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Abstract 

The scarcity of long-term observational data has limited the use of statistical or machine-learning techniques for predicting intraannual 
ecological variation. However, time-stamped citizen-science observation records, supported by media data such as photographs, are 
increasingly available. In the present article, we present a novel framework based on the concept of relative phenological niche, using 
machine-learning algorithms to model observation records as a temporal sample of environmental conditions in which the represented 
ecological phenomenon occurs. Our approach accurately predicts the temporal dynamics of ecological events across large geographical 
scales and is robust to temporal bias in recording effort. These results highlight the vast potential of citizen-science observation data 
to predict ecological phenomena across space, including in near real time. The framework is also easily applicable for ecologists and 
practitioners already using machine-learning and statistics-based predictive approaches. 

Keywords: citizen science, digital data, ecological monitoring, phenological niche, seasonality prediction 
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to model fitting. More specifically, commonly used data-driven 
modeling techniques, such as state–space models or custom-built 
machine-learning architectures are mostly fitted using time series 
of the phenomenon of interest, preferably collected over represen- 
tative geographical extents (e.g., Rammer and Seidl 2019, Marolla 
et al. 2021 , Morera et al. 2021 , Lofton et al. 2022 ). Unfortunately, 
data sets meeting these requirements are often nonexistent or 
remain temporally or spatially limited for many ecological phe- 
nomena. 

At the same time, the number of citizen-science biodiversity 
observation records in public repositories, such as eBird 
(ebird.org), the Global Biodiversity Information Facility (GBIF; 
gbif.org), Observation (observation.org) or iNaturalist (inatural- 
ist.org), has been rising steeply (Bonney 2021 , Callaghan et al. 
2023 ). These data are frequently georeferenced with high preci- 
sion, time stamped, and accompanied by visual media, including 
photographs (Groom et al. 2021 , Meeus et al. 2023 ). As such, 
they represent a potentially valuable source of information on 
the spatiotemporal dynamics of ecological phenomena. Previous 
research has already demonstrated their usefulness for temporal 
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cological phenomena with intraannual variation, such as species
henology, migrations, behavior, or productivity levels, are key
rivers and indicators of the structure, status, and functioning of
cological systems (Tang et al. 2016 ). Spatial predictions of such
henomena over short and long time frames now serve a vari-
ty of important fundamental and applied purposes, including
mproved understanding of ecological processes (Houlahan et al.
017 , Dietze et al. 2018 ), anticipation of ecological risks (e.g., Kim
t al. 2023 ), management of threats to biodiversity (e.g., Henden
t al. 2022 , Slingsby et al. 2023 ), and the promotion of sustainable
se of natural resources (e.g., Marolla et al. 2021 ). These contribu-
ions are of growing significance, given escalating environmental
hanges and mounting human pressures on biodiversity (Pereira
t al. 2012 ). 
Statistical or machine-learning-based predictions of ecologi-

al phenomena that change over time rely on algorithm-based
dentification of predictive features, either in the temporal pro-
ression of the event itself or in putative environmental drivers.
lthough this approach is generally straightforward, its use is
ependent on the availability of observational data amenable
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cology research, such as in measuring flight periods for Lepi-
optera species (Belitz et al. 2023 ) or in estimating the flowering
eriod of plant species (Puchałka et al. 2022 ). However, despite
heir widespread availability, the use of presence-only, predomi-
antly opportunistic data for temporal modeling is challenging
ecause of the lack of temporal replicability, temporal recording
iases, and uneven spatial coverage. To minimize these limita-
ions, previous researchers have selected records from areas with
emporal replicability (e.g., where multiple records are available
ithin the same year) from which temporal trends are then in-
erpolated (e.g., Belitz et al. 2020 , Puchałka et al. 2022 ). Although
ractical and seemingly effective (Pearse et al. 2017 , Belitz et al.
020 ), this approach disregards potentially informative records in
egions with low or null temporal replicability. Moreover, the need
or temporal replicability also creates data availability issues,
imilar to those of time-series data, limiting the phenomena and
egions that can be modeled. 

