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Impacts of the global food system on
terrestrial biodiversity from land use and
climate change

Elizabeth H. Boakes 1,2 , Carole Dalin 2,3, Adrienne Etard 1,4 &
Tim Newbold 1

The global food system is a key driver of land-use and climate change which in
turn drive biodiversity change. Developing sustainable food systems is
therefore critical to reversing biodiversity loss. We use the multi-regional
input-outputmodel EXIOBASE to estimate the biodiversity impacts embedded
within the global food system in 2011. Using models that capture regional
variation in the sensitivity of biodiversity both to land use and climate change,
we calculate the land-driven and greenhouse gas-driven footprints of food
using two metrics of biodiversity: local species richness and rarity-weighted
species richness. We show that the footprint of land area underestimates
biodiversity impact in more species-rich regions and that our metric of rarity-
weighted richness places a greater emphasis on biodiversity costs in Central
and South America.Wefind thatmethane emissions are responsible for 70%of
the overall greenhouse gas-driven biodiversity footprint and that, in several
regions, emissions from a single year’s food production are associated with
global biodiversity loss equivalent to 2% or more of that region’s total land-
driven biodiversity loss. The measures we present are relatively simple to
calculate and could be incorporated into decision-making and environmental
impact assessments by governments and businesses.

Anthropogenic pressures continue to drive biodiversity loss despite
increasing conservation efforts1. Land use is currently the greatest driver
of biodiversity change1,2, and has thus been the focus of much previous
conservation research. However, the impacts of climate change on
biodiversity are expected to increase considerably3, and, by 2070, cli-
matemaymatchor surpass landuse as thegreatest driver of biodiversity
change4,5. Agricultural land used for food production covers an esti-
mated 38–55%of Earth’s habitable land6,7, while the global food system is
responsible for 21–37% of anthropogenic greenhouse gas (GHG)
emissions8–10 and could add nearly 1 °C to warming by 210011. The
development of sustainable food systems will be critical in halting/
reversing land-driven12 and climate-driven biodiversity loss11,13.

Increasingly, food grown in one country is traded internationally
to satisfy demand elsewhere14–16. The associated biodiversity impact of
this international consumption is driven by upstream economic
activities that are often geographically distant from the locations of
biodiversity loss17. Reducing the environmental impacts of food
therefore requires both supply-side and demand-side changes17.

Understanding the separate contributions of agricultural land use
and greenhouse gas emissions to biodiversity loss is an important step
toward developing a sustainable international trade in food. A strategy
which considers land use alone might well differ from one that incor-
porates GHG-driven biodiversity loss. For example, the land and GHG
footprint per tonne of crops arising from N2O tend to be negatively
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correlated – intensive farming uses less land than extensive farming
but has higher GHGemissions (N2O) arising fromhigher fertiliser use18.
Moreover, land use and climate differ in their spatial impacts on bio-
diversity. Land use affects biodiversity that is local to the land con-
version. In contrast, climate change affects biodiversity globally, no
matter the location of the emissions source.

Environmentally extended multi-regional input-output models
(EEMRIOs) are used to link downstream environmental impacts to
upstream drivers, allowing the ‘footprints’ of commodities to be fol-
lowed back through complex supply chains19. The footprint of a
hamburger, for example, would contain impacts not only from cattle
but also from cattle feed, fertiliser, machinery, water, packaging, fuel
etc.20. Summing the impacts associated with each upstream product
would, in theory, give the hamburger’s total footprint. However, in
reality, this simple addition process is impossible given the compli-
cations of tracking supply chains, double counting of recycled pro-
ducts, and infinite loops, for example, electricity production requiring
water, which requires electricity to pump it. EEMRIOs resolve these
problems by using input-output tables to infer production recipes,
allocating environmental costs to sectors to avoid double counting
and approximating infinite sums with the Leontief inverse matrix20.
Regional productiondata and their associated environmental costs are
combined with information on international trade, allowing the cal-
culation of a variety of consumption footprints, e.g., land use21, GHG
emissions22 and water23.

EEMRIOmodels have been used to follow the effects of goods and
services along global supply chains to estimate biodiversity footprints.
Lenzen et al.24 performed the first global biodiversity footprint analy-
sis, using the IUCN Red List to count species’ threats within trade
regions. This method assumes that species are equally threatened
across their ranges, and excludes non-threatened species. Other
methods use a similar philosophy to calculate footprints based on
biodiversity threat hotspots25, bird ranges and the number of indivi-
dual birds lost from an area17. An alternative method, derived from
land-use data, uses the countryside species-area relationship (cSAR) to
estimate the potential number of extinctions caused by land conver-
sion and international trade16,26,27. However, since many of the extinc-
tions have yet to be realised, it is unclear how these extinctions would
be allocated to different drivers across time, both past and future17,28.
Wilting et al. 29 take a step further, deriving biodiversity footprints
from GHG emissions as well as land use, using the biodiversity metric
Mean Species Abundance (MSA) (although climate impacts are based
on model predictions of changes in species richness, so land use and
climate impacts are not entirely comparable). The GLOBIO 3.5 biodi-
versity model30, on which Wilting et al.29 analysis was based, assumes
that the effects of land use and climate change are even across all
terrestrial regions; in reality, biodiversity tends to bemore sensitive to
land use and climate change in tropical regions31,32. Marquadt et al.28

show that biodiversity footprints based on local (e.g., MSA) versus
regional (cSAR) measures of biodiversity differ considerably.

We build on these prior analyses, introducing three additional
aspects. (i) We calculate the biodiversity impacts of agricultural land
use and GHG-emission footprints using models that directly output
metrics of terrestrial biodiversity change in the same units, allowing
the drivers’ impacts to be compared and splitting emissions into car-
bon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). (ii) We
consider a change in local rarity-weighted species richness relative to
an unimpacted baseline in addition to local species richness. Species
richness, although easy to measure, captures only one of the many
dimensions of biodiversity, and does not always decline with global
biodiversity loss33. Rarity-weighted richness gives greater weight to
species with small geographic range size (range size correlates with
species extinction risks34) and so declines if rare species are replaced
by more common ones. (iii) We use biodiversity models that allow us
to capture regional variation in the sensitivity of biodiversity both to

land-use differences and to climate change31. We base our biodiversity
metrics on local measures of biodiversity averaged across the relevant
agricultural areas as opposed to a value averaged across an entire
exporting region, meaning that we better account for the wide varia-
tion in species richness that occurs within regions. Nevertheless, there
will still likely be substantial variation in biodiversity responses within
our agricultural aggregations. We calculate the biodiversity change
associatedwith all of the land area used in food production in 2011 and
assume that the biodiversity change associatedwith land conversion is
immediate. GHG emissions that are released during land conversion
are not considered, because, without detailed land-history knowledge,
we cannot estimate the proportion of emissions that have dissipated
since conversion, nor apportion food-production emissions across
years. To put this gap in our coverage of GHGs into context, direct
emissions from agriculture contribute 5.1–6.1 Pg CO2-eq,/yr while the
clearing of native land for agriculture contributes around 5.9 (SD 2.9)
Pg CO2-eq/yr

35. Consequently, our ratio of land-driven to GHG-driven
biodiversity change compares the impacts of the centuries-long pro-
cess of global agricultural land conversion to the impacts associated
with just a single year of GHG emissions.

