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Abstract 

The Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) requires airlines to 

offset their greenhouse gas (GHG) emissions above 2019 levels by either buying carbon offsets or using 

Sustainable Aviation Fuels (SAFs). These are drop-in jet fuels made from biomass or other renewable 

resources that reduce GHG emissions by at least 10% compared to kerosene and meet sustainability 

criteria. This study assesses the direct land use change (DLUC) emissions of SAF, i.e., GHG emissions 
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from on-site land conversion from previous uses (excluding primary forests, peatlands, wetlands, and 

protected and biodiversity-rich areas) into alternative feedstocks, considering spatial variability in 

global yields and land carbon stocks. The results provide DLUC values and carbon payback times at 

0.5-degree resolution for six SAF pathways, with and without irrigation and medium-input intensity, 

according to CORSIA sustainability criteria. When excluding CORSIA non-compliant areas, soybean SAF 

shows the highest mean DLUC factor (31.9±20.7 gCO2/MJ), followed by reed canary grass and maize. 

Jatropha SAF shows the lowest mean DLUC factor (3.6±31.4 gCO2/MJ), followed by miscanthus and 

switchgrass. The latter feedstocks show potential for reducing GHG emissions over large areas but 

with relatively greater variability. Country-average DLUC values are higher than accepted ILUC ones 

for all pathways except for maize. To ensure the GHG benefits of CORSIA, feedstocks must be 

produced in areas where not only carbon stocks are relatively low but also where attainable yields are 

sufficiently high. The results help identify locations where the combination of these two factors may 

be favourable for low-DLUC SAF production. Irrigated miscanthus offers the highest SAF production 

potential (2.75 EJ globally) if grown on CORSIA-compliant cropland and grassland areas, accounting 

for ~1/5 of the total kerosene used in 2019. Quantifying other environmental impacts of SAFs is 

desirable to understand sustainability trade-offs and financial constraints that may further limit 

production potentials. 

Keywords: carbon offsetting, corsia, greenhouse gas, international aviation, jet fuel, sustainable 

aviation fuel  
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1. Introduction 

The aviation sector has been growing steadily, by ~3% annually, since the 1970s (Fleming & de Lépinay, 

2019), reaching 4.3 billion passenger journeys in 2018 (Klöwer et al., 2021). In that year, global aviation 

consumed approximately 320 Mt of fuel and emitted one Gt of CO2 (Gössling & Humpe, 2020). NOx 

and H2O emissions, soot and sulphate particles, and persistent linear contrails also contribute to 

radiative forcing and climate change (Lee et al., 2009). International aviation accounted for ~2.4% of 

global anthropogenic greenhouse gas (GHG) emissions and 3.5% of total radiative forcing in 2018 (Lee 

et al., 2021). In 2022, global CO2 emissions from aviation regained nearly 80% of the drop seen during 

the pandemic, reaching ~800 Mt (IEA, 2023). Forecasts indicate that aviation traffic will grow between 

2.3% to 3.3% per annum between 2019 and 2050, catching up with pre-pandemic trends (ATAG, 2021). 

While emissions from domestic aviation are covered by the Paris Agreement, emissions from 

international civil aviation are outside the scope of countries’ pledges. It is the International Civil 

Aviation Organization (ICAO) that quantifies these emissions and sets technical and environmental 

goals towards the carbon-neutral growth of the sector. In 2016, country members of the ICAO adopted 

the Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA), aimed to cap 

international aviation emissions at their 2019 levels (ICAO, 2019). Following the International Air 

Transport Association’s (IATA) resolution (IATA, 2021), ICAO has approved the long-term aspirational 

goal (LTAG) to achieve net-zero carbon emissions from international aviation by 2050 (ICAO, 2022a). 

Voluntary from 2021 to 2027, CORSIA requires airlines to either buy carbon offsets or use sustainable 

aviation fuels (SAFs) and lower-carbon aviation fuels (LCAFs) in replacement of fossil kerosene. SAFs 

are jet fuels derived from renewable resources such as biomass or waste, produced through pathways 

certified by the American Society for Testing and Materials (ASTM) (Prussi et al., 2021). These include 

hydroprocessed esters and fatty acids (HEFA) from fats, oils and greases; or Fischer-Tropsch (FT), 

alcohol-to-jet (ATJ), and hydroprocessed fermented sugars to synthetic isoparaffins (HFS-SIP), all from 

lignocellulosic and starch-based feedstock (Capaz et al., 2020; ICAO, 2022b; Seber et al., 2022). 
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Alcohol-to-jet pathways can use either ethanol (i.e., ethanol-to-jet, ETJ) or iso-butanol as an 

intermediate input, according to ASTM. LCAFs are fossil-based fuels that have lower life cycle GHG 

emissions than the reference fossil kerosene. Both SAFs and LCAFs must meet additional sustainability 

criteria to be certified according to the Sustainability Certification Scheme (SCS) (ICAO, 2020, 2022c). 

Using SAFs is considered the most feasible option to meet the LTAG in the medium term, contributing 

up to 71% GHG emissions reductions in an ambitious technology deployment scenario (ICAO, 2022d). 

The percentage of SAFs in jet kerosene for aviation remains very small (<0.1%) (IEA, 2023), mainly due 

to their limited cost-competitiveness (Ng et al., 2021).  