In this study, we propose a novel, data-driven approach for pre-
icting the intraannual timing of occurrence of ecological phe-
omena using opportunistic presence-only records. The approach
s grounded in ecological theory (box 1 ) and assumes that any
bservation record of the phenomenon of interest reflects the
emporal match of physical and biological conditions suitable for
ts occurrence. By jointly sampling the set of conditions repre-
ented across multiple records, our approach constructs a repre-
entation of the temporal environmental space under which the
henomenon occurs—that is, its phenological niche (Post 2019 ).
his approach can integrate all occurrence data available and
s not reliant on regional temporal replicability. To demonstrate
ts effectiveness, we use it to provide daily predictions of the oc-
urrence of adult invasive Japanese beetles ( Popillia japonica ) and
ruiting bodies of the winter chanterelle mushroom ( Craterellus
ubaeformis ) across Europe and North America. We also show its
pplicability for management-related tasks by using environmen-
al predictors enabling the near real time prediction of these
wo ecological events. Our approach is conceptually intuitive and
traightforward to implement for ecologists experienced with
achine-learning or statistics-based predictive modeling. It also
rovides a promising research avenue to harness the vast and
rowing amounts of citizen-science biodiversity observation data
or predicting the timing of ecological phenomena. 

 framework for predicting the timing of 
cological phenomena using 

itizen-science data 

o demonstrate the implementation of the methodological frame-
ork derived from the conceptual framework (box 1 ), we use phe-
ological events related to the Japanese beetle and the winter
hanterelle mushroom. The Japanese beetle is a highly problem-
tic invasive species known to feed on hundreds of plant species,
ausing significant economic losses (Potter and Held 2002 ). This
eetle is well established in North America and the Azores and
as recently established in northern Italy, raising concerns of a
apid invasion of Europe from there (EFSA 2019 ). Early detection
urveys can be effective in preventing the spread of this species,
nd the adult life stage is particularly suitable for such surveys
EFSA 2019 ). Therefore, it is essential to understand when adults
f this species are likely to be observed, especially in areas where
heir presence is uncertain, to determine the appropriate timing
or implementing surveillance efforts. 
The winter chanterelle is a popular edible mushroom found in

urope and North America. In some areas of these regions, the
arvesting of wild edible mushrooms is regulated to avoid ex-
essive human pressure on areas of occurrence (Copena et al.
022 ). Importantly, the timing and abundance of mushroom fruit-
ng bodies determine the level of human pressures (Górriz-Mifsud
t al. 2017 ); therefore, having prior knowledge about the timing of
heir occurrence can aid in management decisions. In addition, it
an assist the collectors in planning their harvest activities, being
f potential benefit to a large community of people. 
To provide a clearer understanding of the methodology de-

cribed below, we outline the main steps of our framework in
gure 2 . 

tep 1: Assembly of event observation data 

e obtained observation records for both species from the GBIF
 www.gbif.org), whic h is a leading aggregator of biodiversity ob-
ervation records, including those from citizen science plat-
orms such as iNaturalist ( www.inaturalist.org). For the winter
hanterelle, we also included records from Mushroom Observer
 https://mushroomobserver.org), another citizen science platform
ot included in GBIF. We limited our data set to records with
hotographic evidence, full date of observation (i.e., day, month,
nd year), and geographic coordinates with a spatial precision
reater than 0.1 decimal degrees (approximately 4–11 kilometers
km], depending on latitude). We included records from 2015 to
021 and, to ensure data quality, we removed GBIF records where
he observation date was the first day of the month and the ob-
ervation time was 00:00:00. These records generally only pro-
ide the month and year and are assigned the first day of the
onth by default (Belitz et al. 2023 ). We then assessed the pho-

ographic evidence supporting each remaining record. For the
apanese beetle, we retained only records where the photograph
howed an adult life stage and no signs of the specimen being
ead. For the winter chanterelle, we kept records supported by
hotographs of fruiting bodies that showed no signs of significant
eterioration. 

tep 2: Environmental data 

he timing of ecological events can be influenced by a multi-
ude of biotic and abiotic factors. However, for the two phenom-
na being modeled, weather-related factors are believed to be the
ain drivers of their seasonality, as has been evidenced by previ-
us studies (Diez et al. 2013 , EFSA 2019 ). Therefore, we used daily
patial time series of minimum temperature, mean temperature,
aximum temperature, total precipitation, snow depth, and wind
peed to capture the environmental conditions associated with
he occurrence of these events. 
We sourced these data from the AgERA5 data set (Boogaard

t al. 2020 ), which provides daily weather maps at a spatial res-
lution of 0.1 degree. The data was collected for the period from
014 to 2021, but its availability has a delay of approximately
ne month after the last day represented. Therefore, to exem-
lify the implementation of the framework using a source that
rovides up to date weather data, we collected the same set of
ariables from the Global Forecast System (GFS), a weather fore-
ast model from the National Centers for Environmental Predic-
ion ( https://www.ncei.noaa.gov/). The GFS provides forecasts of
eather conditions at intervals of up to 3 hours and runs four
imes a day at 00:00, 06:00, 12:00, and 18:00 UTC. To ensure consis-
ency between the two data sources, we extracted the forecasted
onditions for the first 6 hours of each model run and aggregated
hem to a daily resolution. We also resampled AgERA5 data to
.25-degree cell size (approximately 28 km at the equator), the
patial resolution of GFS data. The processing of spatial weather

http://www.gbif.org
http://www.inaturalist.org
https://mushroomobserver.org
https://www.ncei.noaa.gov/
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Box 1. Conceptual framework.