We examine the international production-based and consumption-
based footprints of food-related commodities in 2011 in termsof: a) land
area; b) species richness (land-driven and GHG-driven); and c) rarity-
weighted species richness (land-driven and GHG-driven). Production-
based footprints are based on the total impacts associated with the
products produced within a region, whereas consumption-based foot-
prints are the total impacts associated with the products consumed
within that region. We calculate footprints for 33 food-related products
that span food’s journey fromfield to farmgate to household towaste in
49 regions (44countries and5 rest ofworld regions).Weaskwhether the
estimated impacts we calculate using the different footprint types (i.e.,
land-driven versus GHG-driven; and land area versus species richness
versus rarity-weighted richness) would lead to the same broad policy
recommendationswith respect to sustainable production, consumption
and trade. We identify the regions and food groups with the highest
biodiversity footprints, examining the contributions of land use and
GHG emissions to these footprints. We also explore biodiversity foot-
prints per km2 (production) and per capita (consumption) for each
region and look at the proportion of regions’ consumption footprints
that are imported. Our analysis provides a detailed examination into the
pathways by which regions’ consumption of particular food-related
products affects biodiversity worldwide, giving insight into the trade-
offs between land use and GHG emissions, and into priorities for
demand-side changes.

Results
Regional production and consumption-based footprints for
total food
For all footprints, regions with a high production-based footprint tend
to have a high consumption-based footprint. Our land-driven biodi-
versity footprints show a different picture from a simple land-area
footprint. Important information is missed if the area of agricultural
land alone is used as a proxy for the impact of food production on
biodiversity (Fig. 1). Differences between land-associated footprints are
driven in part by differences in species richness between regions’ agri-
cultural areas but also by our characterisation factors, which consider
biome-specific sensitivities to land use. Furthermore, footprints also
vary according to themeasureofbiodiversity used. The regionswith the
greatest land-area footprints in 2011 were Rest of World (RoW) Africa,
China, and RoW Asia & Pacific (Fig. 1a). However, while RoW Africa also
has the highest land-driven species richness footprint, Brazil and RoW
Central & South America (RoW CS America) have the second and third
highest species richness footprints, respectively (Fig. 1b). Indeed, RoW
CS America hosts many narrow-ranged species, which is reflected in its
high rarity-weighted richness footprint (Fig. 1c). Decisions regarding
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land use and food production should therefore consider not only the
land area involved but also the land-driven loss of different facets of
biodiversity (see Supplementary Fig. 5 and Supplementary Data 7 for
the footprints of individual products within regions).

India and China are the regions responsible for the highest GHG-
driven biodiversity loss, followed by RoW Africa (Fig. 1). However,
compared to India and China, RoW Africa has a much lower GHG-
driven footprint relative to its land-driven biodiversity footprint. We
expected the GHG-driven footprint to be much lower than the land-
driven footprint since it relates to the global biodiversity loss caused
by a single year of emissions whereas our land-driven footprint relates
to the historic conversionof all agricultural land used in 2011. The ratio
of land-driven toGHG-driven biodiversity loss varied by region from 16
for rarity-weighted richness production footprint in Russia to 855 for
production in RoW C&S America, with several regions, including
China, India and RoW Asia, having ratios around 50. Finding ratios of
50 or lower is concerning as it shows that direct emissions from a
single year of a region’s food production will cause biodiversity loss
equivalent to 2% or more of the biodiversity loss caused by that

region’s total historic land use. Furthermore, we substantially under-
estimate biodiversity losses from GHG emissions since our analysis
does not include emissions from land clearance.

Some regions are net importers of land-driven biodiversity loss
but net exporters of GHG-driven biodiversity loss, e.g., India, or vice
versa, e.g., Indonesia. RoW Asia & Pacific, RoW CS America, Australia
and Mexico are all net exporters of both land-driven and GHG-driven
biodiversity meaning their international exports are harming both
their domestic biodiversity and, via climate change, global biodi-
versity. China, the United States, Russia and RoW Middle East are net
importers of both footprints (Fig. 1). The top ten footprints stem from
regions with very large land areas and/or populations and, aside from
Russia, do not include regions in continental Europe.

Production-based footprints for world regions aggregated by
food-related sector
Production-based footprints vary considerably among food-related
groups and, within food-related groups, among aggregated world
regions (Fig. 2). As for total food footprints, land-driven biodiversity

Fig. 1 | Total production-based (blue bars) and consumption-based (red bars)
footprints of food-related products for the year 2011. Footprints relate to (a)
land area, (b) land-driven species richness (SR) loss, (c) land-driven rarity-weighted
richness (RWR) loss, (d) GHG-driven biodiversity loss split by emissions type: car-
bondioxide (dark blue/red), methane (mid blue/red), nitrous oxide (light blue/red)
(right-hand axis– species richness; left-hand axis– rarity-weighted richness), (e) the

ratio of land-driven species richness loss to total GHG-driven species richness loss
and (f) the ratio of land-driven rarity-weighted richness loss to total GHG-driven
rarity-weighted richness loss. Regions which are in the highest ten for one or more
footprints are shown. RoW Rest of World. Source data are provided as a source
data file.
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footprints do not mirror land-area footprints, and the relative size of
biodiversity footprints is affected by the richnessmetric. Using animal-
derived products as an example, Asia & Pacific’s land footprint is 60%
higher than CS America’s (and Africa’s, Fig. 2a), but its land-driven
species-richness footprint is less than half (Fig. 2b), and its rarity-
weighted richness footprint less than a third of that of CS America
(Fig. 2c). This result reflects Asia & Pacific’s lower average natural

species richness compared to CS America’s and the lower biodiversity
sensitivity of some of its biomes to agricultural land use.

Again, GHG-driven and land-driven biodiversity footprints show
different patterns, with tropical regions no longer having consistently
higher footprints. Production in Western Europe and North America
also drives relatively high GHG-driven biodiversity loss, particularly in
the ‘Other Food’ sector although Asia & Pacific has the highest GHG-

Fig. 2 | Production-based footprints of aggregated food-related groups within
aggregatedworld regions for the year 2011. Footprints relate to (a) land area, (b)
land-driven species richness (SR) loss, (c) land-driven rarity-weighted richness
(RWR) loss, (d) GHG-drivenbiodiversity loss split by emissions type: carbondioxide
(dark shade), methane (mid shade), nitrous oxide (light shade) (right-hand axis –

species richness; left-hand axis – rarity-weighted richness), (e) the ratio of land-
driven species richness loss to total GHG-driven species richness loss and (f) the
ratio of land-driven rarity-weighted richness loss to total GHG-driven rarity-
weighted richness loss. Source data are provided as a source data file.
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driven footprints across all food groups (Fig. 2d). Asia & Pacific’s ratio
of land-driven to GHG-driven ratios ranges from around 40–100
(Fig. 2e, f) which is extremely concerning given the high land-driven
biodiversity footprints this regionhas. If emissions continue at this rate
their impact on global biodiversity will, in under a century, equal that
already caused by land conversion in Asia & Pacific.

Animal-derived products tend to have much higher footprints
than plant-derived (i.e., crops), although Asia & Pacific is a notable
exception for both land-driven and GHG-driven biodiversity foot-
prints, in part due to the production of paddy rice, wheat and other
cereals in India (for individual product footprints see Supplemen-
tary Fig. 5 and Supplementary Data 8). As would be expected, land-
driven biodiversity loss from fertiliser production and the proces-
sing of food waste is much lower than that stemming from the
production of food itself since the processes use very little agri-
cultural land.

In many instances, the ‘Other Food’ category has higher
production-based GHG-driven biodiversity footprints than the foot-
prints from crops (Fig. 2a–d). Other Food includes ‘Food products not
elsewhere classified (nec)’ (coded in EXIOBASE as ‘OFOD’) and bev-
erages (‘BEVR’). ‘Food products nec’ contributes the vast majority of

the Other Food footprint and covers a broad range of processed foods
such as soups, sandwiches and sauces. The EXIOBASE land-use types
that contribute most to the Food Products nec land-driven footprints
are cereal grains nec, cattle pasture, wheat, oil seeds, rawmilk pasture
and fruit/vegetables/nuts (Supplementary Fig. 6).