SAFs have, in principle, a favourable GHG balance relative to fossil kerosene, as feedstock production 

sequesters carbon in crop biomass and the carbon released through combustion is biogenic. However, 

agricultural practices undermine these benefits by altering the soil carbon balance and removing crop 

biomass through regular harvest (Elshout et al., 2015; Liska et al., 2014). The crop establishment 

releases GHG emissions when carbon stocks are lost relative to previous uses, especially when forests 

are converted (Field et al., 2020; Harris et al., 2015). This is known as direct land use change (DLUC), 

which refers to carbon stock changes in soil and biomass in the area where the biofuel feedstock is 

grown. Some studies propose to use spatially-explicit data to improve the representation of DLUC and 

subsequent GHG emissions (Escobar et al., 2020; Garofalo et al., 2022). Increasing demand for crop 

biomass can also lead to higher crop prices and subsequent land transformation between croplands, 

grasslands, and forests globally (Hertel & Tyner, 2013; Tonini et al., 2012). This market-mediated land 

conversion across uses is commonly known as indirect (or induced) land use change (ILUC) and must 

be estimated by means of economic modelling combined with biophysical modules (Escobar & Britz, 

2021; Zhao et al., 2021). 

CORSIA sustainability criteria establish objectives across fourteen thematic areas (e.g., GHG emission 

reductions, carbon stocks and soil conservation, agricultural practices, biodiversity conservation, 

indigenous rights, food security, etc.). To certify eligible SAFs through the CORSIA pilot phase, only 
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compliance with Themes 1 and 2 must be proven on the basis of independent attestation by SCSs 

(ICAO, 2020, 2022c). These include the following criteria: 1.1) SAFs must deliver GHG savings of at 

least 10% relative to fossil kerosene; 2.1) not be produced at the cost of land classified as primary 

forests, wetlands, or peatlands after 1 January 2008; 2.2) be associated with a DLUC value in the event 

of land conversion after 1 January 2008. Life cycle GHG emissions (excluding DLUC and ILUC), referred 

to as core-LCA values, are estimated from well to wake based on attributional life cycle assessment 

(ALCA) with energy allocation. SAF producers must calculate their GHG emissions by using either the 

CORSIA methodology (ICAO, 2022e) or the approved core-LCA and ILUC values (ICAO, 2022f). The 

latter two are estimated per feedstock and pathway by experts within ICAO’s Committee on Aviation 

Environmental Protection (CAEP). ILUC values are quantified with two widely-known global economic 

models according to the ICAO protocol, and only the results from the respective modelling teams are 

considered by the ICAO Council (ICAO, 2022b). As for DLUC estimation, CAEP developed general 

guidelines based on IPCC (2019), which consider DLUC any land conversion from previous uses into 

SAF feedstock production. If DLUC emissions exceed the accepted ILUC value, the DLUC value shall be 

used to calculate the GHG savings. If the sum of DLUC and core-LCA values does not satisfy CORSIA 

sustainability criterion 1.1, the land types affected are classified as ineligible for SAF production. The 

remaining sustainability themes (3-14) will become relevant in the post-pilot phase of CORSIA.  

Although DLUC estimation does not require consequential LCA modelling, under the IPCC approach, 

DLUC values are subject to many assumptions, e.g., regarding land uses to be replaced, biomass 

productivity after land conversion, as well as the choice of data sources. Unlike for ILUC calculation, 

there is no CORSIA protocol or harmonization process proposed to calculate accepted DLUC values for 

different feedstocks and sourcing regions. DLUC emissions have been extensively assessed in the 

context of road biofuels, assuming land uses converted in the sourcing regions, underlying carbon 

stocks and average crop management practices under the IPCC Tier 1 approach (Castanheira et al., 

2015; Malça et al., 2014; Puricelli et al., 2021). All these factors prove more decisive in determining 

the GHG emission intensity of SAF than other critical ALCA modelling choices such as allocation (Capaz 
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et al., 2021; Seber et al., 2022). Few LCA studies use spatial analysis to assess the role of DLUC in the 

GHG balance and production potentials of biofuels in EU marginal lands (Iordan et al., 2023; Vera et 

al., 2021). Perennial crops and grasses often reduce DLUC emissions through carbon gains in crop 

biomass and soil (Don et al., 2011; Iordan et al., 2023; Vera et al., 2021). The carbon payback time 

(CPT) is also used in the literature to quantify the time it takes for GHG savings from fossil substitution 

to offset DLUC emissions (Fargione et al., 2008). Based on relative crops’ suitability areas in Brazil, 

Lapola et al. (2010) found shorter CPTs for oil palm, jatropha, and sugarcane than for soybean, 

especially if grown at the cost of grasslands/shrublands. Elshout et al. (2015) and Gibbs et al. (2008) 

estimated spatially-explicit CPTs for crop-based biofuels, considering natural land conversion into 

feedstock production. Both studies show shorter CPTs for high-yielding perennial crops (sugarcane, oil 

palm). Only Gibbs et al. (2008) included non-food crops such as castor, while lignocellulosic crops were 

not evaluated.  

In view of the lack of evidence and agreement on the calculation of DLUC emission intensities of SAF, 

this work aims to quantify DLUC values and associated variability for six CORSIA feedstocks, including 

both food and non-food crops. Results provide the first and most up-to-date spatially-explicit 

estimates of global DLUC emissions and CPTs of SAFs, excluding land conversion at the cost of carbon- 

and biodiversity-rich ecosystems. The goal is to assess if jet fuels from these crops fulfil the CORSIA 

sustainability criteria, considering spatial variability in yields and land carbon stocks. Results show 

those areas where DLUC can compromise the GHG benefits from SAF production, giving and indication 

on where these feedstocks could be grown to be eligible for CORSIA and promote the carbon-neutral 

growth of the aviation sector. 

