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Abstract
The era of anthropogenic climate change can be described by defined climate milestones. These
milestones mark changes in the historic trajectory of change, and include peak greenhouse gas
emissions, peak greenhouse gas concentration, deceleration of warming, net-zero emissions, and a
transition to global cooling. However, given internal variability in the Earth system and
measurement uncertainty, definitively saying that a milestone has passed requires rigour. Here
CMIP6 simulations of peak-and-decline scenarios are used to examine the time needed to robustly
detect three climate milestones: (1) the slowdown of global warming; (2) the end of global surface
temperature increase; and (3) peak concentration of CO2. It is estimated that it will take 40 to 60
years after a simulated slowdown in warming rate, to robustly detect (>95% change) the signal in
the global average temperature record. Detecting when warming has stopped will also be difficult
and it takes until the mid 22nd century to have enough data to conclude warming has stopped.
Detecting that CO2 concentration has peaked is far easier and a drop in CO2 concentration of 3
ppm is consistent with a greater than 99% chance that CO2 has peaked in all scenarios examined.
Thus it is likely that as the rate of CO2 emissions is reduced, and net-zero emissions is approached,
interpreting the global temperature record will become difficult—with a high potential to create
confusion amongst policy makers and the general public.

1. Introduction

The Paris Agreement commits nations to hold the
change in global average temperatures well below
2 ◦C relative to the pre-industrial climate and to pur-
sue efforts to limit warming to 1.5 ◦C relative to prein-
dustrial levels [1]. It therefore sets global annualmean
near-surface temperature change (hereafter global
average temperature change) as a paramount indic-
ator for global climate policy. Importantly, the Paris
Agreement text is susceptible to both the understand-
ing that global average temperature rise should be
kept below 1.5 ◦C at any point in time and the under-
standing that it should return to below 1.5 ◦C after a
potential overshoot that remains well below 2 ◦C at
all times [2, 3]. However, both cases require global

average temperature rise to be halted. Scientific efforts
have established that halting global average surface
temperature increase requires near zero emissions of
CO2 [e.g.][4–8], and a gradual reduction of non-
CO2 forcing [9]. These scientific evaluations have
informed the proliferation of national net-zero goals
that many nations have now committed to [10–13].
However the path to global climate stabilization is a
long one and even the most mitigation-intense future
scenarios do not forecast reaching global net-zero
greenhouse gas emissions until the 2060s CE [14–16].
Thus it is useful to define milestones on this path,
informed by the primary cause of climate change
(emissions of greenhouse gases and aerosols) and
by the principle metric of climate change—change
in global average near-surface temperature. Climate
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milestones act as progress indictors on the path to cli-
mate stabilization. As the project of climate stabiliza-
tion is likely to take longer than the lifetimes of most
living adults [17] climate milestones are needed to
mark progress towards that ultimate goal.

For greenhouse gases and aerosols a range
of potential climate milestones can be defined,
namely: peak emission, peak concentration, net-
zero emission, and—at the limit and in certain
circumstances—zero concentration. Whether a par-
ticular milestone makes sense for a gas or aerosol
depends on whether it is naturally occurring or
synthetic, and its lifetime in the atmosphere. For
some greenhouse gases key milestones have already
passed. For example CFC-11, which was banned by
the Montreal Protocol due to its effect on strato-
spheric ozone [18], had peak emissions sometime in
the late 1980s and reached a peak concentration in
1993 at 269 pptv [19]. However for most greenhouse
gases such milestones will have to be achieved in the
future.

Climate milestones can also be defined for global
temperature change. Narrowing our focus to peak-
ing global average temperature increase, two mile-
stones become notable: when the rate of warming has
slowed, and when warming has stopped (equivalent
to passing peak temperature). Due to the intrinsic
inter-annual variability in estimated global average
temperature change, assessing changes in the rate of
temperature change requires rigour [20] as otherwise
insights might not live up to statistical scrutiny. For
example, this was repeatedly the case during the so-
called ‘global warming hiatus’ of the 2010s [20, 21].
Thus for each climate milestone it is more important
to quantify when such a milestone can be detected,
rather than when such a milestone might retrospect-
ively be assessed to have been passed.

