine learning, decomposition techniques, and statistical models
and compare the performance against benchmarks like ARIMA [23]. Therefore, it is evident
that studies seeking to introduce benchmarks via comparative analysis of models are
important. For example, in relation to machine learning, Gu et al. [24] sought to introduce
a new set of benchmarks for the predictive accuracy of machine learning methods via a
comparative analysis, whilst Zhou et al. [25] presented a comparison of deep learning
models for equity premium forecasting. Gen-AI models, given their reliance on deep
learning, can extract and transform features from data and identify hidden nonlinear
relations without the need to rely on econometric assumptions and human expertise [25].

Therefore, our interest lies in conducting a comparative analysis of forecasts from
Gen-AI models in comparison to forecasts generated by established, traditional benchmark
forecasting models to determine whether there is sufficient evidence to promote a new
benchmark model for forecasting practice in the age of Gen-AI. In this paper, initially, we
consider ChatGPT as an example of a Gen-AI tool and use it to forecast three time series,
as an example. These include the U.S. accidental death series [26–28], the air passengers
series [29] and UK tourist arrivals [30,31]. The forecasts from ChatGPT are compared with
seven forecasting models which represent both parametric and non-parametric forecasting
techniques and are provided via the forecast package in R [32]. These include seasonal
naïve (SNAIVE), Holt–Winters (HW), autoregressive integrated moving average (ARIMA),
exponential smoothing (ETS), trigonometric seasonality, Box–Cox transformation, ARMA
errors, trend and seasonal components (TBATS), seasonal–trend decomposition using
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LOESS (STL), and the Theta method. Models such as SNAIVE, ARIMA, ETS, Theta, and
HW are identified as benchmark forecasting models in [17,18], whilst the rest have the
shared properties of being automated, simple, and applicable with minimum computational
effort without the need for an in-depth understanding of forecasting theory. However,
unlike with Gen-AI models, the application of these selected benchmarks will require some
basic coding skills and an understanding of the use of the programming language R.

Through the empirical analysis, we find that in some cases, forecasts from Gen-AI
models can significantly outperform forecasts from popular benchmarks. Therefore, we
find evidence for promoting the use of Gen-AI models as benchmarks in future forecast
evaluations. However, our findings also indicate that the accuracy of these forecasts could
vary depending on the underlying data structures, the level of forecasting knowledge,
and education, which will invariably influence the quality of prompt engineering and the
training data underlying the Gen-AI model (e.g., paid vs. free versions). Reliability-related
issues are also prevalent, alongside Gen-AI models being black boxes and thus restricting
interpretability of the models being used.

Through our research, we make several contributions to forecasting practice and the
literature. First, we present the most comprehensive evaluation of forecasts from Gen-AI
models to date, comparing them to seven traditional benchmark methods. Second, based
on our findings, we can propose the use of Gen-AI models as benchmark forecasting models
for forecast evaluations. In doing so, we add to the list of historical benchmark forecasting
models in [18], which tend to require basic programming and coding skills. Third, our
research also seeks to educate and improve the basic forecasting capabilities of the public
by sharing the coding used to generate competing forecasts via the forecast package in
R. Finally, through the discussion, we also seek to improve the public understanding and
capability of engaging with Gen-AI models for forecasting; we share the prompts used on
Microsoft Copilot that resulted in a forecast for one of the datasets.

The remainder of this paper is organized such that Section 2 briefly introduces the
forecasting models with the codes used to generate the forecasts, Section 3 presents the
forecasting results and analysis, a discussion follows in Section 4, and the paper concludes
in Section 5.

2. Methods and Data

In this section, we present the benchmark forecasting models, the data, and the metrics
used to evaluate forecasts. The forecasts from Gen-AI models were generated by prompting
ChatGPT (GPT-4), unless mentioned otherwise. It is noteworthy that we do not attempt to
define the models that are generated by ChatGPT as these were not known in advance of
the application.

2.1. Benchmark Forecasting Models

All forecasts were generated using the forecast package in R (v.4.3.1) [32]. To minimize
replication of information already in the public domain, we present concise summaries of
each model and the code used to generate the benchmark forecasts to enable replication.