2. Methods 

DLUC emissions are estimated as GHG emissions (removals) from land converted into feedstock 

cultivation for SAF production at Tier 2 level, following the IPCC guidelines (IPCC, 2006, 2019). GHG 

emissions arise from differences in carbon stock across pools – above- and below-ground biomass 
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(AGB, BGB) and soil organic carbon (SOC) –, before and after land conversion, considering the 

observed land use distribution in each pixel as the baseline. Emissions from biomass burning are 

excluded due to the lack of information on global areas burnt (ICAO, 2022e). Net carbon losses (gains) 

are annualized taking an amortization period of 25 years. This is arbitrarily chosen by CAEP to 

represent the time that it takes to amortize GHG emissions from DLUC in the future. Annualized DLUC 

emissions are estimated as tCO2/ha and ultimately expressed as gCO2/MJ, considering crop yields and 

conversion efficiencies throughout the production pathways, as well as energy allocation between co-

products. Six feedstocks considered by CORSIA are evaluated: two oilseed crops (jatropha and 

soybean), three lignocellulosic grasses (miscanthus, switchgrass, reed canary grass – RCG), and one 

starch-based crop (maize). These are chosen based on the availability of attainable yield data on a 

global scale. Non-food feedstocks are supposed to have lower, even negative, ILUC values compared 

to soybean and maize, which are assessed as the commercial reference food feedstocks. 

The method described provides DLUC results in line with CORSIA criterion 2.1, as well as 7.1, i.e., SAFs 

should not made from biomass produced in protected areas with high biodiversity or conservation 

value (ICAO, 2022c). Results allow identifying those locations in which DLUC>ILUC value (criteria 2.2) 

and where SAFs deliver reductions in life cycle GHG emissions of 10%, relative to fossil kerosene 

(criteria 1.1), with and without core-LCA emissions. Only RCG has no accepted values for either ILUC 

or core-LCA in CORSIA, hence the latter had to be estimated. The data used and major assumptions 

are explained in this section, while the DLUC calculation steps are shown in the Annex (eq. 1-7). 

Emissions from biomass burning, forgone carbon sequestration, and changes in dead wood and litter 

are excluded, as these are highly variable and depend on forest type and age, disturbance history and 

management (IPCC, 2006). 

2.1. Spatially-explicit data processing 

DLUC emissions are calculated at 0.5-degree resolution (30 arc-min, 50x50 km) based on observed 

land uses and carbon stocks in each pixel in the period 2010-2015 (Jung et al. 2021), hence capturing 
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land conversion after 1 January 2008. The land uses include a mix of secondary forests, forest 

plantations, shrublands, herbaceous vegetation, moss and lichen, cropland, pasture and bare/sparse 

vegetation. Jung et al. (2021), in turn, combined several data sources at 1x1 km resolution, namely: 

Buchhorn et al. (2020) for the spatial distribution of vegetation classes in 2015; Santoro et al. (2021) 

for AGB in 2010; and IPCC (2006) for BGB based on adjusted root-to-shoot ratios. For this analysis, 

intact or biodiversity-rich areas, primary forests, peatlands, and wetlands were excluded, applying the 

same global carbon and conservation potential layers for biodiversity-rich areas as Jung et al. (2021). 

Specifically, primary forests and biodiversity-rich areas were excluded by intersecting global 

landscapes data (Potapov et al., 2017) with the top 10% areas with the highest biodiversity 

conservation potential. The effect of forest management on biomass density was also taken into 

account based on a remotely-sensed forest management layer consistent with the land use 

distribution in the same period (Lesiv et al., 2022). SOC data was derived from the Harmonized World 

Soil Database (HWSD v1.21) (Nachtergaele et al., 2012). Additional assumptions from the global 

gridded crop modelling framework EPIC-IIASA (Balkovič et al., 2014; Carr et al., 2020; Folberth et al., 

2016) were applied to derive the SOC stock in the topsoil layer, ranging from 10 to 30 cm, depending 

on the soil type given by HWSD and the volume of stones. The SOC stock was calculated for the area-

dominant soil type in each spatial simulation unit in EPIC-IIASA, based on the topsoil depth (cm), SOC 

content (%), and bulk density (g/cm3). Spatial simulation units are clusters of 5 arc-min pixels (ranging 

in size from 5’x5’ to 0.5°x0.5°) that belong to the same country, have similar altitude, slope, and soil 

characteristics (IIASA-IBF, 2023; Skalsky et al., 2008). Only carbon stocks in mineral soils are 

considered, as organic soils are ineligible for growing SAF feedstock for CORSIA. 

Spatially-explicit yields are taken from the Global Agro-Ecological Zone (GAEZ) v4 portal (Fischer et al., 

2021), with 5 arc-min resolution (9x9 km). Attainable yields in current cropland areas in the period 

1981-2010 were used, both in rainfed and irrigated conditions, assuming CO2 fertilization. This period 

is associated with less uncertainty than the next available one (i.e., 2011-2040) and delivers country-

average yields in line with those considered for the respective core-LCAs (Table S1.1 in the Electronic 
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Supplementary Material – ESM). Attainable yields are, in turn, modelled by using crop models with 

assumed agricultural practices, irrigation, and input application doses. The specific crop systems 

determine the water supply, based on crop evapotranspiration and soil moisture balances, 

considering edaphoclimatic characteristics and terrain suitability (Nachtergaele et al., 2012). GAEZ v4 

also simulates climate effects on crop productivity and water regimes (rainfall and irrigation), 

considering fallow periods, which influence the water balances and attainable yields for historical, 

current and future climates. It must be noted that attainable yields are those potentially obtained 

considering agrological and edaphoclimatic characteristics and do not necessarily correspond to 

observed yields in the same period. In other words, GAEZ v4 attainable yields capture those areas 

where the production of each feedstock is feasible from the agro-climatic point of view, under the 

assumed crop management. Thus, yield variability is exclusively due to the edaphoclimatic 

characteristics of the site, while crop management does not vary with the location. Feedstock-specific 

suitability areas are then defined as the extension in which crops can grow either rainfed or with 

irrigation, i.e., where attainable yields are estimated in GAEZ v4, also excluding protected areas, lakes 

and wetlands (Fischer et al., 2021). The distinction between irrigated and rainfed conditions aims to 

represent two alternative scenarios for potential yields and distribution areas for each feedstock 