There are a large number of climate milestones
that can be defined and thus as a first exploration of
the topic a narrower focus is needed. We have chosen
to focus on two temperature milestones, and a single
milestone in the evolution of a single greenhouse gas,
CO2, the main driver of global warming [22]. The
milestones are: (1) the slowdown of global warming;
(2) the end of global surface temperature increase;
(3) peak concentration of CO2. We probe two addi-
tional milestones in our supplementary material—
peak emissions of CO2 and net-zero CO2 emissions.
These two milestones are important for understand-
ing CO2 derived climate-milestones, but cannot be
directly measured instrumentally and thus are far less
amenable to existing techniques of statistical analysis.
The three primary milestones will be explored using
statistical methods developed to study the ‘global
warming hiatus’. Exploration of climate milestones
for other greenhouse gases and aerosols are import-
ant next steps, but are left as research opportunities
for teams that are experts on the intricacies of the

sources, sinks and biogeochemical cycling governing
these gases and aerosols.

2. Methods

2.1. Global temperature milestones
While the so called ‘global warming hiatus’, that
became a subject of scientific interest in the 2010s,
turned out to be an outcome of expected natural cli-
mate variation [20, 21], intense study of the phe-
nomenon lead to development of improved statist-
ical tools for examining changes in the rate of global
average temperature change [e.g.][20]. One of the
most robust methods developed in this period is the
Monte–Carlo based method developed by Rahmstorf
et al [20], whichweuse here as the basis of our analysis
of global average temperature change. Monte–Carlo
methods use large numbers of simulations with ran-
domized parameter values to approximate the poten-
tial behaviours of complex systems [23], and are par-
ticularly useful for quantifying low probability events
[23]. The method of Rahmstorf et al [20] essentially
applies a simple signal andnoisemodel, where the sig-
nal is taken as the linear trend in global average tem-
perature from 1972 to 2014 CE, and the noise is taken
as white noise with a standard deviation of the resid-
uals from the 1972 to 2014 CE trend fitting [20]. Note
that white noise is simply normally distributed val-
ues with no autocorrelation [24]. Monte–Carlo sim-
ulations of randomly generated noise were then pro-
duced and added to the signal from the 1972 to 2014
trend, to examine whether the temperature trends of
the hiatus period, defined as either 2000 to 2012 CE
or 2001 to 2014 CE, are anomalous to the degree of
reaching some reasonable metric of significance [20].

Here we modify the method of Rahmstorf et al
[20] to examine our three primary climate change
milestones: when global warming has slowed, when
global warming has stopped, and when CO2 has
reached a peak. For the two temperature milestones
we use projections of global average temperature
change from the Climate Model Intercomparison
Project phase 6 (CMIP6), taking the global averages
from the CMIP6 Data Viewer database [25].

2.1.1. Global warming slowdown
For the global warming slowdown milestone we
examine the four ScenarioMIP scenarios that were
designed to have temperature peaks in the 21st
century [26] as well as the historical simulations
conducted for CMIP6. These scenarios are SSP1-
1.9, SSP1-2.6, SSP4-3.4, and SSP5-3.4-over, where
the number following SSP denotes the Shared
Socioeconomic Pathway on which the scenario is
based, and the following values the intended end-
of-century radiative forcing of the scenario. We use
1970 to 2020 CE as our baseline warming period from
whichwe derive the historical warming rate, whichwe
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take to be our signal. The signal is derived independ-
ently for each of the climate model simulations in the
CMIP6 archive for each SSP scenario. Additionally we
examine SSP2-4.5, which was not designed to reach a
peak temperature in the 21st century, but does reach
peak emissions, as a check on our method. Table 1
gives the number of models and number of simula-
tions available for each SSP in the CMIP6 archive.

We derive our noise model from the pre-
industrial control simulations. These simulations are
detrended to correct for drift [27] and global average
temperature anomalies are taken as characterizing
the internal variability. Rahmstorf et al [20] notes
that residuals in global average temperature records
are serially autocorrelated but ignored the autocorrel-
ation and used a white-noise noise model, as inclu-
sion of a more complex noise model would make the
‘global warming hiatus’ less statistically significant
[20], and thus be counterproductive to showing that
the ‘global warming hiatus’ did not reach any reas-
onable threshold of significance. Here however, we
are examining the reverse question and hence ignor-
ing the autocorrelation will create an underestimate
in the amount of time needed to detect a change
in warming trend, and underestimate uncertainty
[28]. Thus we must include a more complex noise
model for this study. The next simplest noise mod-
els after white noise are coloured noise models [24].
Coloured noise either has more power in the high
frequency range (blue noise), or more power in the
low frequency range (pink, red, and brown noise)
[e.g.][24]. Figure 1 shows a fast Fourier transform
of global average temperature from the drift correc-
ted pre-industrial control simulation from ACCESS-
ESM-1-5. The figure clearly shows that there is more
low frequency power than higher frequency in global
temperature trends. Consistent with frequency distri-
bution of noise in the simulated global average tem-
peratures, the pre-industrial control simulations in
the CMIP6 archive have lag-1-year autocorrelations
of 0.22 to 0.77, with a median of 0.56.