This conceptual framework describes the ecological components represented in our modeling approach. We base the conceptual 
framework on the concept of the relative phenological niche, which refers to the timing of phenological events as a function of 
temporal variation in biotic and abiotic factors—that is, relative to environmental drivers (Post 2019 ). Relative phenological niches 
form the set of temporal environmental conditions within which a phenological event occurs, a concept that can be represented 
as an n -dimensional hypervolume (figure 1 a). For example, if a hedgehog is active on a specific day of the year, this means that the 
conditions for relevant biotic (e.g., food resources) and abiotic (e.g., temperature and precipitation) factors—with reference to the 
specific day and place of the observation—are within the boundaries of the hypervolume of hedgehog activity. Relevantly, these 
hypervolumes can be empirically sampled using records of the observation of the event, where each record represents a point in its 
n -dimensional space (figure 1 b). The comprehensiveness of the sampling inherently depends on the representativeness of the set 
of observation records. However, with many phenomena now being represented by thousands or tens of thousands of opportunistic 
records (Bonney 2021 , Klinger et al. 2023 ) it seems plausible to assume that a good representativeness can often be achieved. 

We also consider the assembly of a set of environmental conditions to contrast with those representing the relative phenological 
niche. For that purpose, we use the set of temporal environmental conditions that are available in places where the phenomenon 
occurs—that is, the so-called realized environmental conditions (figure 1 c; Post 2019 ). 

These conditions are sampled using records with the same geographical coordinates as observation records (guaranteeing that 
the sampling is made in areas where the event occurs) but with dates randomly selected from the temporal span of the event 
records. Hereafter, we call these records temporal pseudoabsences , because they are conceptually similar to pseudoabsence records 
used in species distribution modeling for sampling the geographical space available (Phillips et al. 2009 ). 

In summary, our framework assembles a data set representing the temporal environmental conditions associated with obser- 
vation of the phenomenon of interest and with the full set of conditions in places where the phenomenon occurs. Discriminative 
algorithms are then used to distinguish between these two sets, and the predictions can be interpreted as the probability of the 
represented conditions belonging to the relative phenological niche of the represented phenomenon.

Figure 1. Schematic representation of the conceptual framework underlying the modeling approach. Hypervolumes of temporal environmental 
conditions are represented describing the relationship between the relative phenological niche of a hypothetical phenomenon of interest (a), a 
subset of this niche that is represented by available presence-only observation records (b), and the full set of temporal environmental variation 
that is available in locations where the phenomenon occurs (c). Delineation of hypervolumes is made along a simplified two-dimensional space 
defined by the timing of two hypothetical environmental drivers. 
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ata was performed in R (R Core Team 2022 ) using functions pro-
ided by the “terra” and “raster” packages (Hijmans et al. 2023 ). 

tep 3: Addressing spatial and temporal 
ecording bias (optional) 
iodiversity observation data are often geographically and tem-
orally biased—particularly, opportunistically collected records
(Isaac and Pocock 2015 ). To minimize these biases in our models,
we applied a set of procedures described next. We note, however,
that this step is optional within our framework and may be omit-
ted if there are reasons to expect that the data is not significantly
affected by recording biases. 

To address spatial bias, such as disproportionately high num-
bers of records in some regions, potentially dominating the
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Figure 2. Schematic diagram representing the main components and steps of the methodological framework. 
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verall patterns in the data (i.e., geographic overrepresentation),
e first randomly selected only one record per each combination
f day and 0.25 × 0.25-degree grid cell, which is the resolution
f our environmental data. We also accounted for overrepresen-
ation at the regional scale by creating a regular grid of 250 ×
50 km squares covering the entire study area and counting the
umber of records in each square. We identified squares that ex-
eeded the upper outlier threshold (Q3 + 1.5 × IQR, where Q3 is
he upper 25% quantile, and IQR = Q3, the lower 25% quantile) and
andomly selected a number of observations equal to the thresh-
ld value (i.e., Q3 + 1.5 × IQR) to address overrepresentation. 
To address temporal biases in data, we used Pinus spp. as a