(Figure S1.2). It does not give information on the preferred irrigation regime, nor on the financial 

viability in each pixel. For irrigated maize, yields with sprinkler irrigation are used, as this option is 

more efficient and delivers larger suitability areas than gravity systems (D’Odorico et al., 2020; FAO, 

2012; Grote et al., 2021). All above-mentioned data were finally processed at 0.5-degree resolution 

(50x50 km), calculating weighted averages based on the respective suitability areas, and integrated 

into the GLOBIOM modelling framework (IIASA-IBF, 2023). 

2.2. Additional data and assumptions 

SOC losses (gains) arise from changes in land management relative to the reference soils, assuming 

that SOC reaches an equilibrium value specific to the soil, climate, and land use after the conversion. 
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Reference soils are defined as those under potential vegetation, neither degraded nor improved (IPCC, 

2006). In this analysis, reference soils are those represented by Nachtergaele et al. (2012), 

corresponding to the period 1971-1982. In the absence of spatially-explicit data on crop management, 

default IPCC Tier 1 coefficients (IPCC, 2019) were mapped with the climatic zones in GLOBIOM to 

represent the effect of agricultural practices on SOC after land conversion into SAF. It was assumed 

that annual crops are produced with medium input intensity and full tillage, and perennials with 

medium input intensity and reduced tillage, in line with GAEZ v4 yield data. Alternative scenarios are 

assessed and discussed in section 4, also using the IPCC (2006) coefficients. DLUC estimates thus 

combine spatially-explicit carbon stock and yield data at Tier 2 level with default IPCC Tier 1 

coefficients for SOC change. In the absence of spatially-explicit and globally consistent data, carbon 

sequestration in SAF feedstock after land conversion (hereinafter referred to as living biomass) was 

assumed from the literature, based on the assumed crop management and GAEZ v4 average yields 

(Tables S1.1-S1.2). 

2.3. Production pathways and co-products 

Following CORSIA, DLUC emissions are energy-allocated among the several co-products (when 

available) based on their relative lower calorific values (LHVs). This requires identifying the co-

products generated along the life cycle and their major applications, which are both feedstock- and 

pathway-specific (Figure S1.1). The same assumptions as those agreed by CAEP for modelling CORSIA 

pathways have been applied (ICAO, 2022b). These determine both the allocation factors and core-LCA 

emissions (Tables S1.5 and S1.6). Processing oilseeds into HEFA delivers protein meal as a co-product 

from oil extraction. Soybean meal constitutes the most important protein source used in feed rations 

worldwide (De Maria et al., 2020). Jatropha meal is used for animal feed after detoxification, while 

husk and shell are used to produce electricity through combustion. Although CORSIA also considers 

two additional scenarios for jatropha meal applications (fertilizer or electricity generation), only the 

use as feed is considered, for being more comparable to the soybean-HEFA pathway. Lignocellulosic 
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and starch-based crops are assumed to be used in ETJ pathways via ethanol conversion. Straw from 

lignocellulosic crops is employed for on-site energy generation through a combined heat and power 

system in a standalone facility. The surplus electricity is then sold to the grid. ETJ production from 

maize delivers dried distillers’ grains with solubles (DDGS), used in feed concentrates. Jet fuel synthesis 

both in HEFA and ETJ pathways also co-produces diesel and naphtha. Pathway-specific allocation 

factors, conversion efficiencies, and other data needed for the DLUC factor estimation are shown in 

the ESM (Tables S1.3-S1.5).  

2.4. Core-LCA emissions, carbon payback times and SAF production potentials 

To identify areas compliant with the sustainability criterion 1.1, GHG savings per MJ of SAF are 

quantified for each feedstock and pathway by combining the estimated DLUC factors with core-LCA 

values, with the latter covering the remaining well-to-wake GHG emissions. As in CORSIA, a single 

core-LCA value is used for each feedstock, which corresponds to irrigated production (ICAO, 2022b). 

Core-LCA values from CORSIA are used, i.e., global values, when available. The core-LCA value for RCG-

ETJ was estimated following the methodology and assumptions in section 2.2, since this pathway does 

not yet have an accepted value (Table S1.6 in ESM). GHG savings relative to the CORSIA fossil 

comparator (89 gCO2eq/MJ) are ultimately used to estimate spatially-explicit CPTs as a 

complementary metric on the DLUC emission implications from SAF production. The CPT is defined as 

the time that it takes for the GHG benefits from fossil kerosene substitution with SAF to compensate 

for total GHG emissions from land conversion as a one-time effect. CPTs are quantified by dividing 

DLUC emissions (before amortization) by the annual GHG savings (excl. DLUC) relative to fossil 

kerosene (eq. 8 in the Annex). Finally, SAF production potentials are calculated for each feedstock, 

considering that the crop grows in agricultural land available in CORSIA-compliant areas and the 

corresponding attainable yields with and without irrigation (eq. 9). Two alternative scenarios are 

defined: one in which each feedstock is produced on available cropland areas, and one in which each 

feedstock is produced on available cropland and grassland areas. 
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3. Results 