Coloured noise models use a power law rela-
tionship to approximate the change in power with
frequency [24]:

P=
1

fα
(1)

where P is power, f is frequency, and α controls
the colour of the noise. α=−1 is blue noise, α= 0
is white noise, α= 1 is pink noise, and α= 2 is
brown noise, which is equivalent to a random walk
[e.g.][24]. Fitting the power law relation to all avail-
able pre-industrial control simulations resulted in α
values ranging from 0.76 to 0.89 with a median of
0.85. Test simulations within this range of α values
resulted in a ±0.5 year difference in estimated tem-
perature climate milestone dates. Therefore our sim-
ulations for each climate model all use a noise model

Table 1. Number of models and number of simulations in the
CMIP6 archive for each scenario designed to have peak
temperatures in the 21st century. The number of simulations is
higher than the number of models since some modelling groups
conduct multiple ensemble members for each scenario. SSP2-4.5
is separated as it is not a temperature overshoot scenario.

Scenario label
Number of

climate models
Number of
simulations

SSP1-1.9 10 76
SSP1-2.6 34 190
SSP4-3.4 8 22
SSP5-3.4-over 8 19

SSP2-4.5 17 143

with an α value of 0.85. Sensitivity tests with white-
noise were also conducted to examine our choice
of using a more complex noise model than uncor-
related Gaussian noise. Noise time-series were gen-
erated using the python package colorednoise with
the function powerlaw_psd_gaussian. Standard devi-
ations were taken from the residuals to the linear fit
from the signal model (1970 to 2020 CE global aver-
age temperature) for each climate model.

Monte–Carlo simulations were conducted for
each climate model simulation available, where the
signal model and 10 000 randomly generated noise
modelswere combined to create emulated global tem-
perature change time-series. Trends were then com-
puted from these time series ranging from 3 years to
80 years to form a distribution of possible trends con-
sistent with continued warming at the historical rate,
of each length of time.

To examine the global warming slowdown mile-
stone for each climate model simulation available,
trends were computed starting from the estimated
year of peakCO2 emissions in that scenario. The com-
puted trend is compared to the distribution of trends
from theMonte–Carlo simulations to assess the prob-
ability that the computed trend is compatible with
continued warming at the 1970 to 2020 CE rate. The
year of peak fossil fuel CO2 emission is assumed to be
a constant for each scenario and is taken as the mean
value fromCMIP6 Earth SystemModels (ESMs) [15].
For example, in SSP1-1.9 the mean year of peak emis-
sion was 2020 (table 2). So the first computed trend
is 2020 to 2022, which is compared to all Monte–
Carlo simulated 3 year trends, then a trend is com-
puted from 2020 to 2023 which is compared to all
4 year trends, ext. until the end of the simulation in
the year 2100. All peak emission estimates are from
Liddicoat et al [15] and are shown in table 2.

A limitation of this method is that it requires an
assumed start date. We chose the year of diagnosed
peak fossil fuel emissions because ESM simulations
[8, 29], and theory [30] suggest that the rate of warm-
ing should be proportional to the rate of emissions
of CO2. Hence the year of peak CO2 emissions is our
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Figure 1. Power spectrum of drift-corrected Pre-industrial control simulation for climate model ACCESS-ESM-1-5. Note that
there is more power at lower frequency consistent with a system in between true uncorrelated randomness and a random walk.

prior for the inflection point to a decelerating warm-
ing rate, with the date of peak fossil fuel emissions a
proxy for the date of peak overall CO2 emissions [15].
A sensitivity test for SSP1-1.9 was conducted by selec-
ted baseline year in a 40 year window surrounding
the year of peak fossil fuel CO2 emissions to examine
the sensitivity of our results to our choice of a prior.
The results of this sensitivity test are shown in supple-
mentary material section S1.