2.1.1. Holt–Winters (HW)

Forecasts from the Holt–Winters model [33,34] were generated via the forecast package
in R using the following code.

install.packages(“forecast”)
library(forecast)
data<-scan()
time_series<-ts(data,start=c(1973,1), frequency=12)
model<-HoltWinters(time_series,h=12) Where the data object only scans the training

data, which in the case of the death series, is from January 1973 to December 1977.
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2.1.2. Autoregressive Integrated Moving Average (ARIMA)

The ARIMA model is one of the most established and widely used time series fore-
casting models [35].

The modeling process seeks to separate the signal and noise by adopting past observa-
tions and taking into consideration the degree of differencing, autoregressive, and moving
average components. The “auto.arima” model from the forecast package in R begins by
repeating KPSS tests to determine the number of differences d. The data are then differenced
d times to minimize the Akaike information criterion (AIC), and the values of p (number of
autoregressive terms) and q (number of lagged forecast errors in the forecasting equation)
are obtained. The algorithm is efficient as instead of considering every possible combination
of p and q, it traverses the model space via a stepwise search. Thereafter, the “current model”
is determined by searching the four ARIMA models, namely, ARIMA(2,d,2), ARIMA(0,d,0),
ARIMA(1,d,0), and ARIMA(0,d,1), for the one which minimizes the AIC. If d = 0, then the
constant c is included; if d ≥ 1, then the constant c is set to zero. The model also evaluates
variations on the current model by varying p and q by ± 1 and including/excluding c. The
steps following the minimization of the AIC are repeated until no lower AIC can be found.
Those interested in the theory underlying this model are referred to [35].

library(forecast)
data<-scan()
time_series<-ts(data,start=c(1973,1), frequency=12)
model<-auto.arima(time_series,h=12)

2.1.3. Exponential Smoothing (ETS)

The theory underlying the ETS model is explained in [35]. In brief, the ETS model
evaluates over 30 possible options and considers the error, trend, and seasonal components
in choosing the best exponential smoothing model by optimizing initial values and pa-
rameters using maximum likelihood estimation and selecting the best model based on the
Akaike information criterion [35].

library(forecast)
data<-scan()
time_series<-ts(data,start=c(1973,1), frequency=12)
model<-ets(time_series,h=12)

2.1.4. Trigonometric Seasonality, Box–Cox Transformation, ARMA Errors, Trend and
Seasonal Components (TBATS)

The TBATS model is aimed at providing accurate forecasts for time series with complex
seasonality. A detailed description of the TBATS model can be found in [36]. We consider
this as a benchmark given its simple application, like the other models considered here,
which makes it easily accessible at minimal cost.

library(forecast)
data<-scan()
time_series<-ts(data,start=c(1973,1), frequency=12)
model<-tbats(time_series,h=12)

2.1.5. Seasonal Naïve (SNAIVE)

SNAIVE is a popular benchmark model for forecasting seasonal time series data. This
model returns forecasts from an ARIMA(0,0,0)(0,1,0)m model, where m is the seasonal
period (m=12 in the case of our data). In the most basic terms, this model considers the
historical value from the previous season to be the best forecast for this season.

library(forecast)
data<-scan()
time_series<-ts(data,start=c(1973,1), frequency=12)
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model<-snaive(time_series,h=12)

2.1.6. Seasonal–Trend Decomposition Using LOESS (STL)

The theory underlying the STL model can be found in [35], where the authors describe
this model as a robust decomposition method which uses loess for estimating non-linear
relationships. This algorithm works by decomposing the time series using STL before
forecasting the seasonally adjusted series and returning the reseasonalized forecasts. Once
more, we use this as a benchmark given its straightforward application to any time series.

library(forecast)
data<-scan()
time_series<-ts(data,start=c(1973,1), frequency=12)
model<-stlf(time_series,h=12)

2.1.7. Theta Forecast

The final benchmark model considered in this paper is the Theta method [37], which
can be described as simple exponential smoothing with drift. The series is seasonally
adjusted (in the case of seasonal time series) using a classical multiplicative decomposition
before the Theta method is applied. The resulting forecasts are then reseasonalized. Those
interested in an alternative explanation of the theory underlying this method are referred
to [38].

library(forecast)
data<-scan()
time_series<-ts(data,start=c(1973,1), frequency=12)
model<-thetaf(time_series,h=12)

Following the approach taken in [39], the forecast evaluation not only relies on the
root mean squared error (RMSE) and mean absolute percentage error (MAPE) as loss
functions but also the mean absolute error (MAE), as in [23]. MAPE values less than 10%
are indicative of highly accurate forecasting, 10–20% are indicative of good forecasting, and
20–50% are indicative of reasonable forecasting, whilst 50% or more indicate inaccurate
forecasting [40].