3.1. DLUC emissions across eligible areas (criteria 2.1 and 7.1) 

DLUC emission factors are firstly estimated as tCO2eq/ha (DLUC1 in eq. 6 in the Annex) for each pixel 

within each crop’s eligible areas according to criteria 2.1 and 7.1, shown in Figure 1 for irrigated 

feedstocks only. Empty pixels correspond to either non-suitable areas, i.e., where production is not 

agronomically feasible (see Figure S1.2), or to non-eligible pixels. Results in tCO2eq/ha help 

understand the uncertainty in DLUC strictly due to spatial variability in land carbon stocks, without 

reflecting the effect of yields. Thus, the highest DLUC factors are found in pixels with relatively larger 

carbon stocks, especially in vegetation. DLUC emissions for rainfed feedstocks are in the ESM (Figure 

S2.1), which vary only in terms of the extent of eligible areas, while the carbon stocks per pixel are the 

same. 

The feedstocks that grow in tropical and subtropical latitudes (soybean, jatropha, miscanthus, and 

maize) show the highest values across the Congo and Amazon River basins and Southeast Asia (Figure 

1), associated with the clearing of secondary forests and shrublands. The highest DLUC factors for RCG 

and switchgrass are found in temperate areas of North and South America. These two feedstocks have 

the highest mean DLUC factors, i.e., 3.0±2.6 and 1.9±2.4 tCO2/ha, respectively (DLUC1 in Table S2.1). 

The lowest mean DLUC factor is estimated for miscanthus (1.4±2.8 tCO2/ha), followed by jatropha 

(1.4±2.8 tCO2/ha) and maize (1.4±1.4 tCO2/ha). This indicates that the sustainability criteria 2.1 and 

7.1 effectively exclude the most carbon-rich land uses (particularly high in tropical locations) but still 

include relatively carbon-rich secondary forests, especially in temperate climates where RCG and 

switchgrass primarily grow. Mean vegetation stocks in eligible areas for jatropha are 23.2 tC/ha, while 

they are 25.5 tC/ha for RCG. Similarly, soils in temperate latitudes are richer in carbon than tropical 

soils, which contributes to the DLUC emissions. The mean SOC content in eligible areas is the highest 

for RCG (47.9 tC/ha) and the lowest for jatropha (38.8 tC/ha). The decomposition of the DLUC factors 

into carbon pools (vegetation vs. SOC) is included in ESM (Figure S2.2, with irrigation). DLUC emissions 
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from SOC changes vary between -2 and 13 tCO2/ha for perennials. Negative values are found within 

the tropics, mainly for jatropha and miscanthus, while updated IPCC coefficients estimate SOC losses 

from perennials in both temperate and polar latitudes through the Flu coefficient – in contrast to IPCC 

(2006). Annual crops plus switchgrass, which does not show eligible areas within the tropics, cause 

SOC losses and associated emissions (up to 13 tCO2/ha) under the crop management assumptions in 

section 2.2. However, emissions from vegetation loss are the largest contributor to DLUC in the pixels 

with the highest values, i.e., on average, more than 75% in the top decile for all crops. 

The widest range of DLUC factors is found for miscanthus (-2.5–19.8 tCO2/ha), followed by jatropha (-

2.3–18.4 tCO2/ha) (Table S2.1). For these two crops, values in the top decile (>5.2 tCO2/ha, 

respectively) lie mostly between the tropics or in subtropical regions of the US, with a few exceptions. 

On the contrary, soybean and maize show the smallest DLUC ranges, from -0.1 tCO2/ha to 10.9 tCO2/ha 

for maize (12.8 tCO2/ha for soybean). These two crops benefit from the lower allocation coefficients 

to the intermediate product relative to the other feedstocks, which translates into a smaller share of 

DLUC emissions allocated to the jet fuel (Table S1.5). As a result, maize and soybean show relatively 

lower DLUC values in the top decile (>3.4 and >4.0 tCO2/ha, respectively); again, mainly across the 

tropics and the US, with exceptions in South America, Europe, and Russia. Switchgrass and RCG have 

DLUC emissions respectively ranging from -1.0 and -0.6 tCO2/ha to 18.9 tCO2/ha. These crops have 

DLUC factors in the top decile (>5.5 and >6.9 tCO2/ha, respectively) distributed across Europe, North 

America, and Central Asia. 
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Figure 1. Direct land use change (DLUC) emissions (tCO2eq/ha), after allocation and amortization, for 

feedstocks grown with irrigation, excluding primary forests, peatlands, wetlands, and protected and 

biodiversity-rich areas. 

Perennial feedstocks show greater potential to deliver negative DLUC factors through carbon 

sequestration in soil and living biomass, especially where carbon stocks in vegetation are low. DLUC 

values in the lowest decile are all negative for jatropha, miscanthus, and switchgrass (Table S2.1). 

Miscanthus and jatropha yield negative DLUC factors in 40% and 41% of the eligible area, while this 

share is much lower for switchgrass (15%) and RCG (3%). On the one hand, this is related to the 

relatively lower carbon sequestration in living biomass by the latter two (Table S1.2); on the other 
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hand, to their larger eligible areas in temperate (polar) regions, in which perennial crop production 

yields SOC losses (positive CO2 emissions) with 2019 IPCC coefficients. This makes switchgrass and RCG 

have similar SOC effects to annual crops when grown in temperate climates. RCG causes greater SOC 

losses in temperate dry climates, with a greater contribution to DLUC (Table S1.5). Soybean and maize 

deliver negative DLUC values in 0.9% and 2.6% of the eligible pixels, since annual crop production (with 

full tillage and medium input intensity) is associated with SOC losses under IPCC Tier 1, regardless the 

climatic zone, and living biomass is not enough to outweigh AGB and BGB losses. 