enchmark taxonomic group, which we expect to experience vari-
bility in record availability mainly because of variation in obser-
ation effort rather than changes in the taxa phenology itself (see
he supplemental material for an expanded rationale). From GBIF,
e downloaded and cleaned the Pinus spp. observation records
ade in the northern hemisphere between 2015 and 2021 (i.e., the
eographical and temporal range of the event observation data;
ee the supplemental material). We then generated an equal num-
er of records having the same coordinates but with randomly
enerated dates within the same temporal range. We extracted
alendar and weather predictors for each record (day of the week,
onth, average temperature of the day, total precipitation of the
ay, and average wind speed of the day) and used a GLM with a bi-
omial error distribution to relate the two classes of records (see
he supplemental material). The model is assumed to capture well
he propensity for having more citizen science records simply be-
ause conditions are more favorable to observers (i.e., preferred
ays of the week, months, and weather conditions; see the “Model
redictions” section). Subsequently, we applied the model to esti-
ate levels of sampling effort for the Japanese beetle and winter
hanterelle data sets based on the same predictors. Inverse prob-
bility weighting was used to correct for temporal bias in these
ata sets, where the probability of each observation being used
n subsequent modeling steps was inversely proportional to the
evel of observation effort predicted. Specifically, we built a sec-
nd data set of observation records for each event, where the
 p  
robability of each original observation being included was in-
ersely proportional to the level of observation effort predicted.
or a more detailed explanation, please refer to the supplemental
aterial. 
Although we expect this procedure to minimize temporal bi-

ses in the data, we also acknowledge that it still has limitations
uch as, for instance, the omission of additional drivers of obser-
ation effort (e.g., national holidays). Bearing this in mind, all sub-
equent analyses were carried out using both the temporally cor-
ected observation data and the data without this correction. 

tep 4: Extract values of predictors for event 
ecords and temporal pseudoabsences 
o represent the environmental conditions at the time of each ob-
ervation record, we calculated a comprehensive set of 67 features
listed in supplemental table S1). These features represent the ge-
graphical coordinates of each record of the event and yearlong
o subweekly conditions in mean, maximum, and minimum tem-
erature, accumulated precipitation, wind speed, and snow depth.
mportantly, each feature value was calculated in reference to
he date of the record, meaning that they capture environmental
onditions observed in the preceding periods—for example, days,
eeks, months, year ( table S1). 
As was mentioned in the conceptual framework section (box 1 ),
e also assembled a set of environmental conditions to con-
rast with those representing relative phenological niches, en-
bling the use of discriminative modeling algorithms. To this
nd, we generated a set of temporal pseudoabsences by gen-
rating, for each observation record, a set of 12 records hav-
ng the same geographical coordinates but dates drawn at ran-
om from the temporal range of the event observation data
i.e., from 2015 to 2021). The use of 12 temporal pseudoabsences
er event record was determined empirically on the basis of
reliminary tests evaluating the time taken for model train-
ng and internal cross-validation values. Although this ratio al-
owed us to achieve good overall predictions (see the “Model
redictions” section), we acknowledge that future work could

https://academic.oup.com/bioscience/article-lookup/doi/10.1093/biosci/biae041#supplementary-data
https://academic.oup.com/bioscience/article-lookup/doi/10.1093/biosci/biae041#supplementary-data
https://academic.oup.com/bioscience/article-lookup/doi/10.1093/biosci/biae041#supplementary-data
https://academic.oup.com/bioscience/article-lookup/doi/10.1093/biosci/biae041#supplementary-data


Capinha et al. | 5

i  

s  

t  

p  

a

S
T  

o  

w  

(  

m  

2  

n  

c  

t  

p  

t  

f  

F  

(  

o  

a
 

r  

m  

i  

o  

t  

t  

o  

b  

w  

v  

t  

2  

a

S
p
T  

s  

a  

d  

(  

c  

t  

r  

t  

t  

a  

s  

n
 

t  

s  

a  

w  

w  

r  

d  

t  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioscience/advance-article/doi/10.1093/biosci/biae041/7709548 by guest on 11 July 2024
nvestigate this further and additional optimization may be pos-
ible. For each temporal pseudoabsence record, we extracted
he same set of 67 features used to characterize event records,
roviding a representation of the environmental conditions avail-
ble over time in locations where the species occur (figure 1 ). 