2.2. Data

Below we present and summarize the two main datasets used in this paper and
refer readers to recent publications that summarize the dataset introduced in the discus-
sion section.

2.2.1. Death Series

The main analysis considers the popular monthly U.S. accidental death series from
January 1973 to December 1977 [26–28]. Figure 1 shows the death series. As is visible, it
is affected by seasonal variations and a slowly decreasing trend that appears to gradually
increase over time. Table 1 presents some summary statistics which describe the data.
The Shapiro–Wilk test for normality is not statistically significant, thereby confirming that
the series is normally distributed. During the observed period, deaths averaged 8788 per
month in the U.S. The Bai and Perron [41] test for breakpoints indicates that the series was
affected by a structural break in October 1973. The coefficient of variation (CV) indicates
that the variation in the death series can be quantified as 11%. Figure 2 presents a seasonal
plot for the death series. As visible, this shows that deaths peaked annually in July.
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Table 1. Summary statistics for the death series.

Mean SD Median IQR Normality CV Breakpoints

8788 958 8729 1234 p = 0.44 0.11 1973(10)
Note: SD, standard deviation; IQR, interquartile range; CV, coefficient of variation. Normality reports the p-value
from a Shapiro–Wilk test for normality. The breakpoints are calculated using the Bai and Perron [41] test.
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2.2.2. Air Passengers Series

The air passengers series [29] records monthly total U.S. air passengers from 1949 to
1960 (Figure 3) and has a different structure to the death Series. Here, there is an upward-
sloping trend and seasonality which increases over time. The seasonal plot (Figure 4)
indicates that most air passengers were recorded annually in July. The descriptive statistics
in Table 2 further evidence the differences between the two datasets being used. The
Shapiro–Wilk test for normality is statistically significant and thereby indicates that the
time series is not normally distributed. This indicates that the median air passengers
value of 266 is a more appropriate measure of central tendency for this data. The Bai and
Perron [41] breakpoints test concludes that five breakpoints are impacting this time series,
and the CV of 43% confirms that this series reports more variation than the death series
(CV = 11%).
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Figure 4. Seasonal plot for monthly air passengers time series (1949–1960).

Table 2. Summary statistics for the air passengers series.

Mean SD Median IQR Normality CV Breakpoints

280 120 266 181 p < 0.01 0.43 1951(2) 1953(2) 1955(5) 1957(2) 1959(3)
Note: SD, standard deviation; IQR, interquartile range, CV: coefficient of variation. Normality reports the p-value
from a Shapiro–Wilk test for normality. The breakpoints are calculated using the Bai and Perron [41] test.

3. Results
3.1. Application: Death Series

At the initial stage, our intention is not to determine whether one forecasting model is
significantly better than a competing forecasting model. Instead, our quest is modest in
that we are seeking to identify whether there is a case for promoting the use of forecasts
from Gen-AI models (i.e., ChatGPT in this example) as a benchmark forecasting model in
the future.

To evaluate this proposition, we set up a forecasting exercise whereby observations
from January 1973 up until December 1977 were set aside for training our models. We
then generated a h = 12-months-ahead forecast over the test period from January 1978 to
December 1978. The findings are presented below.

First and foremost, we were able to prompt ChatGPT into producing forecasts for this
dataset from seven different models that included ARIMA, seasonal ARIMA (SARIMA), a
non-parametric model, and a long short-term memory (LSTM) model. It is important to
note that these models are not defined in Section 2 because we could not foresee which
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models Gen-AI would rely on. Furthermore, the key point of this research is to determine
whether forecasts from Gen-AI, regardless of which forecasting model it might be using,
should be considered as a benchmark model in future forecasting studies. Figure 5 shows
the forecasts from these various ChatGPT-based models plotted against the actual data so
that readers can visualize and compare the loss functions reported in Table 3. One clear
message from Figure 5 is that the LSTM model generated by ChatGPT is performing very
poorly at forecasting the death series.
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Table 3. Out-of-sample forecasting results for the death series.