Per-area and per-capita footprints
Taiwan stands out as having the highest per-area land-related
production-based footprints (Fig. 3a–c). The agriculturally dense but
biodiversity-poor UK is an example of a region with relatively lower
per-area land-driven biodiversity footprints than per-area land-use
footprints (Fig. 3). In contrast, the species-rich Brazil has a lower per-
area land-use footprint but a relatively higher per-area land-driven
species richness footprint. Some regions (e.g., Brazil, India, Mexico)
have both high total production-based footprints (Fig. 1) and high per-
area production-based footprints (Fig. 3). The other regions with high
per-area production tend to be smaller regions with wide agricultural
coverage, for example the Netherlands and Belgium. Small agricultural
regions have the highest per-area production-based GHG-driven
footprints, for example Taiwan, the Netherlands, and Malta
(although see ref. 36 regarding possible over-estimation of Taiwan’s
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Fig. 3 | Total per-areaproduction-based footprints of food-relatedproducts for
the year 2011. Footprints relate to (a) land use, (b) land-driven species richness
(SR) loss, (c) land-driven rarity-weighted richness (RWR) loss and (d) GHG-driven
biodiversity loss split by emissions type: carbon dioxide (black), methane (dark

grey), nitrous oxide (light grey) (right-hand axis - species richness; left-hand axis -
rarity-weighted richness). Regions that are in the highest ten for one or more
footprints are shown. RoW Rest of World. Source data are provided as a source
data file.
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material footprint). For per-area footprints for all products and regions
see Supplementary Fig. 7 and Supplementary Data 9.

Australia is notable for having extremely high land-driven con-
sumption-based footprints per capita (Fig. 4), driven particularly by
animal-based products (notably ‘Products of Cattle’), but also by
plant-based products and ‘Other Food’ (Supplementary Fig. 8, Sup-
plementary Table 6, and Supplementary Data 10). Luxembourg also
has consistently high per-capita consumption-based footprints,
probably in part due to its highly affluent population37. In contrast to
Australia, Luxembourg’s consumption-based footprint is primarily
driven by plant-derived products (fruit/vegetables/nuts, oil seeds
and other crops - i.e., coffee, cocoa, spices). Despite having high
total consumption due to their large populations (Fig. 1), China,
India and RoW Asia & Pacific are not within the top ten highest per-
capita consumption-based footprints for any category. However,
some regions with high total biodiversity consumption also have
high per-capita footprints: Australia, Brazil, Mexico, Russia, the
United States, RoW Africa and RoW CS America. Again, we see
contrasts between different footprint types. For example, Brazil’s
land-driven species richness consumption-based footprint per
capita is much larger than RoW CS America’s, but the latter’s per-

capita rarity-weighted footprint is almost twice that of Brazil
(Fig. 4b, c). (Brazil has particularly high per-capita species richness
footprints relative to RoW CS America for cattle, processed cattle,
vegetable oils and dairy, see Supplementary Fig. 8). Regions with
relatively low species richness can have high per-capita land-driven
biodiversity consumption-based footprints as a result of import-
ing food.

The products underpinning high per-capita consumption-based
GHG-driven biodiversity footprints vary among regions (Fig. 4d). Bel-
gium’s high footprint, for example, is largely driven by other foods
(e.g., pizza, ready-meals, sauces) and dairy products, Estonia’s by dairy
products, raw milk, cattle and other foods, Luxembourg’s by fruit/
vegetable/nuts, other crops (i.e., coffee, cocoa, spices), cattle and
chemical fertilizer, and the Republic of Ireland’s by processed cattle
products and food waste disposed of in landfill. Some regions, e.g.,
Australia, Luxembourg and Lithuania, have high footprints across
multiple products, and at least one animal-based product is associated
with particularly high consumption footprints for all regions in Fig. 4,
except Taiwan (<~0.0004 species x km2 per capita for every animal-
based product) (see also Supplementary Fig. 8, Supplementary Table 6
and Supplementary Data 10 for further breakdowns).
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Fig. 4 | Total consumption-based footprints per-capita of food-related pro-
ducts for the year 2011. Footprints are in terms of (a) land use, (b) land-driven
species richness (SR) loss, (c) land-driven rarity-weighted richness (RWR) loss and
(d) GHG-driven biodiversity loss split by emissions type: carbon dioxide (black),

methane (dark grey), nitrous oxide (light grey) (right-hand axis – species richness;
left-handaxis– rarity-weighted richness). Regions that are in the highest ten for one
or more footprints are shown. RoW Rest of World. Source data are provided as a
source data file.
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Contribution of the different GHGs to biodiversity footprints
The total GHG-driven footprint of all food-related products is ~1% of
the total land-driven richness footprints. Food-related products
accounted for nearly a quarter (23%) of the total emissions across all
sectors of activity (including industry) in EXIOBASE in 2011. Methane
emissions account for 70% of the total GHG-driven biodiversity foot-
print from food-related products, compared to 42% of the GHG-driven
footprint of all EXIOBASE’s products. Carbon dioxide contributes to
18%of food’s total footprint versus 54%of the footprints of all products
and nitrous oxide contributes to 12% of food’s footprint and 4% of the
footprints of all products.

Methane is the primary contributor to total food-related GHG-
driven biodiversity footprint in all regions (Fig. 1d), with emissions
from animal-based products, paddy rice and food waste being pri-
marily frommethane (Supplementary Fig. 5). In contrast nitrous oxide
drives the biodiversity footprint for fertiliser products and ‘fish and
other fishing products’ (Fig. 2d and Supplementary Fig. 5). The relative
contributions of the different GHGs differs between regions, for
example nitrous oxide contributing a larger proportion of the Neth-
erlands’ and Belgium’s GHG-driven production-based footprint than
Malta’s (Fig. 3d) and carbon dioxide contributing relatively highly to

South Africa’s consumption-based footprint but relatively little to
Brazil’s (Fig. 4d). At the product level, for example, wheat’s GHG-driven
footprint is primarily due to nitrous oxide in India but methane in
China; nitrous oxide is the greatest contributor to China’s fruit and
vegetables’ footprint but carbon dioxide to India’s (Supplemen-
tary Fig. 5).

Biodiversity loss embedded in export/import trade
The United States, the United Kingdom, Germany, Russia, Japan, China
and RoWMiddle East ‒ regions that tend to be relatively biodiversity-
poor and highly industrialised in their land use systems ‒ are all net
importers of land-driven biodiversity loss and also of GHG-driven
biodiversity loss (Fig. 5, Supplementary Fig. 9). Once again, the dif-
ferent land-driven footprints also show different messages. For
example, RoWCS America exports a similar land-area footprint to that
exportedbyRoWAsia&Pacific but approximately four times RoWAsia
& Pacific’s exported rarity-weighted richness footprint. RoW Africa is a
net exporter of land-driven species richness impacts but a net importer
of land-driven rarity-weighted richness impacts. The three greatest net
importers of both land-driven biodiversity footprints are RoWMiddle
East, Russia and the United States. Regions which are net importers of
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Fig. 5 | Regions’ net import footprints for food-related products for the
year 2011. Footprints are in terms of (a) land use, (b) land-driven species richness
(SR) loss, (c) land-driven rarity-weighted richness (RWR) loss and (d) GHG-driven

richness loss. Regions which are in the highest five (net importers) or lowest five
(net exporters) for the net import footprints are shown. RoWRest ofWorld. Source
data are provided as a source data file.
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land-driven biodiversity footprints also tend to be net importers of
GHG-driven footprints with the exceptions of RoW Africa, Indonesia
(net exporters of land-driven but importers of GHG-driven footprints)
and India (net importer of land-driven but exporter of GHG-driven
footprint).