3.2. CORSIA-compliant DLUC factors (criteria 1.1, 2.1 and 7.1) 

Compliance with criterion 1.1 must be evaluated by estimating DLUC in gCO2/MJ (DLUC2 in eq. 7). 

Uncertainty in DLUC emissions is due to spatial variability in both land carbon stocks and crop yields, 

with yields close to zero in some locations (Figure S1.2). Pixels with yields below the first quartile1 

(<15th percentile for switchgrass) are excluded from the analysis, for being considered too low from 

the financial point of view, based on the literature (Tables S1.1-S1.2). For switchgrass, GAEZ v4 

attainable yields are high compared to those in the literature, mainly capturing production on marginal 

lands (see Table S1.1). Figure 2 shows pixels where DLUC factors (on the left) and total GHG (DLUC + 

core-LCA emissions, on the right) meet the 10% GHG reduction criterion across eligible areas for 

irrigated crops, while the rest are greyed out. Figure 2 shows the reduction in eligible areas relative to 

Figure 1 when CORSIA sustainability criterion 1.1 is included, applied to total GHG or to DLUC 

emissions only. 

Miscanthus, switchgrass and maize keep more than 70% of the eligible areas in Figure 1 also compliant 

with criterion 1.1, when only considering DLUC emissions. This percentage is lower for RCG (63%), 

jatropha (58%), and soybean (53%). Non-compliant areas are found around the Amazon and Congo 

 
1This rule excludes pixels with yields <1.4 t seed/ha for jatropha; <2.1 t seed/ha for soybean; <3.4 t/ha for maize; <7.0 t/ha 

for reed canary grass; <8.7 t/ha for miscanthus, <6.0 t/ha for switchgrass; which are considered very low in relation to the 
literature (Table S1.1).  
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River basins, and Southeast Asia; as well as in vast areas of North America, Europe, and Southern Asia, 

especially for soybean and RCG. Jatropha is the only feedstock with all negative DLUC factors (<-4.3 

gCO2/MJ) below the median. There are few compliant pixels (0.7%) with values below -50 gCO2/MJ, 

all found in tropical regions with limited carbon stocks in vegetation and yields <2t/ha, where jatropha 

production generates net SOC gains (Figure S2.2). This is also observed in dry temperate latitudes, 

through living biomass, where jatropha production is only viable with irrigation (Figure S2.3). Jatropha 

has negative DLUC values in more than 55% of the CORSIA-compliant pixels, followed by miscanthus 

(42%) and switchgrass (14%). The latter two also show negative DLUC in the first decile of the 

distribution of compliant DLUC values (Table S2.1). On the contrary, RCG, maize, and soybean mostly 

have positive DLUC values (>97% of CORSIA-compliant areas), hence delivering higher mean DLUC 

factors, i.e., 31.9 gCO2/MJ for soybean vs. 3.6 gCO2/MJ for jatropha. 

When core-LCA emissions are included, the share of CORSIA-compliant areas decreases by about half 

or more for ETJ fuels from maize and RCG, respectively. Both pathways have core-LCA emissions >60 

gCO2eq/MJ, mainly due to the higher fertilizer application intensity compared to the other feedstocks 

(Table S1.6). Compliant pixels still represent 28% of the eligible areas for RCG-ETJ and 37% for maize-

ETJ; excluding large areas across Europe, North America, and Central Asia, as well as in South America 

and Sub-Saharan Africa in the case of maize-ETJ. Jatropha-HEFA and soybean-HEFA respectively have 

36% and 47% of eligible areas compliant with criteria 1.1, largely found in South and Central America 

(and Southern US), Oceania, and Southern Asia, mainly India; while, for the latter, compliant areas 

also spread across China, Europe, and North America. Switchgrass-ETJ and miscanthus-ETJ show >65% 

of eligible areas compliant with criterion 1.1 when including core-LCA emissions. This is related to the 

lower fertilizer doses compared to RCG-ETJ and maize-ETJ pathways. Among CORSIA-compliant pixels, 

mean DLUC emissions (gCO2/MJ) vary from 3.6±31.4 for jatropha to 31.9±20.7 for soybean. Mean life 

cycle GHG emissions (gCO2eq/MJ) vary from 37.9±19.8 for jatropha-HEFA and 71.9±4.2 for maize-ETJ 

(Table S2.1).  
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Figure 2. DLUC emission factors and total life cycle GHG emissions (gCO2eq/MJ) for the jet fuels based 

on the corresponding feedstocks produced with irrigation, and excluding primary forests, peatland, 
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wetlands, and protected and biodiversity-rich areas. Only pixels within eligible areas that deliver GHG 

savings ≥10% are considered, while the rest are greyed out. Pixels with yields <25th percentile (<15th 

percentiles for switchgrass) are also filtered out. HEFA: hydroprocessed esters and fatty acids; ETJ: 

ethanol-to-jet. 

The results in this section can be used to evaluate criterion 2.2, according to which DLUC values should 

be used instead of ILUC values to calculate the GHG emission intensity of SAF, when DLUC > ILUC. This 

requires estimating DLUC factors at the country (global) level, as area-weighted averages considering 

the respective eligible areas (according to criteria 2.1 and 7.1). Table 1 shows the results for the 

specific pathways and producing regions covered by CORSIA for the feedstocks of study, based on 

available core-LCA and ILUC values (ICAO, 2022f). As RCG does not have an accepted ILUC value, DLUC 

values for several countries are included – all country-average DLUC values are shown in Table S2.2. 