Error ChatGPT: 1 ChatGPT: 2 ChatGPT: 3 ChatGPT: 4 ChatGPT: 5 Non-Parametric LSTM

RMSE 645.78 637.53 738.96 862.3 857.77 731.67 1292.11
MAPE 6.51% 6.53% 7.76% 9.60% 9.41% 6.94% 13.26%
MAE 526.00 534.67 666 807.33 786.83 579.08 1175.42

Note: All forecasts listed above were generated via ChatGPT. Shown in bold font is the model reporting the lowest
forecast error based on a given loss function.

Table 3 presents the forecast errors for each of these models. Based on the RMSE,
ChatGPT: 2 forecasts are the most accurate, whilst based on the MAPE and MAE criteria,
and ChatGPT: 1 forecasts would be considered most accurate. Therefore, if one were to
rely on ChatGPT for forecasting the death series, then either of these models could be
considered appropriate. A further evaluation of MAPE based on the guidance in [40]
uncovers that six out of the seven ChatGPT forecasts can be regarded as highly accurate as
they report MAPE values of less than 10%. This is significant as all these forecasts were
generated by simply amending the prompts on ChatGPT. This gives an early indication of
the disruptive potential of ChatGPT as a forecasting model for the future. Through further
prompting, we were able to uncover that ChatGPT: 1 was an ARIMA (5,1,0) model, whilst
ChatGPT: 2 was an ARIMA(5,1,2)(1,1,1) model.

Next, we calculated forecasts for the death series using the benchmark models iden-
tified in Section 2. The out-of-sample forecasting errors are reported in Table 4. As is
visible, forecasts from ChatGPT (i.e., ChatGPT: 1 and ChatGPT: 2) for the death series
were only able to outperform forecasts from HW, whilst the rest of the benchmark models
were seen outperforming the best two forecasts from the Gen-AI model by large margins.
However, the fact that two of the forecasts from ChatGPT were able to report a lower
RMSE and MAPE than forecasts from HW indicates that further exploration of ChatGPT
as a benchmark forecasting model is worthwhile, especially because HW is regarded as a
current benchmark model in [18].
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Table 4. Out-of-sample forecasting results from the benchmark models for the death series.

Error HW ARIMA ETS TBATS SNAIVE STLF Theta

RMSE 689.31 290.65 287.5 310.39 340.32 273.21 317.74
MAPE 7.22% 2.79% 2.67% 2.74% 2.79% 2.49% 2.79%
MAE 645.66 237.12 230.34 241.61 254.25 211.93 243.33

Note: All forecasts listed above were generated via the forecast package in R. Shown in bold font is the model
reporting the lowest forecast error based on a given loss function.

Figure 6 plots the forecasts from ChatGPT: 2 against the forecasts from HW as an
example. Interestingly, this indicates that as the series peaks, the ChatGPT forecast overes-
timates the number of deaths but aligns better as the trough sets in. In contrast, the HW
forecasts are seen providing relatively better predictions as the series peaks but worsening
significantly once the trough sets in. The visualization indicates that the quality of the
forecast from ChatGPT for this time series improves as the forecasting horizon increases.
This is interesting as the forecasting accuracy generally worsens as the horizon increases.
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Whilst at this stage, the findings remain inconclusive in relation to the RQ, the results
in Table 3 confirm that ChatGPT does have the capability of producing highly accurate
forecasts as per the MAPE evaluation criteria set by Chen et al. in [40]. Furthermore,
ChatGPT outperforming HW forecasts based on all loss functions was also a positive sign.

3.2. Application: Air Passengers Series

To evaluate our proposition of ChatGPT as a benchmark model further, next, we
consider a forecasting exercise using the air passenger series. In this case, we evaluate
forecasting the data at longer horizons of both h = 12 and h = 24 months ahead. Forecasts
from ChatGPT are compared against the same benchmark models. Table 5 reports the
out-of-sample forecasting results.