Understanding the percentage of a region’s footprint that is
imported is important in devising policies to reduce footprints.
Imports make up 5% or less of land-driven species richness footprints
for highly biodiverse regions such as Brazil and Mexico (Fig. 6b, Sup-
plementary Fig. 10); reducing domestic consumption in these regions
might actually lower their consumption-based footprints. In contrast,
the regions with the highest percentages of imported footprints are
European. Luxembourg, the Republic of Ireland and the United King-
dom import 98%, 88% and 83% of their land-driven species richness
footprints respectively. These high percentages will in part be due to
the regions’ relatively low domestic food production footprints but
may also reflect imports grown in highly biodiverse regions, which
could potentially be sourced more sustainably. Luxembourg, Ireland
and Norway import high percentages of their GHG-driven biodiversity
footprints (69%, 65% and 48% respectively) (Fig. 6d) and also have
particularly high per capita consumption-based GHG-driven foot-
prints (Fig. 4d).

We find that 10%, 15% and 8% respectively of land-driven species
richness, land-driven rarity-weighted richness and GHG-driven rich-
ness footprints are embedded within trade between aggregated world
regions (Supplementary Fig. 11), with patterns differing between the
footprint types, and between animal and plant-derived foods (Sup-
plementary Figs. 11-13). Although the total footprints of animal-derived
products are higher than plant-derived, a greater percentage of the
plant-derived footprint is traded between world regions: ~8%, 15%, 7%
(animal-derived) versus 17%, 21%, 11% (plant-derived) of the total
footprint for land-driven species richness, land-driven rarity-weighted
richness and GHG-driven species richness, respectively. These results
are discussed in more detail in the Supplementary Information (Sup-
plementary Fig. 13).

Discussion
Our metric of land-driven species richness change captures the higher
biodiversity footprint of products frommore species-rich regions and
from biomes in which biodiversity is more sensitive to land-use
change. The metric thus provides a more accurate footprint of the
biodiversity impact embedded within food than would be obtained
using land area alone. Weighting richness by species’ range area fur-
ther changes the assessment of embedded biodiversity footprint.
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Fig. 6 | Thepercentageofa region’s food-related footprint thatwas imported in
the year 2011. Footprints are in terms of (a) land use, (b) land-driven species
richness (SR) loss, (c) land-driven rarity-weighted richness (RWR) loss and (d) GHG-

driven richness loss. Regions which are in the 5 lowest or highest percentages for
one ormore footprints are shown. RoW Rest ofWorld. Source data are provided as
a source data file.
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Rarity-weighted richness places a greater emphasis on the biodiversity
costs in areas containing a higher proportion of narrow-ranged spe-
cies, which are of greater conservation concern than wider-ranging
species, notably parts of CS America. Our analysis also shows the need
to consider GHG-driven biodiversity loss, particularly in assessing
longer term future impacts of food production. We find that the cli-
mate contributions of food production are accumulating rapidly over
time– in several regions, annualGHG-driven production footprints are
as high as2%of the total historic land-use footprint,meaning that just a
decade’s worth of emissions (not including land conversion emissions)
will add an additional 20% to the biodiversity loss that has already
occurred due to wholesale conversion of land to agriculture. 70% of
the total GHG-driven biodiversity footprint of food-related products
stems from methane.

Our study incorporated the combinationof: (i) allowing sensitivity
to land use to vary by land-use type and biome; (ii) allowing for the
natural variation of species richness across political regions; and (iii)
allowing for spatial variation in future temperature change and in
species’ responses to that temperature change. Themodels we used to
capture land-use and climate impacts output the same biodiversity
metrics, allowingus to compare these twomajor driversofbiodiversity
change. Comparing the results of our study with those of previous
analyses of the embedded biodiversity footprints of food is not
straightforward since studies generally differ in resolutionwith respect
to regions and/or products (and may use data from different years).
Where comparisons can be made, we find both common ground and
divergence. In line with Marques et al.27, we show that production in
Africa, CS America and Asia & Pacific regions has the highest overall
biodiversity footprints and that cattleproducts have aparticularlyhigh
impact on biodiversity globally. Marques et al.27 use a biodiversity
metric of number of impending extinctions of bird species and, in
common with our land-driven species richness metric, identify almost
equally high impacts of cattle in Africa as in CS America. However, it is
only by using our rarity-weighted richness measure that the particu-
larly high cost to narrow-ranged species from cattle products in CS
America is revealed. Chaudhary and Kastner16 use bilateral trade data
in combination with a metric of the number of species committed to
extinction. Their study had greater spatial disaggregation than ours,
meaningwecannot compare regions includedwithin ourRoWregions.
An extension of EXIOBASE disaggregates trade regions into 214
countries, but its environmental extension has fewer land use cate-
gories and does not cover GHG emissions38. Nevertheless, our results
broadly support each other with respect to highlighting particularly
high consumption footprints in India, China, Brazil and the US. How-
ever, Chaudhary and Kastner found Indonesia to have the second
highest consumption footprint, whereas it only appears in our top ten
consumption footprints for rarity-weighted richness. The relative
magnitude of the regions with the greatest consumption footprints in
Chaudhary et al.39 study differs from our results. Sun et al.40 also use a
metric of the number of species committed to extinction at a greater
spatial disaggregation than our study. Their results show strong
agreement with ours with respect to consumption per capita, both
studies finding high footprints in Central America, Brazil, South Africa
and Australia. Kitzes et al.17, usingmetrics based on birds and a greater
spatial disaggregation than our study, also find particularly high
impacts of bovine products and, in contrast to our results, of pro-
cessed rice. Lenzen et al.24 assess the biodiversity footprint, as mea-
sured by number of threats to species, of all commodities, not just
those associated with food. Both Lenzen et al.24 and our study find the
US, Germany, the UK and Japan to be among the greatest importers of
embedded biodiversity, but our study has Russia as a major importer
of embedded biodiversity whereas Lenzen et al.24 find it to be one of
the greatest net exporters. The discrepancies between studies will in
part result from differences in trade models41,42 but are also likely to
result from differences in the biodiversity metrics used28, adding

support for ours and Marquardt et al.’s. 28
findings that different bio-

diversity metrics lead to different conclusions.
Our estimates of the impacts of food-relatedGHGsonbiodiversity

are lower than those of Wilting et al. 29 which is at least in part due to
differences inmethodology.Wepredicted the temperature rise in 2031
due to an emissions pulse in 2011 using the global temperature
potential (GTP). Wilting et al. 29 used the integrated GTP over a 100
year time horizon, thus summing the warming that occurred in every
year following the emission pulse, as opposed to calculating the tem-
perature of the hundredth year only. Wilting et al. 29 analyzed the land-
driven andGHG-driven biodiversity loss fromall economic sectors and
estimated that GHGs contributed to an average of 18% of the biodi-
versity loss associated with food although contributions varied by
region from 7% (Africa) to 45% (rest of Oceania). Given the different
metric and time horizon of global warming used, wewould expect our
results to differ from Wilting et al.29, with our GHG-driven footprints
estimated to contribute from theorder of0.1%–6%of biodiversity loss
for food products and up to 16% for fertilizer. Wilting et al.’s 29 study
further differed from ours since it used a different biodiversity metric
and MRIO, and assumed agricultural land was evenly distributed
across regions. Our studies support each other in suggesting current
GHG-driven emissions from the food-related products will play a very
significant role in future biodiversity loss. Reducing emissions asso-
ciated with food is therefore a high priority, particularly in Europe,
North America, Asia & Pacific.