DLUC emissions per MJ are higher than ILUC values for all pathways, except for maize-ETJ. Most 

pathways based on perennial grasses or jatropha still meet the GHG reduction criterion 1.1. For 

miscanthus, exceptions are found in countries with relatively higher average carbon stocks and lower 

yields. RCG-ETJ’s compliance with criterion 1.1 is very sensitive to DLUC, given the relatively high core-

LCA value. While DLUC values for cold temperate countries do not deliver sufficient GHG reductions, 

due to the lower yields and high carbon stocks (especially in soils), RCG-ETJ in drier climates would 

meet the requirement. However, this pathway would not qualify based on the global average value. 

When replacing ILUC with DLUC values, soybean-HEFA pathways do not meet the criterion, neither in 

US, nor in Brazil, nor globally. Despite the lower DLUC factor relative to soybean, maize-ETJ pathways 

do not meet criterion 1.1, because ILUC values are used in this case. The largest GHG savings (>40%) 

are quantified for Indian jatropha-HEFA, and switchgrass-ETJ and miscanthus-ETJ in specific countries. 

Table 1. Evaluation of compliance with criterion 2.2 by combining country- and global-average DLUC 

results from this study (for irrigated feedstocks) with accepted ILUC and core-LCA values from CORSIA. 
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Associated GHG emission reductions (increases) are quantified relative to the CORSIA fossil 

comparator (89 gCO2/MJ). 

Region Pathway 

CORSIA This study (Escobar et al.) 

Core-
LCA 

ILUC 
value 

Total 
GHG 

Country- 
and global-
average 
DLUC 

DLUC 
> 
ILUC 

Updated 
total 
GHG 

GHG 
reduction 
(increase)  

10% 
reduction 
(criteria 
1.1) 

    gCO2e/MJ %    

USA 
Soybean oil-

HEFA 
40.40 24.50 64.90 42.11 YES 82.51 7.3% NO 

Brazil 
Soybean oil-

HEFA 
40.40 27.00 67.40 63.31 YES 103.71 -16.5% NO 

Global 
Soybean oil-

HEFA 
40.40 25.80 66.20 54.20 YES 94.6 -6.3% NO 

India 
Jatropha-

HEFA 
46.90 

-
24.80 

22.10 -10.25 YES 36.65 58.8% YES 

India 
Jatropha-

HEFA 
46.80 

-
48.10 

-1.30 -10.25 YES 36.55 58.9% YES 

USA 
Miscanthus-

ETJ 
43.30 

-
42.60 

0.70 9.99 YES 53.29 40.1% YES 

EU 
(Croatia) 

Miscanthus-
ETJ 

43.30 
-

23.30 
20.00 39.19 YES 82.49 7.3% NO 

EU 
(Greece) 

Miscanthus-
ETJ 

43.30 
-

23.30 
20.00 -2.02 YES 41.28 53.6% YES 

EU 
(Hungary) 

Miscanthus-
ETJ 

43.30 
-

23.30 
20.00 28.31 YES 71.61 19.5% YES 

EU (Italy) 
Miscanthus-

ETJ 
43.30 

-
23.30 

20.00 6.03 YES 49.33 44.6% YES 

EU 
(Portugal) 

Miscanthus-
ETJ 

43.30 
-

23.30 
20.00 7.89 YES 51.19 42.5% YES 

EU 
(Romania) 

Miscanthus-
ETJ 

43.30 
-

23.30 
20.00 17.37 YES 60.67 31.8% YES 

EU 
(Slovenia) 

Miscanthus-
ETJ 

43.30 
-

23.30 
20.00 60.12 YES 103.42 -16.2% NO 

EU (Spain) 
Miscanthus-

ETJ 
43.30 

-
23.30 

20.00 3.09 YES 46.39 47.9% YES 

Global 
Miscanthus-

ETJ 
43.30 

-
19.00 

24.30 6.37 YES 49.67 44.2% YES 

USA 
Switchgrass-

ETJ 
43.90 

-
10.70 

33.20 9.25 YES 53.15 40.3% YES 

Global 
Switchgrass-

ETJ 
43.90 4.80 48.70 11.09 YES 54.99 38.2% YES 

USA Maize-ETJ 65.70 25.10 90.80 14.59 NO 90.8 -2.0% NO 

Global Maize-ETJ 65.70 34.90 100.60 18.95 NO 100.6 -13.0% NO 

EU 
(France) 

Reed canary 
grass-ETJ 

62.4 
(this 

study) 
N/A 62.4 25.58 N/A 87.98 1.1% NO 

EU 
(Germany) 

Reed canary 
grass-ETJ 

62.4 
(this 

study) 
N/A 62.4 45.37 N/A 107.77 -21.1% NO 
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EU 
(Greece) 

Reed canary 
grass-ETJ 

62.4 
(this 

study) 
N/A 62.4 4.02 N/A 66.42 25.4% YES 

EU (Italy) 
Reed canary 

grass-ETJ 

62.4 
(this 

study) 
N/A 62.4 15.58 N/A 77.98 12.4% YES 

EU 
(Poland) 

Reed canary 
grass-ETJ 

62.4 
(this 

study) 
N/A 62.4 40.26 N/A 102.66 -15.3% NO 

EU (Spain) 
Reed canary 

grass-ETJ 

62.4 
(this 

study) 
N/A 62.4 13.77 N/A 76.17 14.4% YES 

EU 
(Sweden) 