tep 5: Model training 

o differentiate between the conditions associated with the timing
f observation of events and the full range of conditions available,
e employed Random Forests (RF) and Boosted Regression Trees
BRT), two well-performing machine-learning algorithms com-
only used in ecological research (Cutler et al. 2007 , Elith et al.
008 ). Although we opted for these algorithms, it is important to
ote that many other statistical or machine-learning techniques
ould be similarly employed (e.g., see Norberg et al. 2019 for al-
ernatives). For RF, we used the “randomForest” function of the R
ackage with the same name (Liaw and Wiener 2002 ), specifying a
otal of 2000 individual trees and remaining parameters set at de-
ault values (but see below for an exception regarding “sampsize”).
or BRT, we used the “gbm.step” function of the “dismo” package
Hijmans et al. 2017 ), setting a tree complexity of 3, a learning rate
f 0.005, four internal cross-validation folds, a bag fraction of 66%,
nd a maximum of 7500 individual trees. 
Given the high class imbalance in our data sets (i.e., 12 tempo-

al pseudoabsences per event record), we took steps to prevent
odel fitting problems such as overclassification of the major-

ty class (Valavi et al. 2022 ). For RF training, we used the event
bservation records and an equal number of randomly selected
emporal pseudoabsences for fitting each tree, as is allowed by
he “sampsize” parameter. In BRT, we assigned a relative weight
f 1:12 (i.e., 8.3%) to each temporal pseudoabsence, as is allowed
y the “site.weights” parameter. Before each model training event,
e also measured the Pearson correlation coefficient among en-
ironmental variables, retaining only the minimum set of predic-
ors with an absolute correlation value lower than .8 (Valavi et al.
022 ) using the “findCorrelation” function from the “caret” pack-
ge (Kuhn 2008 ) for R. 

tep 6: Evaluation and validation of predictive 

erformances 
o evaluate the predictive performance of models, we first mea-
ured their capacity to correctly classify event observation records
nd pseudoabsences. This was evaluated for each year indepen-
ently, where model training used data for the remaining years
i.e., temporally independent data). We used the area under the re-
eiver operating characteristic curve (area under the curve, AUC)
o measure the agreement between predictions and the actual
ecord (i.e., observation or temporal pseudoabsence). In the con-
ext of this work, the AUC measures the probability that observa-
ion events receive higher probability values than records gener-
ted randomly over time. AUC values range from 0 to 1, where a
core of .7 or above is considered an acceptable level of discrimi-
ation (e.g., Valavi et al. 2022 ). 
Although the above-described evaluation procedures assess

he performance of each model, they do not allow for a compari-
on between models using temporally corrected observation data
nd models using uncorrected data. To allow such comparisons,
e performed a second set of evaluations comparing predictions
ith raw observation data (i.e., without spatial or temporal cor-
ection) for regions left out of model training and where higher
ata reliability can be expected. Specifically, for the adult stage of
he Japanese beetle, we performed this validation using observa-
tion data from northern Italy ( n = 214), a region of high relevance
for invasion surveillance of the species in Europe and where the
species has received significant attention in recent years (EFSA
2019 ). For the fruiting bodies of the winter chanterelle, we used
data from Denmark, the country with the highest number of ob-
servation records ( n = 460) and where the species is foraged and
marketed (Gry and Andersson 2014 ). 

To perform this assessment, we predicted the average proba-
bility of observing the event across the study area on each day, for
years with 10 or more observation records in validation regions
(i.e. 2019–2021 for adults of the Japanese beetle and 2017–2021 for
the fruiting bodies of the winter chanterelle). To measure the as-
sociation between the timing of observation of events and model
predictions, we calculated the point-biserial correlation between
the average predicted probability in the region and the presence
(coded as 1) or absence (coded as 0) of event observations using
10-day time steps. For the two evaluation procedures (i.e., tempo-
rally corrected versus uncorrected data), we measured the perfor-
mance of BRT, RF, and of an ensemble model, which is the average
of the predictions of the two former algorithms. 

Step 7: Mapped predictions 
To showcase the potential of our framework and assess the spatial
patterns of temporal change in our predictions, we generated daily
prediction maps for both events (i.e., adult stage of the Japanese
beetle and fruiting bodies of the winter chanterelle) in Europe
for the year 2021. The predictions were produced using the en-
semble model trained with spatially and temporally corrected ob-
servations and AgERA5 predictor data. To avoid extrapolating be-
yond sampled environmental conditions, we masked all regions
deemed unsuitable for the Japanese beetle (cf. EFSA 2019 ) and re-
gions outside the distribution range of the winter chanterelle, as is
represented by its observation data. To enhance visualization, we
used bilinear interpolation to downsample predictions to a reso-
lution of 0.02 degrees (approximately 2 km) using the “resample”
function provided by the “raster” package (Hijmans et al. 2023 ). 