Our study shows that measurements of trade-related impacts on
biodiversity differ considerably depending on the biodiversity metric
used. Whilst detailed discussion of the merits and relevance of differ-
ent biodiversity metrics may be appropriate in the scientific literature,
it is unlikely to be helpful to businesses and policymakers who require
succinct and readily interpretable biodiversity footprints. This leads to
the question of which measure(s) should be recommended to the
public and private sectors to aid them in reducing their environmental
footprints. What might the consequences be of one metric being
chosen over others? Our study suggests that a metric of land area,
whilst easy to measure and interpret, will over-inflate the cost of bio-
diversity in biodiversity-poor areas and under-estimate it in
biodiversity-rich areas, and thus is not recommendedwhen the focus is
biodiversity conservation. Species richness is preferable in this case,
and is still relatively easy to interpret, particularly if used in relative
rather than absolute terms. However, species richness has been criti-
cised as a biodiversity metric, since it does not decline if rare species
are replaced with common species (see Hillebrand et al.33). Weighting
for species rarity overcomes this, and highlights the higher losses of
smaller-ranged species from CS America. Using rarity-weighted rich-
ness over a simple species richness measure would likely lead to dif-
ferent decisionswith respect to the sustainable trade of foodproducts.

Wemust also consider whether GHG-driven biodiversity loss adds
value or unnecessary complexity to footprint estimates. Our study has
shown that it is fairly simple to calculate GHG-driven biodiversity loss
and to aggregate it with the land-driven impact. The annual GHG-
driven biodiversity impact of livestock sectors is equivalent to ~5% of
land-driven biodiversity loss in Asia, the US and Western Europe.
Importantly, this equates to 50% of the biodiversity impact of com-
plete land conversion within the timespan of just one decade. For
some individual products the ratio of GHG to land-driven impacts is
even higher. Including the GHG-driven losses in estimates of the food
industry’s impact on biodiversity would therefore seem worthwhile,
particularly since the bulk of emissions are from methane. Methane’s
short lifetime means that (assuming methane sinks are constant),
reducingmethane emissions actually leads to global coolingbut on the
flipside, increased emissions lead to substantial rapid warming43.
Reducing emissions from food in the immediate-termwould therefore
be an extremely effective route to reducing near-term warming. Our
results add to the already weighty evidence, e.g., 11,44,45, in support of
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policies that assist farmers to transition away from livestock andnudge
consumers toward a more plant-based diet.

Scientists are increasingly called on to provide support to assess
and reduce biodiversity impacts in both the public and private
sectors46,47. The biodiversity footprint methodologies that we present
could be used bymultiple stakeholders in the global food system, e.g.,
informing supply chain management, decisions on dietary shifts and
policies on sustainable trade, in particular, free trade agreement (FTA)
chapters targeted at reducing biodiversity loss. The European ‘new
green deal’ aims to improve the state of the environment in Europe but
this will involve offshoring part of Europe’s biodiversity footprint to
the tropics48. Tropical farming systems tend to have lower yields49,
lower environmental regulations48 and higher baseline biodiversity50

than European systems,meaning that not only ismore land required to
produce the same amount of food but, as we show, the cost to bio-
diversity per unit area is also relatively higher. There aredeep concerns
that recent agreements such as the 2021UK-Australia FTA and the 2019
EU-Mercosur FTA will increase tropical deforestation and biodiversity
loss51 via insufficient sustainability regulations. Our study shows that
Australia and CS America already dominate the exported biodiversity
footprint embedded in cattle products and that if this footprint is to be
decreased, policymakers should be looking at reducing, not increas-
ing, the export of such products. Themetricswehave developed could
easily be incorporated into online tools such as https://
commodityfootprints.earth/ which provide highly accessible ways
for stakeholders to understand the environmental impacts of current
consumption patterns. It is important that such tools use metrics that
capture different aspects of biodiversity since, if based on land use
alone, impacts on small-ranged species in the tropics will be sub-
stantially underestimated, particularly in CS America.

The examination of production-based footprints per-area (which
facilitate comparisons of production between different-sized regions)
allows for an increased understanding of the implications of regional/
national agricultural policies. Regions with high per-area production-
based footprints are targets for policies that reduce the environmental
impact of farming. There is considerable overlap of high per-area land-
driven and GHG-driven production impacts and it is interesting that
the Netherlands and Belgium, both less species-rich temperate coun-
tries, have some of the highest per-area production-based footprints,
even for rarity-weighted richness (Fig. 3). Taiwan is notable for all three
of its per-area land-driven production-based footprints being extre-
mely high (Fig. 3), with impacts being driven by a variety of products
including fruit/vegetables/nuts, other animal products (e.g., eggs,
honey), fish, pork products, sugar, and other food products (e.g.,
pizza, soups, sauces) (Supplementary Fig. 7) (although see ref. 36
regarding possible over-estimation of Taiwan’s material footprint).
India stands out as having very high paddy rice production per area for
all footprints (Supplementary Fig. 7).

Per-capita consumption-based footprints (which facilitate com-
parisons of consumption between regions with different population
sizes) also allow for targeting of agricultural and trade policies. We
found China, India and RoWAfrica had the highest overall GHG-driven
biodiversity footprints, but once population size was considered, only
RoW Africa remained in the top ten per-capita footprints. Identifying
the products that lead to regions’ high per-capita footprints is the first
step towards reducing those footprints. For example, extremely high
per-capita consumption-based footprints from cattle, raw milk and
dairy products contribute to Estonia’s place in the top ten for GHG-
driven biodiversity loss (see Fig. 4 and Supplementary Fig. 8). Whilst
we recognise that changing cultural norms can be very difficult,
reducing Estonia’s per-capita footprint would be relatively straight
forward from a policy perspective, since it involves only one food
group andcould perhaps be tackled via a combination of dietary shifts,
source-shifting and change in dairy-farming practices. Australia, in
contrast, has particularly high per-capita land-driven consumption-

based footprints for a wide variety of products spanning fruit/vege-
tables/nuts, all products associated with cattle and othermeat animals
(e.g., sheep), rice, other food products and beverages. Reducing these
footprints will likely require a more complex suite of strategies.

We found that some regions import over 90% of their embedded
biodiversity footprint, further indicating the need for sustainable trade
as a measure to halt biodiversity loss. Regions with a high proportion
of imported footprint coupled with high per-capita consumption-
based footprints are targets for reducing their imports and/or the
biodiversity footprint embedded within those imports17; Estonia,
Luxembourg, the Netherlands and Norway all fall into this category
(Figs. 4 and 7). Conversely, regions with a low percentage of imported
footprint but high per-capita consumption such as Brazil, Mexico and
South Africa should be lowering their domestic footprint in order to
reduce their biodiversity impact.

Themain net importers of land-driven biodiversity footprint tend
to be net exporters of GHG-driven biodiversity footprint, and vice
versa. The emissions associated with crop production largely arise
from fertilizer use (although also fuel combustion, industry and
waste)52. Low fertilizer application will be associated with low emis-
sions but lead to a smaller yield and therefore a larger land-use foot-
print. On the other hand, heavy fertilizer use will result in more
emissions but smaller land use. This negative correlation is exacer-
bated since areas that use more fertilizer tend to be areas of lower
species richness such as N America and W Europe53. Future studies
could use our comparable land-driven and GHG-driven biodiversity
metrics to investigate the reduction of biodiversity footprints via
source shifting and the spatial optimization of cropland.