2.1.2. The end of warming
To determine whether global warming has stopped
is very similar to determining whether global warm-
ing has slowed. Essentially, the only difference is that
the signal is zero instead of a linear trend. The noise
model remains the same, as does the method of
examining ever longer trends from a fixed starting
point. Again the fixed starting point for each SSP
needs to be based on some outside prior expectation.
The logical starting point is thus when net-zero CO2

emissions is reached, as the expected warming fol-
lowing zero CO2 emissions is zero, with a substan-
tial uncertainty range [7, 31]. However in the four
SSP scenarios designed to have temperature peaks
in the 21st century, net-zero is expected towards the
end of the century (between 2058 and 2091 CE in
existing ESM simulations) [15]. Thus for the great
majority of simulations it will thus be challenging to
detect the end of warming by the end of the simu-
lations in 2100 CE. To get around this problem we

focus on the simulations of SSP1-2.6 that were exten-
ded to the year 2300 CE. There are 16 such simula-
tions conducted by 5 climate models in the CMIP6
archive. All net-zero fossil fuel emission date estim-
ates are from Liddicoat et al [15] and are shown in
table 2. Notably these net-zero dates, computed from
diagnosed emissions, are different from the net-zero
dates from the original emissions pathways provided
as data for the SSPs. The inconsistency is created by
differences between the internally simulated carbon-
cycle of each ESM and the carbon-cycle of the climate
emulators used to convert SSP emissions into CO2

concentration pathways [26]. By choosing net-zero
dates from diagnosed emissions we are prioritizing
the internal consistency of the ESM carbon cycles and
ESMgenerated global temperatures. Note that detect-
ing the date of net-zero is also challenging (see discus-
sion in supplementary materials section S2) mean-
ing any implementation of ourmethodwith observed
data in the late 21st century will be subject to uncer-
tainty over the appropriate starting date.

2.1.3. Temperature metric caveat
Note that we are using globally averaged near-surface
air temperature (CMIP6 tas variable), not a combined
partially masked, sea-surface temperature, land-air
temperature analogous to the observational global
temperature change records [21, 32]. Thus our res-
ults represent the time necessary to detect a change in
warming rate if one has perfect knowledge of global
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Table 2. Estimated year of peak fossil fuel CO2 emissions, net-zero
fossil fuel CO2 emissions, and peak CO2 concentration for each
scenario. Emission estimates are from Liddicoat et al [15], peak
CO2 concentration is prescribed by the scenarios [33], and are
taken from the SSP extension scenarios published by Meinshausen
et al [34]. SSP2-4.5 is separated as it is not a temperature
overshoot scenario. FF is Fossil Fuels.

Scenario
label

Peak FF CO2

emission
(year CE)

Net-zero
FF CO2

emission
(year CE)

Peak CO2

concen-
tration

(year CE)

SSP1-1.9 2020 2065 2040
SSP1-2.6 2023 2081 2063
SSP4-3.4 2022 2084 2078
SSP5-3.4-over 2041 2072 2061

SSP2-4.5 2045 — 2211

surface air temperature. However using the global
near-surface air temperature avoids the necessity
of making assumptions about the future condi-
tion of the global temperature observation network.
Therefore our results should be interpreted as an
estimate of the minimum amount of time it would
take to detect these temperature climate milestones.

2.2. Peak CO2 concentration
To examine peak CO2 concentration we againmodify
the method by Rahmstorf et al [20]. However, for
peak CO2 concentration we are less confident in
ESM simulations, as preindustrial control simula-
tions show an enormous inter-model range in sim-
ulated inter-annual variability in CO2 concentration
[35]. Instead we rely both on ESM results and the
instrumental record of atmospheric CO2 concentra-
tion. While CO2 concentration is now monitored
at many locations around the world, the longest
nearly continuous record is from Mauna Loa [36].
Examining the record from this single site, has shown
the unambiguous rise in CO2 concentration for the
past 65 years [36]. Consequently the Mauna Loa
record (called the Keeling curve) will likely be key
in determining when CO2 concentration has peaked.
Thus we examine both the instrumental record from,
and ESM outputs for, this location.