Model predictions 

In total, we obtained 15,529 observation records of adult Japanese
beetles and 3057 of fruiting bodies of the winter chanterelle,
of which 10,308 and 1726 were kept for model training (re-
spectively) after accounting for geographic overrepresentation
( supplemental figures S2 and S3). For both events, the number
of records increased substantially over time, with 2020 and 2021
holding more records than the previous 5 years (2015 to 2019)
combined ( figures S2a and S3a). Event records for the Japanese
beetle were distributed in regions of Asia, Europe, Central Amer-
ica, and North America, but with the vast majority concentrated
in the latter, more specifically in the United States ( figure S2b–
S2d). For the winter chanterelle, event records were almost en-
tirely distributed in Europe and North America, except for a few
records in Central America and Japan ( figure S3b–S3d). 

Temporal bias correction 

The GLM model used to examine the relationships between
the availability of records for the benchmark taxa ( Pinus spp.)
with calendar- and weather-related variables yielded convinc-
ing results. The model revealed a significant ( α = .05) positive
relationship between record availability and warmer days, low
precipitation, and low wind intensity ( supplemental table S2). It
also identified a significantly higher propensity for observation

https://academic.oup.com/bioscience/article-lookup/doi/10.1093/biosci/biae041#supplementary-data
https://academic.oup.com/bioscience/article-lookup/doi/10.1093/biosci/biae041#supplementary-data
https://academic.oup.com/bioscience/article-lookup/doi/10.1093/biosci/biae041#supplementary-data
https://academic.oup.com/bioscience/article-lookup/doi/10.1093/biosci/biae041#supplementary-data
https://academic.oup.com/bioscience/article-lookup/doi/10.1093/biosci/biae041#supplementary-data
https://academic.oup.com/bioscience/article-lookup/doi/10.1093/biosci/biae041#supplementary-data
https://academic.oup.com/bioscience/article-lookup/doi/10.1093/biosci/biae041#supplementary-data
https://academic.oup.com/bioscience/article-lookup/doi/10.1093/biosci/biae041#supplementary-data
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Table 1a. Values of area under the curve (AUC) for models predicting the timing of occurrence of adult Japanese beetles ( Popillia japonica ) 
across the whole study areas, from 2015 to 2021. 

Model Boosted regression trees Random forests Ensemble 

Weather data AgERA5 GFS AgERA5 GFS AgERA5 GFS 

Temporal 
correction Yes No Yes No Yes No Yes No Yes No Yes No 

2015 0.91 0.93 NA NA 0.9 0.92 NA NA 0.91 0.93 NA NA 
2016 0.9 0.89 0.9 0.88 0.89 0.89 0.88 0.88 0.9 0.89 0.89 0.88 
2017 0.9 0.91 0.9 0.9 0.9 0.91 0.9 0.9 0.9 0.91 0.9 0.91 
2018 0.9 0.91 0.89 0.9 0.9 0.9 0.9 0.9 0.9 0.91 0.9 0.9 
2019 0.9 0.91 0.9 0.91 0.9 0.91 0.9 0.91 0.9 0.91 0.9 0.91 
2020 0.91 0.91 0.9 0.91 0.9 0.91 0.9 0.9 0.9 0.91 0.9 0.91 
2021 0.9 0.91 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.91 0.9 0.9 

Note: Predictions are compared with data for years that were excluded from model training. The AUC values are shown for models trained with observation data 
corrected for temporal and spatial bias, and for spatial bias only, for models using AgERA5 weather data and Global Forecast System data (GFS). 

Table 1b. Values of area under the curve (AUC) for models predicting the timing of occurrence of fruiting bodies of the winter chanterelle 
( Craterellus tubaeformis ) across the whole study areas, from 2015 to 2021. 

Model Boosted regression trees Random forests Ensemble 

Weather data AgERA5 GFS AgERA5 GFS AgERA5 GFS 

Temporal 
correction Yes No Yes No Yes No Yes No Yes No Yes No 

2015 0.83 0.81 NA NA 0.84 0.83 NA NA 0.84 0.82 NA NA 
2016 0.84 0.85 0.83 0.82 0.85 0.85 0.84 0.83 0.85 0.86 0.84 0.83 
2017 0.86 0.87 0.85 0.86 0.88 0.88 0.87 0.86 0.87 0.87 0.86 0.86 
2018 0.84 0.85 0.85 0.86 0.85 0.87 0.85 0.86 0.85 0.87 0.85 0.86 
2019 0.84 0.84 0.85 0.85 0.86 0.85 0.86 0.85 0.85 0.85 0.86 0.85 
2020 0.83 0.83 0.82 0.82 0.84 0.84 0.83 0.83 0.84 0.83 0.83 0.83 
2021 0.83 0.83 0.81 0.83 0.84 0.84 0.83 0.84 0.84 0.84 0.83 0.84 