There are several limitations of MRIOs which must be considered
in interpreting our results: sectoral and regional aggregation54,55, an
assumption of price homogeneity56,57, limitations in data reporting58,
and the age of input data59. Sectoral and regional aggregation are
particularly pertinent given that some of the highest footprints we find
relate to the highly aggregated RoW regions and ‘Other food’ sector.
Regional aggregation underestimates the volume of trade (and thus
embodied impacts) and has been shown to under/over estimate the
land use impacts of agricultural commodities by up to 20% and 10%
respectively, compared to a disaggregated version of EXIOBASE with
full country resolution38. The original EXIOBASE 3 data end in 2011 and
although more recent trade data are now available, land use is still
limited to 2011 (https://zenodo.org/record/5589597#.YnkHvOjMK3A).
Our results therefore reflect the biodiversity impact of food produc-
tion over a decade ago, and will likely underestimate the current
impact due to the expansion of agricultural land60 in the intervening
period.

Agricultural intensity is not yet captured within MRIO models of
trade flows. Consequently, in commonwith other footprinting studies,
e.g., 26,27, our analysis only measures biodiversity impacts caused by
direct land-use change, and does not explicitly consider the impacts of
agricultural intensification. Neither does our study explicitly account
for indirect biodiversity loss that might occur through loss of ecosys-
tem function, e.g., soil impoverishment. Nevertheless, the PREDICTS
database does sample gradients of agricultural intensity and ecosys-
tem degradation, and so these factors should be captured implicitly31.
New approaches, such as the Human Appropriation of Net Primary
Production (HANPP), e.g., 21, show promise for capturing effects of
agricultural intensity in the future, although linking such measures to
biodiversity loss remains a challenge. Our models of land-use impacts
represent terrestrial vertebrates, invertebrates, plants and fungi but,
due to data limitations, our biodiversity metrics used to estimate cli-
mate impacts refer to terrestrial vertebrates only.

While our study highlights that the consumption of cattle pro-
ducts contributes considerably to land-driven biodiversity loss, it is
important to be aware that there is high variability in pasture maps
stemming from the different definitions, methods and underlying

Article https://doi.org/10.1038/s41467-024-49999-z

Nature Communications |         (2024) 15:5750 10

https://commodityfootprints.earth/
https://commodityfootprints.earth/
https://zenodo.org/record/5589597#.YnkHvOjMK3A


datasets used in their generation61. However, the Ramankutty et al.62

dataset that we used is one of the best available, aligning well with
other datasets61.

We have presentedmethods that capture regional variation in the
sensitivity of biodiversity both to land use and climate change to
estimate the land-driven and GHG-driven biodiversity impacts
embedded within the production, consumption and trade of food-
related commodities. We find that land-driven footprints differ
depending on the metric used and that GHG-driven biodiversity
impacts are driven largely by methane emissions and contribute a
higher proportion of the total footprint in regions of higher income
and lower species richness. The measures we present are simple to
calculate and could be incorporated into decision-making and envir-
onmental impact assessments by governments and businesses. Our
consistent metric for biodiversity impacts allows us to present multi-
ple aspects of land-driven and GHG-driven biodiversity footprints,
enabling insight into priorities for reducing biodiversity costs via both
global and regional production and consumption.

Methods
EEMRIO analysis
Input-output analysis is a top-down approach that uses sectoral
transaction data (either in financial terms or units of product) to
account for the complex interdependencies of industries. An input-
output table can be environmentally extended by adding information
on exchanges with the environment, e.g., GHG emissions or land use,
by each industry sector. EEMRIO analysis traces the production and
supply chain of traded goods and services and their associated mate-
rials back to the sourceof primary extraction, thus capturing the direct
and indirect environmental pressures associated with a country’s final
consumption (from households, non-profit organizations, govern-
ments, capital formation, changes in inventories and valuables, and
exports)20. Full details of the calculations underlying EEMRIO analysis
can be found in Kitzes20 and Miller and Blair19.

We used the standard environmentally-extended Leontief model
to calculate the effects of consumption on biodiversity loss

E= f � I� Að Þ�1 � Y ð1Þ

Where, for i regions and m economic sectors:
E is a (1 × i) matrix, representing the environmental impacts

associated with the final demand of each region (CO2, CH4 and N2O
emissions, in kg, and agricultural area, in km2).

f is the (1 x im) direct intensity vector, representing the environ-
mental pressures (e.g., area of land, mass of CO2 emissions) associated
with one unit (€1M) of production for each product sector in each
region.

I is the (im × im) identity matrix.
A is the (im × im) technical coefficient matrix which gives the

amount of input (€1M) that every sectormust receive fromevery other
sector in order to produce one unit (€1M) of output.

Y is the (im × i) matrix of final demand (associated with house-
holds, non-profit organisations, governments, capital formation,
changes in inventories and valuables and exports) given in monetary
terms (€1M).

The direct intensity vector f allows the MRIO to be extended to
include environmental costs of production and consumption. Sections
2.2 and 2.3 describe our environmental ‘characterization factors’based
on species richness, rarity-weighted richness, land use, and GHG
emissions. The vector relating to land use is a sparse vector populated
in the entries for production activities that directly involve use of
cropland or pasture, e.g., populated for paddy rice but not for
processed rice.

We use the EEMRIO database EXIOBASE3.8.1 (product by product
version)52, because of its superior balance of sectoral and regional

disaggregation relative to other MRIOs. EXIOBASE3 provides a har-
monised time-series of MRIO tables and environmental extensions
over the period 1995-2022, covering 200 products, 44 countries (EU
countries and other major economies), plus 5 ‘Rest of World’ (RoW)
regions. We chose 2011 as our year for analysis since land use data are
available up to 2011 only (https://zenodo.org/record/5589597#.
YnkHvOjMK3A) and spatial data for the majority of crops49,63 does
not extend beyond this date (see below).

Our analysis focuses on the production and consumption of the
33product sectors associatedwith food (SupplementaryTable 1) in the
year 2011, including fertilizer production and food waste processing.
‘Hotel and restaurant services’ were excluded since they encompass
energy and materials, for example, as well as food. Full details of
EXIOBASE’s land-use and emissions accounts are given in Stadler
et al.52. Our land-driven biodiversity footprints are based on agri-
cultural land, and exclude impacts of forestry, infrastructure or other
uses. We account for land use intensity in the sense that the amount of
land required to produce one unit of food differs between the EXIO-
BASE regions but, in common with previous biodiversity footprint
studies, we do not model the effects of different agricultural practices
(e.g., fertilizer and pesticide use) or different yields per unit area on
biodiversity. Direct GHG emissions from crops derive from nitrogen
fertilisers, while direct GHG emissions from livestock derive from the
animals (enteric fermentation for ruminants), the manure excreted
and the cultivation of feed crops. Impacts of fertilizer refer to the
productionof the fertilizer only, and impacts of foodwaste refer to the
waste treatment and decomposition processes and do not include the
production impacts of the wasted food.

Characterisation factors for land-driven biodiversity impacts
Maps for a) the 49 EXIOBASE trade regions, b) the six biomegroupings
used in Newbold et al.31 (but here also including boreal forest within
the temperate-forest grouping), and c) the 15 EXIOBASE agricultural
land-use categories were identified, and map masks for each unique
3-way combination were generated in R using packages raster64 and
rgdal65. Shapefiles mapping the borders of individual countries66 were
aggregated and rasterized to match EXIOBASE’s 49 regions. Biomes
were obtained from The Nature Conservancy67 and were aggregated
into tropical forest, temperate/boreal forest, tropical grassland, tem-
perate/montane grassland, Mediterranean, and drylands (tundra,
mangroves, flooded grasslands, inland water and rock & ice excluded;
Supplementary Table 2). Croplanddatawere obtained from the Spatial
Production Allocation Model (SPAM)49 and from EarthStat63 and pas-
ture data from EarthStat62. All spatial data were reprojected to an
equal-area Behrmann grid. A summary schematic is given in Fig. 7a and
further details of the preparation of datasets are given in the Supple-
mentary Information.