At h = 12 steps ahead, based on all three loss functions, forecasts from HW report the
lowest errors. The ChatGPT forecast also appears to be performing well as it reports errors
that are closer to the errors from the HW forecast in comparison to the errors generated
by the other models. Interestingly, the best ChatGPT forecast was attained via a HW
model. Given that the HW forecast in R required some basic programming and coding
knowledge, whilst the ChatGPT-led HW forecast was attainable simply by prompting
ChatGPT, this indicates an important message for the future of forecasting practice in
terms of the potential of Gen-AI models in improving the accessibility of forecasting. This
is further augmented when we compare the ChatGPT forecasting results with the rest
of the benchmarks. The findings show that ChatGPT forecasts were able to outperform
forecasts from ARIMA, ETS, TBATS, SNAIVE, STLF, and THETA based on all three criteria
at this horizon.
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Table 5. Out-of-sample forecasting results for the air passengers series.

h Error ChatGPT HW ARIMA ETS TBATS SNAIVE STLF THETA

12
RMSE 17.14 15.96 23.93 27.4 22.21 50.71 34.2 30.72
MAPE 2.85% 2.52% 4.18% 4.66% 3.35% 9.99% 5.12% 5.33%
MAE 13.67 11.56 18.53 22.8 15.29 47.83 26.48 26.33

24
RMSE 35.76 35.79 74.25 72.55 70.74 76.99 63.44 71.36
MAPE 6.64% 6.69% 14.93% 13.30% 12.90% 15.52% 11.35% 13.34%
MAE 31.08 31.21 68.58 63.21 61.41 71.25 54.71 63.22

Note: h refers to the forecasting horizon. For example, h = 12 indicates that forecasts were generated over the last
12 observations of the series. Shown in bold font is the model reporting the lowest forecast error based on a given
loss function.

In terms of forecasting at h = 24 steps ahead, ChatGPT forecasts report slightly lower
errors than HW forecasts. Note that the ChatGPT forecast reported here is also from a HW
model. In this case, based on all three loss functions, we find that the ChatGPT forecast
outperforms forecasts from HW, ARIMA, ETS, TBATS, SNAIVE, STLF, and THETA models.
Interestingly, only the forecasts from ChatGPT and HW models reported MAPE values less
than 10% and can therefore be labeled as highly accurate forecasts [40] for this series.

As SNAIVE and ARIMA models are two of the most popular benchmark forecasting
models [17,18], in Figure 7, we compare the ChatGPT forecasts with these benchmarks at
h = 12 steps ahead, whilst in Figure 8, we do the same at h = 24 steps ahead. From Figure 7,
it is visible that the ChatGPT forecast is performing much better than the forecast generated
via the SNAIVE model. The ARIMA forecast and ChatGPT forecast appear closely aligned
until the peak in the series, but as the trough sets in, the accuracy of the ChatGPT forecast
improves. Once again, this seems to indicate that the forecasts from ChatGPT appear
to perform better as the forecasting horizon increases, as was visible in Figure 6 as well.
Figure 8 is clearer in evidencing that, in comparison to ARIMA and SNAIVE forecasts, at
h = 24 steps ahead, the ChatGPT forecast provides a far more accurate prediction.
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Finally, we go a step further and test the out-of-sample forecasting errors for statisti-
cally significant differences using the Hassani–Silva [42,43] test. These results and the ratio
of the RMSE (RRMSE) are reported in Table 6 below. The RRMSE is computed as follows:

RRMSE =
RMSE (ChatGPT)

RMSE (Benchmark)
,

whereby, if RMSE (ChatGPT)
RMSE (Benchmark) is <1, then this indicates that ChatGPT forecasts are outper-

forming the competing forecast by
(

1 − RMSE (ChatGPT)
RMSE (Benchmark)

)
∗ 100%.
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Table 6. Out-of-sample forecasting RRMSE results for the air passengers series.

h ChatGPT
HW

ChatGPT
ARIMA

ChatGPT
ETS

ChatGPT
TBATS

ChatGPT
SNAIVE

ChatGPT
STLF

ChatGPT
THETA

12 1.07 0.71 0.62 0.76 0.33 ** 0.50 * 0.55 *
24 0.99 0.48 ** 0.49 ** 0.51 ** 0.46 ** 0.56 * 0.50 **

Note: **/* indicates a statistically significant difference between the two forecast errors based on the Hassani–Silva
test [42,43] at p = 0.01 and p = 0.10, respectively.