For our CO2 concentration signal model we use
the prescribed northern hemisphere CO2 concentra-
tion pathways from the four peak and decline SSP
scenarios (SSP1-1.9, SSP1-2.6, SSP4-3.4, and SSP5-
3.4-over) [34]. One of our noise models is derived
from the Keeling curve by removing the quadratic
trend in CO2 concentration, the other noise model is
derived from ESMs which conducted pre-industrial
control simulations in emissions-driven configura-
tion. Figure 2(a) shows the Keeling curve and the
quadratic fit, which is remarkably close. The residuals
relative to the statistical fit are shown in figure 2(b),
and their fast-Fourier transform in figure 2(c). The
CO2 errors show strong autocorrelation of 0.81 and
are consistent with pink noise with a fitted α of 0.68,

and a standard deviation of 0.717 ppmv. Notably the
signal to noise ratio in the Keeling curve is so high
that a year-on-year decline in CO2 concentration has
never been recorded.

Nine ESMs conducted pre-industrial control sim-
ulations in emissions-driven configuration (CMIP6
experiment esm-piControl). These models have
1 year lag autocorrelation values of 0.83 [0.75 to 0.95]
(median [min to max]), and a standard deviation of
0.788 [0.318 to 1.54] ppmv. The fitted α values are
0.87 [0.84 to 0.92]. We use the median ESM values of
standard deviation and α for our noise model para-
meters. Given how similar the median ESM values
and the values derived from the observational record
are, we do not expect the results of the two noise
models to vary substantially. Again we simulate noise
using the python package colorednoise with the func-
tion powerlaw_psd_gaussian. 100 000 simulations are
done for each scenario.

We quantify whether CO2 concentrations have
reached their absolute peak by computing the drop
in CO2 concentrations relative to local peaks in the
record. That is, we are looking to answer the ques-
tion ‘how far does CO2 concentration need to drop
from the last peak to be sure another record peak will
not occur’? To quantify this answer for each scenario,
we examine the period of time between the first local
peak in CO2 concentration and the ultimate peak in
CO2 concentration in each of the 100 000 emulated
CO2 pathways. We then compute the largest drop in
CO2 concentration between each local peak and the
next local minimum. The distribution of these drops
after local peaks is used to quantify whatmagnitude of
CO2 concentration drop is no-longer consistent with
the last peak being a local peak. This method is illus-
trated in figure 3. The method used here implicitly
assumes a relatively smooth change in emission rates
with annual changes within the historically observed
range.

3. Results

3.1. Global temperature milestones
Figure 4 shows the probability that the rate of global
warming has slowed for each of the four peak-and-
decline scenarios and each individual model simula-
tion, figure 5 shows the same for SSP2-4.5. Despite
substantial variability, all simulations show increas-
ing probability that warming has slowed, relative to
the 1970 to 2020 period, as the 21st century progresses
(figure 4). To compute a central estimate for the
global warming slowdown climate milestone we take
themean of all ensemblemembers for each individual
climate model, then take the median of these means
for all of the climate models. This procedure prevents
models with many ensemble members from dom-
inating the central estimate. These central estimates
and the full ensemble range are shown in table 3 for
three common significance thresholds, 95%, 99% and
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Figure 2. (a) Annual atmospheric CO2 concentration record fromMauna Loa, often called the Keeling Curve, as well as a linear
and quadratic fit to the curve. (b) Deviations from the quadratic fit. (c) Power-spectrum of residuals as well as the fit of the
power-law model (basis for modelling coloured noise). Note that the residuals have more power at lower frequency consistent
with systems in between uncorrelated random errors (white noise) and a random walk (brown noise).

Figure 3. Illustration of the method used to detect true peak in atmospheric CO2 concentration. Blue line is the emulated annual
average CO2 concentration produced by adding randomly generated noise to an underlying CO2 pathway (shown in grey line).
Purple diamonds mark local CO2 peaks, red circle marks the ultimate peak in CO2 concentration. Arrow dropping to dotted line
shows the largest drop in CO2 concentration between each local peak and the next local minimum. Exceeding this depth is the
metric used to quantify if the ultimate peak has passed. Note that to illustrate the method better an example was selected with
many local peaks and large drop in CO2 before the ultimate peak, most emulated pathways have much smaller concentration
drops after local peaks.