Note: Predictions are compared with data for years that were excluded from model training. The AUC values are shown for models trained with observation data 
corrected for temporal and spatial bias, and for spatial bias only, for models using AgERA5 weather data and Global Forecast System data (GFS). 
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ecords to be made during the weekend, and in May, July, and
ugust, in comparison to Friday and April (day of the week and
onth used as reference level, respectively). Conversely, signifi-
antly lower numbers of records were identified for all remaining
onths except June (i.e., January, February, March, September,
ctober, November, and December), as well as for Mondays and
uesdays. 

redictive performances and mapped predictions 
he BRT and RF algorithms, along with the ensemble model, con-
istently demonstrated very good predictive performance when
valuated on years that were not included in the model training,
chieving an AUC of .81 or higher (tables 1 a and 1 b). The models
redicting the timing of occurrence of adult Japanese beetles ex-
ibited a higher discrimination capacity (average AUC = .9, stan-
ard deviation [SD] = 0.1) than those for the fruiting bodies of the
inter chanterelle (average AUC = .84, SD = 0.2). Models trained
n temporally corrected and uncorrected data demonstrated sim-
lar levels of accuracy overall. The residual values displayed signif-
cant variation across the study areas ( supplemental figures S4–
7), indicating that classification errors were not spatially
lustered, and the global AUC values were geographically
epresentative. 
Model evaluation in selected regions also demonstrated high

redictive performance and sensible predictions. For the Japanese
eetle in northern Italy, the predicted values exhibited a strong
orrelation with the timing of observations, with a correlation co-
fficient of .8 or higher (figure 3 , supplemental figure S8). For the
inter chanterelle in Denmark, the correlations between predic-
ions and observations were lower but remained strong with r val-
es of .7 or higher (figure 4 , supplemental figure S9). 
Maps of predictions for the Japanese beetle across Europe in

021 show that adult beetles emerge earlier in southern regions
southern Iberia, southern France, southern Italy, and Greece), fol-
owed by most low-altitude regions in central and eastern Eu-
ope and later by the northern Iberian Peninsula, northern France,
outhern England, and some higher-altitude regions (figure 5 a–
 f, supplemental video V1). For the winter chanterelle, the early
ays of the year show moderate probabilities of fruiting bodies
ccurrence in southernmost regions (e.g., Portugal and Sardinia).
he predicted values then drop across Europe before increasing
round mid-July in the Alps, followed by most of Northern and
astern Europe by mid-September, and expanding to southern re-
ions thereafter (figure 5 g–5 l, supplemental video V2). 

uture prospects 

e presented a methodological approach that allows predicting
he timing of ecological events over wide geographical areas us-
ng opportunistic observation data, such as the data typically

https://academic.oup.com/bioscience/article-lookup/doi/10.1093/biosci/biae041#supplementary-data
https://academic.oup.com/bioscience/article-lookup/doi/10.1093/biosci/biae041#supplementary-data
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https://academic.oup.com/bioscience/article-lookup/doi/10.1093/biosci/biae041#supplementary-data
https://academic.oup.com/bioscience/article-lookup/doi/10.1093/biosci/biae041#supplementary-data
https://academic.oup.com/bioscience/article-lookup/doi/10.1093/biosci/biae041#supplementary-data
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Figure 3. Continuous predictions of the timing of occurrence of adult Japanese beetles ( Popillia japonica ) in northwest Italy from 2019 to 2021. 
Predictions are shown for models trained with observation data corrected for temporal and spatial bias, for models using AgERA5 weather data and 
Global Forecast System data. Values of point biserial correlation coefficient ( r ) are provided, measuring the association between predicted values and 
the dates of actual observations. All values are statistically significant ( α = .001). 

Figure 4. Continuous predictions of the timing of occurrence of fruiting bodies of the winter chanterelle ( Craterellus tubaeformis ) in Denmark from 2017 
to 2021. Predictions are shown for models trained with observation data corrected for temporal and spatial bias, for models using AgERA5 weather 
data and Global Forecast System data. Values of point biserial correlation coefficient ( r ) are provided, measuring the association between predicted 
values and the dates of actual observations. All values are statistically significant ( α = .001). 
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athered from citizen science initiatives. The approach is theo-
etically grounded and was exemplified in the prediction of the
mergence of adult Japanese beetles, an invasive species, and the
vailability of winter chanterelle fruiting bodies, an edible mush-
oom, across North America and Europe. 
The approach demonstrated good predictive performance and

trong agreement with observed patterns for both ecological phe-
omena. On the basis of the values of AUC—measuring the agree-
ent between predictions and record labels for years left out of
odel training—the models for the Japanese beetle appear more