Mapped spatial estimates of species richness and rarity-
weighted richness for terrestrial vertebrates were obtained by
stacking species geographical distributions at a 10-km equal-area
resolution. Extent-of-occurrence distribution maps were obtained
from the IUCN68, BirdLife International69, Meiri et al.70, and Roll
et al.71. We selected only areas where species are extant or probably
extant, and resident during the breeding season. As in Etard et al.72,
we further excluded areas outside the known elevational limits of
species68. Species richness was calculated as the number of species
occurring within a grid cell. Rarity-weighted species richness
weights were calculated as the inverse of a species’ estimated range
size, and rarity-weighted richness as the sum of these weights across
species occurring within a grid cell. Mean species richness and
rarity-weighted richness were calculated for each land-use type
within each biome within each trade region.

We estimated the sensitivity of biodiversity to land use using
models of the PREDICTS database73,74, following the methods given in
Newbold et al.31 (for full details see the Supplementary Information).
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The PREDICTS database contains 3.25 million samples of biodiversity
in six different land uses from 26,114 locations and 47,044 different
species. For the purposes of this study, we modeled biodiversity dif-
ferences among four land-use classes: primary vegetation, secondary
vegetation, agriculture (including both plantations and herbaceous

cropland) and pasture, allowing the response of biodiversity (i.e.,
species richness based on 21,986 locations from637 studies and rarity-
weighted richness basedon 15,198 locations from403 studies) to these
land-use categories to vary among the six broad biome groupings
listed above.

(a) Calculating biodiversity characterisation factors: Land-driven biodiversity loss

15 Land-use classes
(10km-resolution global grid giving fractional area of

each land-use; cells containing >= 2.5% of a land-use
included )

Cropland
SPAM (2019);  EarthStat (Monfreda et al 2008)

Pasture
EarthStat (Ramankutty et al 2008)

6 Biomes
(shapefile)

The Nature
Conservancy (2019)

49 Trade regions
(shapefile)

ESRI (2015)

4410 combinations of
Region-Biome-LandUse masks

(10km-resolution global grid)

Mean species richness within
each Region-Biome-LandUse

combination (species)

Mean rarity-weighted richness within
each Region-Biome-LandUse
combination (range fractions)

Weighted mean by
biome area

Species richness change within each Region-Biome-
LandUse combination (species)

Rarity-weighted richness change within each Region-
Biome-LandUse combination

(range fractions)

Multiply

Mean species richness loss for each Region-
LandUse combination

(species)

Mean rarity-weighted richness loss for each
Region-LandUse combination (range fractions)

Land-use area in 2011 (km2)
(1617 product-region values)

EXIOBASE
Stadler et al (2017)

Species richness characterisation factor
(species x km2)

Rarity-weighted richness characterisation factor

(range fractions x km2)

Species richness (species)
Rarity-weighted richness (range

fractions)
(10km-resolution global grid)

IUCN (2020)
BirdLife International (2020)

Meiri et al. (2017)
Roll et al. (2017)

Overlay

Coefficients (unitless) denoting fractional
loss in species & rarity-weighted richness

due to land use change
(Values for agriculture and pasture in each
biome. Gains can occur as well as losses.)

PREDICTS
(Newbold et al. (2020))

Multiply

(b) Calculating biodiversity characterisation factors: GHG-driven biodiversity loss

Species richness characterisation factor
(species x km2)

Rarity-weighted richness characterisation factor

(range fractions x km2)

Multiply

Species richness (species)
Rarity-weighted richness (range

fractions)
(10km-resolution global grid)

IUCN (2020)
BirdLife International (2020)

Meiri et al. (2017)
Roll et al. (2017)

Coefficients denoting sensitivity of species
& rarity-weighted richness to climate

change (OC-1)
(10km-resolution global grid)

Newbold (2018)

Multiply

CO2, CH4 & N2O emissions (kg)
(1617 product-region values)

EXIOBASE (Stadler et al 2017)

20 year Global Temperature Change
Potential (GTP) coefficients (OC/kg)

Myhre et al. (2013)

Multiply

Multiply

Mean global
temperature change in
2031 due to emissions

in 2011 from production
of each food product in

each region (OC)

Temperature spatial weighting factor
(unitless ratio; mean = 1)

(10km-resolution global grid)

GFDL-ESM2M
HadGEM2-ES

IPSL-CM5A-LR,
MIROC5

Hijmans et al. (2005)

Fractional loss in species richness &
rarity-weighted richness in 2031 due
to emissions in 2011 from production

of each product in each region

Multiply Area of a grid cell (km2)

Sum grid cells

Fig. 7 | Schematics summarising the characterisation factor calculations.Characterization factors for (a) land-driven biodiversity loss and (b) GHG-driven biodiversity
loss. The methods allow for biodiversity gain which would be represented as a negative loss.
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Characterization factors for species richness were calculated as
follows (see also Fig. 1a).We used the species richnessmap to estimate
the mean species richness Si,j,k that would occur in undisturbed land
across the area covered by each EXIOBASE land-use type i, within each
biome j and each EXIOBASE trade region k. The change in species
richness ΔSi,j,k due to land use was calculated as:

ΔSi,j,k = Si,j,k ×Pj,l ð2Þ

where Pj,l is the proportional change in species richness in PREDICTS
land-use type l and biome j, compared to primary vegetation in that
biome (see Supplementary Table 3 for the correspondence between
EXIOBASE and PREDICTS land-use types, and Supplementary
Tables 4 and 5 for values of Pj,l). The change in species richness ΔSi,k
within each EXIOBASE land-use type i and each region kwas calculated
as:

ΔSi,k =
XJi,k

j = 1

ðΔSi,j,k ×Bi,j,kÞ ð3Þ

where JI,k is the number of biomes covered by the EXIOBASE land use
type i within the region k and Bi,j,k is the proportion of the EXIOBASE
land-use type i within the region k that is covered by the biome j. The
characterisation factor CFi,k was then calculated as:

CFi,k =ΔSi,k ×Ai,k ð4Þ

where Ai,k is the area of agricultural land used to produce €1M of
product in land-use type i in region k, as given by EXIOBASE).
Characterization factors for rarity-weighted richness were calculated
using the same method, but using the map of rarity-weighted species
richness, and correspondingmodelledestimates of land-use sensitivity
(for characterization factor values, see Supplementary Data 1 and 2).

The characterization factors for species richness have units of
number of species × km2 and can be thought of as the count of the
species lost, with this loss extending over the area of land required to
produce €1M of product, as given in EXIOBASE. Rarity-weighted
richness characterization factors are less intuitive but can be thought
of as having a unit of species range fractions × km2.

Characterisation factors for GHG-driven biodiversity change
We calculated GHG-driven biodiversity change in a three-step process.
First, we calculated the GHG emissions (split into carbon dioxide
(CO2), methane (CH4) and nitrous oxide (N2O)) associated with each
region’s production of the 33 different food-related products in 2011
using EXIOBASE. Second, we calculated the warming that would result
from these emissions. Third, we calculated the biodiversity change
that would result from this warming, allowing for non-uniformity of
warming across the globe. A summary schematic is given in Fig. 7b.