99.9% certainty for the peak-and-decline scenarios.
While the selection of any significance threshold is
philosophically contentious [37] and ultimately must
be a subjective judgment based on expert assessment,
for the system under consideration the differences are
relatively minor, as the difference between a 1 in 20
chance and a 1 in 1000 chance of being in error is
only about a decade of data (table 3). Note that the
dates given for any of the significance thresholds will
tend to be later than the dates given by the best estim-
ate from amulti-model average, whichwould roughly
correspond to a 50% threshold. For each significance
threshold we give the central estimate and the full
range from all climate model simulations. The range
is used due to the small number of climate models
available for most scenarios (see table 1).

A 99% chance of having detected a slowdown
in warming rate occurs in 2063 [2032 to 2083] CE

for SSP1-1.9, in 2064 [2035 to ⩾2100] CE for SSP1-
2.6, in 2085 [2056 to ⩾2100] CE for SSP4-3.4, and
in 2077 [2058 to 2095] CE for SSP5-3.4-over. In all
cases the central estimates for when the climate mile-
stone can be detected occur decades (41 to 63 years)
following the theoretically expected time of slow-
down, i.e. after peak fossil fuel emissions. Considering
the full ensemble range a 99% chance of detec-
tion could occur within two decades of peak fossil
fuel emissions, or not until sometime in the 22nd
century.

The median detection of slowdown for SSP2-
4.5 does not reach any of our chosen significance
thresholds during the 21st century, despite peak CO2

fossil fuel emissions occurring in 2045 CE. However
the 90% certainty threshold is reached in 2090 [2057
to ⩾2100] CE. Thus in scenarios that do not rapidly
transition from peak emissions to net-zero emissions,
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Figure 4. Probability that a slowdown is global warming has been detected for each of the four peak-and-decline SSP scenarios.
Light grey lines are individual climate model simulations, darker grey are ensemble means for each climate model, and the thick
black line is the median of all of the model ensemble means (such that each climate model gets one vote in the median).

Figure 5. Probability that a slowdown is global warming has been detected for SSP2-4.5. Light grey lines are individual climate
model simulations, darker grey are ensemble means for each climate model, and the thick black line is the median of all of the
model ensemble means (such that each climate model gets one vote in the median).

Table 3. Common Era year of detection of a slowdown in global warming for three common choices of significance threshold. Central
estimates are the median of the mean of all ensemble members for each individual climate model. Ranges are ranges of all ensemble
members from all climate models.

Scenario label 95% 99% 99.9%

SSP1-1.9 2058.0 [2032 to 2075] 2063.5 [2032 to 2085] 2068.0 [2041 to 2093]
SSP1-2.6 2061.0 [2035 to⩾2100] 2064.5 [2035 to⩾2100] 2068.5 [2042 to⩾2100]
SSP4-3.4 2080.0 [2029 to 2097] 2085.5 [2056 to⩾2100] 2089.5 [2065 to⩾2100]
SSP5-3.4-over 2072 [2057 to 2097] 2077.0 [2058 to 2095] 2081.0 [2062 to⩾2100]

a very long time is likely needed to detect a slowdown
in warming rate.

One climate model, CanESM5 conducted 50
member ensembles for both SSP1-1.9 and SSP1-2.6.
This large ensemble allows us to isolate the part of the
variability that is inherent to the simulated climate

system from that which is due to differing model
physics, parameterizations, and structural assump-
tions in model design. In CanESM5 the mean num-
ber of years since peak global CO2 emissions needed
to detect a global warming slowdown was 25.5 years
with a range of 17 to 37 years for SSP1-1.9, and 31.5
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Figure 6. Probability that global warming has stopped for SSP1-2.6. Light grey lines are individual climate model simulations,
darker grey are ensemble means for each climate model, and the thick black line is the median of all of the model ensemble means
(such that each climate model gets one vote in the median).

Table 4. Results of Monte–Carlo simulations of SSP scenario derived CO2 pathways with noise. Values shown for parameters derived
from Keeling Curve, values for ESMs are very similar.

Prescribed First local CO2 CO2 drop for 99% Lag from peak
Scenario label peak (years CE) peak (years CE) chance of peak (ppm) to detection (years)

SSP1-1.9 2040 2032± 6.9 −2.7 8.4± 3.5
SSP1-2.6 2063 2046± 10.7 −2.9 9.3± 4.0
SSP4-3.4 2078 2051± 14.5 −2.9 8.0± 2.9
SSP5-3.4-over 2061 2058± 3.2 −2.2 3.5± 2.0

years with a range of 11 to 43 years for SSP1-2.6. Thus
there is a 20 to 30 year range in detection time of
global warming slowdown, just from internal climate
variability as simulated by CanESM5.