At h = 12 steps ahead, we do not find any evidence to conclude that the ChatGPT
forecast is significantly better than forecasts from HW, ARIMA, ETS, or TABTS for the
air passengers series. However, in comparison to SNAIVE, STLF, and THETA forecasts,
the ChatGPT forecasts are significantly better by 77%, 50%, and 45%, respectively. At
h = 24 steps ahead, we find more conclusive evidence for promoting ChatGPT forecasts as
a benchmark model because the evidence indicates that ChatGPT forecasts are significantly
outperforming forecasts from ARIMA, ETS, TBATS, SNAIVE, STLF, and THETA by 52%,
51%, 49%, 54%, 44%, and 50%, respectively.

Accordingly, based on the analysis presented and discussed above, we can respond
to our original RQ and conclude that there is sufficient evidence to promote the use of
forecasts from Gen-AI models as a new benchmark in forecasting practice. Our work
also contributes to the literature on forecasting theory and practice by introducing Gen-AI
models as a new and viable benchmark forecast model to complement the models identified
in [18]. Our findings do evidence that in some cases, forecasts from Gen-AI models can
significantly outperform the other benchmarks frequently cited in forecasting literature. In
the case of the air passengers series, the forecasts from Gen-AI significantly outperformed
the Theta forecast too. The Theta forecast is described in [18] as a “critical benchmark”.

4. Discussion
4.1. The Impact of Prompt Engineering on Forecasts from Gen-AI Models

Given the findings reported above, it is important to discuss the impact of prompt
engineering on forecasts from Gen-AI models. Meskó [44] defines prompt engineering as
“the practice of designing, refining, and implementing prompts or instructions that guide the output
of LLMs to help in various tasks.” Given that Gen-AI models now have memory [45], and
several researchers are studying the influence of prompting on the quality of results from
Gen-AI models [46,47], we find it pertinent to use another example to demonstrate how
prompting results in forecasts.

We are also mindful that the results presented in Section 3 rely on the paid, premium
version of ChatGPT. Therefore, in this example, we rely on the preview, free version
of Microsoft Copilot. The forecasting exercise considers comparing forecasts from the
“auto.arima” algorithm found in the forecast package in R with forecasts from Microsoft
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Copilot. We consider generating a 12-steps-ahead forecast (from February 2017–January
2018) for monthly UK tourist arrivals. This data span from January 2000 to January 2018
and were previously used in [30,31,39], where readers can find extensive descriptions of
the data. The prompt used to generate the forecast can be found in Appendix A. Table 7
below reports the out-of-sample forecasting results for UK tourist arrivals. As visible, the
forecast generated by the free version of Microsoft Copilot was able to outperform the
ARIMA forecast by 6% and report the lowest errors across all error metrics.

Table 7. Out-of-sample forecasting results for the UK tourist arrivals series.

h Error Copilot ARIMA Copilot
ARIMA

12
RMSE 681520 726641

0.94MAPE 14.95% 17.11%
MAE 426299.7 509237.5

Note: h refers to the forecasting horizon. For example, h = 12 indicates that forecasts were generated over the last
12 observations of the series. Shown in bold font is the model reporting the lowest forecast error based on a given
loss function. The final column reports the RRMSE.

However, we did not find evidence of any statistically significant differences between
the forecast errors at this horizon. Nevertheless, these findings further support our proposi-
tion towards a new benchmark in forecasting practice as forecasts from the free version of
a Gen-AI model was able to outperform forecasts from “auto.arima”.

4.2. Gen-AI Can Forecast: So What?

As our findings support the promotion of forecasts from Gen-AI models as a bench-
mark model in forecasting practice, we find it pertinent to comment upon the practical
importance and significance of this work.

First and foremost, the ability to use Gen-AI models to generate forecasts with some
credible accuracy has significant implications for the population at large. For the first time
in the history of mankind, humans are now able to generate a forecast for a variable of
interest without the need for any formal knowledge or education in the theory underlying
time series analysis and forecasting. This would further advance the adoption of forecasting
across different functions, and the use of Gen-AI models for forecasting purposes would
also increase over time.

Second, our findings shed light on a future where humans will not necessarily need
to know a programming language (e.g., R or Python) in depth to engage in forecasting
practice as one would be able to prompt Gen-AI models using human language to obtain
the desired results.