EXIOBASE gives emissions for sixGHGs: carbon dioxide,methane,
nitrous oxide, and three fluorinated gases. We calculated footprints
using the first three gases only since their contribution to warming via
food-related emissions is much greater than that of the fluorinated
gases75. Emissions were summed over the four categories given by
EXIOBASE (‘Combustion – air’, ‘non-combustion’, ‘agriculture’ and
‘waste’). Footprints were calculated using the environmentally-
extended Leontief model described above.

GHG-induced warming is often described in terms of the Global
Warming Potential (GWP), ametric that compares the radiative forcing
integrated over a time period caused by the emission of 1 kg of an
agent relative to the integrated forcing caused by the emissions of 1 kg
of CO2

76. However, GWPhas been criticised as it does not translate into
a climate response that is intuitively understood77. We, therefore, cal-
culated the increase in global surface temperature due to GHG

emissions using the Global Temperature Change Potential (GTP), a
metric designed to be an intuitive measure of climate response77 and
one that hasbeen used inprevious biodiversity footprint studies29. The
GTP is defined as the ratio between the global mean surface tem-
perature change at a given future time horizon following an emission
(pulse or sustained) of a compound relative to a reference gas77. Stu-
dies often use a time horizon of 100 years following the Kyoto Proto-
col, but this choicewas originally made on an arbitrary basis and is not
the most appropriate for shorter term continental climate responses
as it masks methane’s potency11,78. Instead we chose a 20-year time
horizon, to capture warming due to the relatively short-lived methane
emissions, and to represent a time that is tangible to today’s policy and
decision-makers. GTP values in units of degrees of warming (°C) per
kilogram of emissions were taken from the AR5 IPCC report79, Table
8.A.1 (CO2 6.84 × 10−16 °C /kg, CH4 4.62 × 10−14 °C /kg, N2O 1.89 × 10−13 °C
/kg). The warming in °C that would result by 2031 ΔTp,k due to the
emissions Eg,p,k associated with each gas g due to the production of
€1M of each product p in each region k was calculated as:

ΔTp,k =
X

g
ðEg,p,k ×Cg Þ ð5Þ

where Cg is the GTP value for each gas g.
We estimated the sensitivity of biodiversity to climate change

based on future projections of changes in the distributions of terres-
trial vertebrates under the Representative Concentration Pathways
(RCP) climate-change scenarios5, thus putting our projected tem-
perature change in context with wider climate variables. It is necessary
to use future projections rather than observed responses of species to
climate change because we do not yet have enough data for a wide
range of species from locations that have experienced extensive his-
torical climate change31. Full details are given in the Supplementary
Information.

To account for the non-uniformity of warming across the globe,
we calculated a grid of spatial weighting factors to up or downweight
temperature change depending on the difference between the pro-
jected local and mean global temperature change. The projected
temperature change ΔTx in each cell x between 2011 and 2031 under
RCP8.5 was calculated by averaging the projections of four different
climate models (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR,
MIROC580). The temperature weighting factor Fx for each cell x was
calculated as

Fx =ΔTx=
�ΔTx ð6Þ

where �ΔTx is the mean global temperature change. The fractional loss
in species richness ΔSx,p,k in 2031 due to ΔTp,k, the temperature
increase from emissions from food production of each product p in
each region k, was calculated as:

ΔSx,p,k = Fx ×Hx ×ΔTp,k ð7Þ

where Hx is a grid estimating the sensitivity of species richness to
climate change (for details see the Supplementary Information). This
grid is based on projected changes in the distributions of species
under climate change and describes the expected change in local
species richness in any terrestrial location associated with a tempera-
ture increase of 1 °C.

This fractional loss in species richness ΔSx,p,k was then multiplied
by our species richness grid and by the area of each grid cell to give a
characterization factor for GHG-driven biodiversity loss, CFp,k, with a
unit of species × km2 that is comparable to our metric for land-driven
biodiversity loss. This characterization factor was calculated as:

CFp,k =ΔSx,p,k × Sx ×Ax ð8Þ
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where Sx is the species richness in undisturbed vegetation under a
natural climate in grid cell x and Ax is the area of grid cell x. The same
basic method was used to calculate the characterization factors for
change in rarity-weighted richness (see Supplementary Information
for details). The GHG-driven characterization factors for change in
species and rarity-weighted richness are directly correlated (for
characterization factor values, see Supplementary Data 3 and 4.)

Global maps illustrating the proportional richness changes that
would occur due to land-driven andGHG-driven processes are given in
Supplementary Fig. 4. Our metrics of land-driven and GHG-driven
biodiversity loss are modeled and presented in the same units, and
hence are comparable. However, there are differences in the way that
the two drivers impact biodiversity, and in the methods we used to
model these impacts. We calculate the biodiversity change associated
with all land used in food production in 2011, regardless of the year of
conversion. Our measure of GHG-driven biodiversity change is asso-
ciated with emissions produced in 2011. We consider the impact of
land use to be reversible and view land conversion as a ‘one-off’ cost,
i.e., once the land is converted, biodiversity change is immediate and
does not increase over time. In contrast, we view GHG emissions as
irreversible, repeated annual costs that occur 20 years after emission.
Wewould expect the global biodiversity loss caused by a single year of
emissions to be much lower than that caused by the conversion of the
total amount of agricultural land used in 2011. We calculate the ratio of
land-driven to GHG-driven biodiversity loss for products and regions.
We can crudely approximate a ratio of 100, for example, to mean that
within a century, assuming the same emissions repeat annually, the
global biodiversity loss caused by emissions from a region’s food
productionwill equal the biodiversity loss due to total land conversion
in that region. In reality, this may be an underestimate since we do not
consider the emissions released by land conversion.

Per land area and per capita footprints
The regions within EXIOBASE have unequal land areas and human
populations. To make a fairer comparison of footprints between
regions, we converted production footprints to footprints per km2 and
consumption footprints to footprints per capita. Per-km2 footprints
were calculated using EXIOBASE trade regions’ areas (Supplementary
Data 5), which were calculated in R (using packages raster64 and
rgdal65) from ESRI country shapefiles66. Per-capita footprints were
calculated using population data for the year 2011 for the EXIOBASE
trade regions (Supplementary Data 6), which were obtained from
CountryEconomy.com81 (Taiwan) and the World Bank37 (all other
regions).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
EXIOBASE version 3.8.1 can be downloaded from https://zenodo.org/
records/458823582. SPAM’s Global Spatially-Disaggregated Crop Pro-
duction Statistics Data for 2010 Version 2.049 can be downloaded from
https://doi.org/10.7910/DVN/PRFF8V. EarthStat’s Cropland63 and Pas-
ture Area62 in 2000 can be downloaded fromearthstat.org. Biome data
from The Nature Conservancy’s Terrestrial Ecoregions of the World
2009 data67 can be downloaded from https://tnc.maps.arcgis.com/
home/item.html?id=7b7fb9d945544d41b3e7a91494c42930. Country
shape files66 can be downloaded from https://hub.arcgis.com/
datasets/a21fdb46d23e4ef896f31475217cbb08_1/data. GTP values can
be found in the AR5 IPCC report79, Table 8.A.1. Population data for the
year 2011 can be downloaded from CountryEconomy.com81 and the
World Bank37. Species occurrence maps, the averaged temperature
anomaly data, the cropland and pasture rasters and the species rich-
ness and rarity-weighted richness rasters used in the analysis are

available on request from the authors. The compiled data underlying
our study can be found in the Supplementary Data files 1–6. All other
data supporting the findings of this study are provided in the Sup-
plementary Information and Source Data files. Source data are pro-
vided in this paper.
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