As a sensitivity test the Monte–Carlo analysis
was repeated for SSP1-1.9 with a white-noise model
instead of the light pink noise derived from simu-
lated climate variability. This test gave the central
estimate of 2056 CE for a 99% chance of detect-
ing a slowdown in global warming, with a range
of 2032 to 2070 CE (compared to 2063 [2032 to
2083] with pink-noise). Thus, although the auto-
correlation in global mean near-surface temperat-
ure is an important feature of the system, ignor-
ing it does not fundamentally change our core res-
ult that detecting a slowdown in global warming will
take decades following a slow-down in emissions
rate.

Figure 6 shows the probability that global warm-
ing has stopped for the climate models that conduc-
ted extensions of the SSP1-2.6 scenario to the year
2300. The figures show that whilemostmodel simula-
tions suggest a high degree of certainty that warming
has stopped by the mid 22nd century, in some sim-
ulations it is unclear if warming has stopped even by
the beginning of the 24th century. The central estim-
ate for a 95% chance of detecting that global warm-
ing has stopped is 2136 CE with an ensemble range
of 2092 to ⩾2300 CE, while the central estimate for
a 99% chance of detecting that global warming has
stopped is 2150 CE with a range of 2092 to ⩾2300
CE. The 99.9% threshold is not reached by most of

the ensemble members by the end of the simulations
in year 2300 CE.

3.2. Peak CO2 concentration
As the rate of CO2 concentration increase declines,
eventually the signal-to-noise ratio will drop below
one and local annual peaks and dips in concentration
will likely become a characteristic of the CO2 record.
The method described in section 2.2 was intended
to capture such behaviour, assuming that internal
variability of CO2 concentration does not change in
the future. Table 4 shows the results of the Monte–
Carlo simulations using parameters derived from the
Keeling curve. The simulations suggest that the first
local peak of CO2 concentration will occur a decade
or two before the prescribed peak in the SSP scen-
ario. For example, in SSP1-1.9 the first local peak is
projected to occur in 2032±6.9 years CE, compared
to a peak in 2040 CE in the underlying SSP scenario
(used as the signal model), while in SSP1-2.6 the first
local peak is projected to occur in 2046±10.7 years
CE, compared to a peak in 2063 CE in the underlying
SSP scenario.

A question we wish to explore with the Monte–
Carlo simulations is: how far does CO2 concentration
need to drop from the last peak to be sure another
record peak will not occur merely because of internal
variability? To quantify this we compute the max-
imum drop in CO2 concentration between local con-
centration peaks and minimums before the absolute
peak in each simulation. A drop in CO2 uncharac-
teristic of this range is interpreted as indicating that
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the last peak was the absolute peak in CO2 concen-
tration. We present results computed using paramet-
ers derived from the observed Keeling Curve in text
with values from ESM derived parameters in par-
enthesis. For SSP1-1.9 a drop of −2.7 ppm (−2.6
ppm) relative to the last peak gives a 99% chance
that the last peak was the absolute peak. For SSP1-
2.6 this value is −2.9 ppm (−2.8 ppm), for SSP4-3.4
this value is−2.9 ppm (−2.7 ppm), and for SSP5-3.4
this value is−2.2 ppm (−2.0 ppm). Thus the drop in
CO2 concentration consistent with the last peak being
the absolute peak does not have a strong dependence
on scenario followed. Similarly in three of the scen-
arios the 99% probability threshold is reached in a
similar amount of time. For SSP1-1.9 the 99% prob-
ability threshold is reached 8.4±3.5 years (7.7±3.7
years) after the absolute peak in CO2, for SSP1-2.6
the 99% probability threshold is reached 9.3±4.0
years (9.5±4.1 years) after the absolute peak, and for
SSP4-3.4 the 99% probability threshold is reached
8.0±2.9 years (7.9±3.1 years) after the absolute peak.
The exception is SSP5-3.4 where the 99% probabil-
ity threshold is reached just 3.5±2.0 years (4.1±2.1
years) after the peak. These variations between scen-
arios can be explained by the steepness of CO2 emis-
sions reductions assumed in the underlying scenarios.
These insights, however, allow us to say with good
confidence that a drop of 3 ppm from peak CO2 con-
centration indicates that the absolute peak concentra-
tion is in the past, and that we are likely to know we
have passed the absolute peak within a decade of its
occurrence.