Third, we believe a surge in the use and application of Gen-AI models for forecasting
would result in a renewed demand for formal time series analysis and forecasting education
that can be associated with Gen-AI and related skills. This goes back to the importance
of prompt engineering and the importance of knowing the right questions with which to
prompt the Gen-AI to obtain the most accurate results. Therefore, we believe that if a trend
was to emerge whereby humans began exploring the use of Gen-AI for forecasting, this
would be positive for the growth and development of the entire field of forecasting.

Fourth, our initial findings point towards the importance of forecasting practitioners
considering forecasts from Gen-AI models as a benchmark when tasked with a forecast
evaluation or at the point of introducing a new forecasting approach. This aspect is
further strengthened by the results in Section 3, which show that ChatGPT forecasts were
significantly more accurate in some cases in comparison to some of the popular benchmarks
identified in [18].

5. Conclusions

This paper considers the potential impact of Gen-AI on a common data science task
known as forecasting. We sought to answer the RQ, which focuses on whether there is
any support for the adoption of forecasts from Gen-AI models as benchmarks in future
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forecast evaluations. The ease of generating forecasts via prompts (as opposed to the need
to understand the theory underlying forecasting or to have any prior knowledge of coding
and programming), when coupled with the forecast evaluations presented herewith, provides
some evidence which justifies the use of forecasts from Gen-AI models as benchmarks. It is
noteworthy that in some cases, we find forecasts from ChatGPT resulting in significantly more
accurate outcomes than popular and powerful benchmark models from the forecast package
in R. These initial findings do indicate that before the adoption of new models (that may
be costly) or complex models (that may be time-consuming), it is pertinent for stakeholders
to compare their performance against forecasts attainable via Gen-AI models to determine
whether there exists a statistically significant difference between the forecast errors.

In terms of using Gen-AI for forecasting variables, the initial findings reported here
point towards several interesting insights. First, as with all forecasting models, the ap-
plication of Gen-AI models to three different datasets showed that the underlying data
structures and processes could impact the accuracy of the forecasts attainable via Gen-AI
models. Second, the accuracy of forecasts from Gen-AI models appear to depend largely on
prompt engineering. This skill, when coupled with expert knowledge of forecasting, can
result in more accurate forecasts. Third, the premium versions of Gen-AI models are likely
to generate more accurate forecasts than the free versions given the vast differences in their
training samples. However, it is noteworthy that the free versions too could potentially
generate competitive forecasts (see, Section 4.1).

There are also some limitations and drawbacks in the use of forecasts from Gen-AI
models that should be considered. First, in an educational or professional setting, the
ability to afford a license to access the premium version of Gen-AI models can influence
the accuracy of forecasts and thus could widen inequalities and give an undue competitive
advantage to those who are financially better off. Second, Gen-AI models can be black
boxes. For example, the evidence reported in the Appendix A shows that the free version
of Microsoft Copilot was not able to interpret the SARIMA model that was applied in
Section 4.1. Third, certain versions of Gen-AI models can lack reliability, as we experienced
with the free version of Microsoft Copilot. For example, as evidenced in the Appendix A, on
24th March 2024, we were able to generate forecasts for the results reported in Section 4.1 by
uploading the data as a comma-separated values file onto the Gen-AI platform. However,
since May 2024, the free version of Microsoft Copilot could not replicate these forecasts
using the same prompts and instead gives the error: “I’m sorry for any confusion, but as an
AI, I’m currently unable to directly accept files such as Excel spreadsheets.”

Finally, the purpose of this research was to position forecasts from Gen-AI models (like
ChatGPT) as a viable benchmark model in future forecasting evaluations and practice. In
doing so, we also open several directions for future research. First, there is an opportunity
to develop a greater understanding of the most efficient prompting mechanism on Gen-
AI models with which to obtain the most accurate forecast for a given dataset. Second,
researchers should consider a more comprehensive analysis of ChatGPT as a forecasting
model by applying it to a variety of datasets with different structures. Third, researchers
should consider comparing forecasts from different Gen-AI models (e.g., ChatGPT vs.
Microsoft Copilot vs. Gemini) to determine whether one model’s forecasting capabilities
are superior to the other. Finally, a more extensive forecast evaluation that compares
forecasts from the forecast package in R against forecasts from Gen-AI models when faced
with several datasets could yield some interesting findings with which to guide future
forecasting studies.
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