obust than those of the winter chanterelle. However, the lower
but still good) AUC values achieved for the fruiting bodies of the
inter chanterelle may be partly attributable to its longer sea-
on of suitable conditions, which extends up to approximately 5
onths, compared with the 2.5–3 months for the adult stage of
the Japanese beetle (EFSA 2019 ). This longer season results in the
generation of a higher number of temporal pseudoabsences dur-
ing periods that are environmentally suitable, thereby increasing
the misclassification of these records in the evaluation data sets
(Philips et al. 2009 ). Relevantly, the predictions were still robust
when made for new areas—that is, under spatial transferability,
a gold benchmark for spatial prediction in ecology (Roberts et al.
2017 ). This approach could be used to determine the optimal tim-
ing for surveillance efforts, particularly in the case of the Japanese
beetle, a species that has not yet become established in most of
Europe. 

Although spatial and temporal biases in event observation
data are not central to our modeling approach, they are a major
source of contention in the development of predictions and esti-
mates in temporal ecological research (Isaac and Pocock 2015 ). To
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Figure 5. Predictions of the occurrence of adult Japanese beetles ( Popillia japonica ) (a–f) and of fruiting bodies of the winter chanterelle ( Craterellus 
tubaeformis ; g–l) across Europe on selected days of 2021. The predictions are based on models trained on observation data corrected for spatial and 
temporal bias and AgERA5 weather data. The areas in grey are expected to be unsuitable for the Japanese beetle (a–f) or are outside the distribution 
range of observation records of the winter chanterelle (g–l). 
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ddress these biases, we proposed and tested a set of procedures
n the basis of the patterns observed for a benchmark taxonomic
roup, which is believed to represent observer bias rather than
axon-specific phenology variation. Although we have demon-
trated these procedures using Pinus spp. as a benchmark group,
t is worth emphasizing that our methodology can seamlessly ac-
ommodate other taxonomic groups. For example, in regions out-
ide the primarily northern hemisphere distribution of Pinus spp.,
esearchers could use other taxonomic groups that better align
ith the characteristics of their study areas. 
Crucially, despite the potential benefits of employing the

enchmark taxa approach to address temporal biases, our results
how that models accounting for these biases did not differ mean-
ngfully in their predictive performance from those that did not
ccount for them. This is likely because the models estimate the
robability of a set of conditions being within relative phenolog-
cal niches, rather than temporal trends per se. In other words,
he models estimate the suitability of conditions on the basis of
ampling data that does not need to be collected systematically
cross time and space. Instead, the representativeness of the data
merges from the joint sampling of conditions across regions and
ime periods. Therefore, although observational data may be bi-
sed and sparse in parts of its range, the combined use of all avail-
ble observation records, representing suitable conditions, may
llow for sampling most of the phenological niche. 
Despite its demonstrated capability, there are several oppor-

unities for future improvement of this approach. For instance,
uture work could explore general issues related to data-driven
odeling, such as exploring additional predictive algorithms or
ifferent values in their parameterization. In addition, certain
esign choices could be further explored and optimized, such
s the number of pseudoabsences to be extracted per obser-
ation record or the procedures used to translate environmen-
al drivers into temporally discrete predictors. The expansion
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f our framework may also be necessary for more complex
henomena, such as those with temporal dependencies or
nteractions between events. Specifically, recursive fitting of
odels—that is, fitting the models with predictions for past peri-
ds could allow accounting for the temporal dependencies of spe-
ific phenological responses (Staggemeier et al. 2020 ). Similarly,
redictions of interacting events could be performed and jointly
odeled (Schermer et al. 2020 ). In addition, given the rapid pace
f environmental change, it also seems essential to continuously
alibrate and update these models using the most recent obser-
ation data through iterative modeling (Dietze et al. 2018 ). Given
he emergence of novel environmental combinations in regions
here the phenomena are observed, the lack of sampling of phe-
ological responses under those settings may cause the models to
ail. Therefore, continuous calibration using the most recent data
s crucial to ensure that the models remain relevant and accurate
ver time. 

onclusions 

ur methodological approach allows for obtaining informative
redictions of the timing of ecological events over wide geograph-
cal areas derived from abundant free and open records. The po-
ential applications are vast, particularly considering the grow-
ng volumes of opportunistic observation data that are now avail-
ble from various citizen science platforms. Further development
nd application of this approach is likely to make significant con-
ributions to management-related activities such as ecological
isk assessment, natural resource management, and conservation
lanning. 

upplemental data 

upplemental data are available at BIOSCI online. 
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