4. Discussion

For examining temperature and CO2 concentration
climate milestones we have used a second order stat-
istical model to simulate noise. While we argue this
is a better approach than ignoring serial autocor-
relation in global temperature [e.g.][20] and CO2

concentration records, simple coloured noise models
are imperfect—underestimating low-frequency noise
and overestimating high frequency noise for global
temperature. A way to circumvent such problems
without having to develop ever more sophisticated
statistical models of dynamic models is simply to
conduct a very long pre-industrial control simula-
tion with a full complexity climate model. A 10 000
year pre-industrial control simulation would be suf-
ficient to carry out an analysis similar to that out-
lined in section 2.1.1. To build a noise model cap-
able of capturing the natural variability in global aver-
age temperatures, random volcanic eruptions would
also need to be incorporated into a modified pre-
industrial control simulation. Such amodelling effort
could be organized through Long Run MIP (www.
longrunmip.org/), an effort that has collected transi-
ent simulations of the required length. However, even

with incorporating random volcanic eruptions such
simulations will remain limited by the processes not
included in contemporary ESMs whichmay affect the
noise signal in the future (for example ice-sheet col-
lapse).

For assessing peak CO2 concentration we have
assumed the noise variability in the future will be
the same as that observed between 1959 and 2022 or
the median value from ESM pre-industrial control
simulations (which happen to be close in value).
However, studies of the variability in the annual
growth rate of CO2 concentration have shown that
one of the strongest influences on the growth rate is
the annual extent and intensity of wildfires [e.g.][38].
As the future fire-dynamics are strongly tied to mag-
nitude of climate change [e.g.][39] our key assump-
tionmay be weak, and detecting peak CO2 concentra-
tions might in practice be harder. Improvements in
Earth systems models may provide improved assess-
ment of peak-CO2, but such models would require
high-fidelity fire dynamics, a challenging field of ESM
development [40], and likely one of the sources of the
large range in ESM simulation of pre-industrial CO2

variability [35].
As long as global CO2 emissions are not declining,

our insights will have no particular policy relevance.
However, once global emissions begin to be reduced,
both government and other science communicat-
ors will have to explain which milestones are expec-
ted to be reached by when, and in which sequence.
For example, peak CO2-concentration occurs 6 to
18 years before net-zero fossil fuel emissions, which
is our prior for when global temperature is expec-
ted to stop increasing. Besides the challenge in com-
municating the expected sequence of climate mile-
stones, our results suggest that another challenge will
be to explain the long period of time needed to estab-
lish with certainty from surface temperature observa-
tions that global warming has peaked. Hence, looking
at surface temperature observations alone provides
no simple solution to this science communication
problem and combining multiple independent lines
of evidence emerges as a potential avenue for track-
ing progress towards climate milestone detection and
reduce these uncertainties.

5. Conclusions

Here we have examined three climate milestones
on the pathway to climate stabilization focused on
global average temperature change and atmospheric
CO2 concentration. Our results suggest that detect-
ing global temperature milestones only from near-
surface temperature data will be difficult, even under
aggressive future mitigation scenarios. We estimate
that it will take 40 to 60 years after a slowdown in
warming rate, to robustly detect the signal in the
global average temperature record. Detecting when
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warming has stopped will also be difficult and for the
one peak-and-decline scenario that has model simu-
lations extended to year 2300CE, it takes until themid
22nd century to have enough data to conclude warm-
ing has stopped when solely based on information
provided by the observational temperature record. In
some simulations it is unclear if warming has stopped
(with greater than 95% certainty) even by the begin-
ning of the 24th century. Detecting that CO2 concen-
tration has peaked is far easier and a drop in CO2

concentration of 3 ppm is consistent with a greater
than 99% chance that CO2 has peaked in all scen-
arios examined. Such a drop is likely within only a
decade of the absolute peak in CO2 concentration,
in scenarios with rapid mitigation of CO2 emissions.
The difficulty in detecting climate milestones has the
potential to both obscure progress towards climate
stabilization, and create uncertainty in the efficacy of
mitigation methods, with potentially complex con-
sequences for climate policy implementation. Overall
it is sobering that even under aggressive mitigation
scenarios a conclusive end to global warming is at
the very outer edge of the living future, with only
a small number of the very youngest children alive
today likely to witness this climate milestone.
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