Reed canary 
grass-ETJ 

62.4 
(this 

study) 
N/A 62.4 78.33 N/A 140.73 -58.1% NO 

China 
Reed canary 

grass-ETJ 

62.4 
(this 

study) 
N/A 62.4 11.86 N/A 74.26 16.6% YES 

USA 
Reed canary 

grass-ETJ 

62.4 
(this 

study) 
N/A 62.4 19.54 N/A 81.94 7.9% NO 

Canada 
Reed canary 

grass-ETJ 

62.4 
(this 

study) 
N/A 62.4 23.79 N/A 86.19 3.2% NO 

Russian 
Federation  

Reed canary 
grass-ETJ 

62.4 
(this 

study) 
N/A 62.4 35.81 N/A 98.21 -10.3% NO 

Global 
Reed canary 

grass-ETJ 

62.4 
(this 

study) 
N/A 62.4 23.94 N/A 86.34 3.0% NO 

3.3. Carbon payback-times and SAF production potentials across CORSIA-compliant 

areas  

DLUC results allow quantifying spatially-explicit CPTs for the analysed SAF production pathways (eq. 8 

in the Annex). Figure 3 show positive results across areas compliant with criteria 2.1 and 7.1 (section 

3.1). Negative CPTs are greyed out, as these correspond to pixels where there is net carbon 

sequestration and no GHG emissions to compensate. Jatropha-HEFA and Miscanthus-ETJ show a 

significant share (~20%) of eligible areas with negative CPTs, corresponding to pixels with negative 

DLUC factors (Figure 2). Same as DLUC emissions, CPTs are highly variable. Mean CPTs vary from 

11.6±14.3 years for switchgrass-ETJ to 54.0±60.0 years for jatropha-HEFA. Only the latter has a mean 

CPT >50 years. ETJ from switchgrass and miscanthus shows the shortest mean CPTs, followed by 

maize-ETJ, soybean-HEFA and RCG-ETJ. Most of the estimated CPTs (>60%) for all pathways are <50 

years, with nearly 100% for miscanthus-ETJ and switchgrass-ETJ. Only jatropha-HEFA shows CPTs>100 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

21 

 

years above the 90th percentile, located in specific pixels around the Amazon and Congo River basins 

and Southeast Asia (Table S2.1). Some of these pixels can reach CPTs >500 years. After jatropha-HEFA, 

the longest maximum CPTs are found for maize-ETJ (410.2) and soybean-HEFA (354.1), also in tropical 

latitudes.  

 

Figure 3. Carbon payback times (years) for the jet fuels produced from irrigated feedstocks, excluding 

primary forests, peatland, wetlands, and protected and biodiversity-rich areas according to criteria 2.1 

and 7.1. Negative results are highlighted in grey, as these correspond to pixels where there is net 

carbon sequestration, meaning there is no payback time to compensate for GHG emission increases. 
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Pixels with yields <25th percentile (<15th percentiles for switchgrass) are also greyed out. HEFA: 

hydroprocessed esters and fatty acids; ETJ: ethanol-to-jet. 

Finally, results in section 3.1 and 3.2 are used to estimate maximum production potentials of each 

feedstock, assuming that cropland (and grassland) areas available in CORSIA-compliant pixels are 

employed for producing SAF with each feedstock (eq. 9). Global results (PJ) for the scenarios 

considered are shown in Table 2, as well as the kerosene market share (%). The latter is estimated 

based on data on global jet fuel kerosene consumption for the year 2019, which represents the all-

time high in consumption and is the CORSIA reference year to calculate airlines’ emission offsets. This 

is quantified at 14.4 EJ (404.4 billion litres) considering country-level consumption for both 

international bunker and domestic aviation (UNSD, 2024). The largest potentials are achieved with 

irrigated miscanthus (2.94 EJ, 20.4% of 2019 jet fuel consumption) (Table 2), when produced on 

cropland and grasslands in areas compliant with criteria 2.1 and 7.1, followed by switchgrass (1.55 EJ) 

and maize (1.47 EJ). The potentials are reduced when implementing criterion 1.1 (2.75 EJ and 1.45 EJ 

for irrigated miscanthus and switchgrass, respectively, or 6% decrease in potential); especially for 

soybean, RCG, jatropha, and maize, with a reduction >40%. Soybean, jatropha, and RCG account for 

0.2% and 0.8% in the most restrictive scenario (rainfed production in cropland areas compliant with 

criteria 1.1, 2.1 and 7.1). This is comparable to the current market share of SAF (<0.1%) from all 

commercial feedstocks (IEA, 2023).  

Table 2. SAF production potentials and market share for each feedstock, assuming that these are 

produced in agricultural land areas compliant with several CORSIA sustainability criteria, both with 

and without irrigation. 

SAF PRODUCTION POTENTIALS (PJ) 

 

Cropland areas, in 
pixels compliant 
with criteria 2.1 
and 7.1 (section 

3.1) 

Cropland and 
grassland areas, in 
pixels compliant 

with criteria 2.1 and 
7.1 (section 3.1) 

Cropland areas, in 
pixels compliant 
with criteria 1.1, 

2.1 and 7.1 
(Section 3.2) 

Cropland and 
grassland areas, in 
pixels compliant 
with criteria 1.1, 

2.1 and 7.1 (Section 
3.2) 

 Irrigated Rainfed Irrigated Rainfed Irrigated Rainfed Irrigated Rainfed 
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Jatropha 386.2 242.9 520.31 302.39 179.3 114.0 241.3 148.7 

Maize 1128.5 730.6 1473.37 891.86 650.9 271.6 872.1 330.2 

Miscanthus 2220.7 1282.9 2935.08 1572.99 2055.5 1095.6 2748.1 1360.9 

Reed canary grass 769.8 560.4 974.49 671.77 343.6 161.9 472.0 201.9 

Soybean 109.3 73.6 141.27 90.16 56.5 24.1 74.3 29.4 

Switchgrass 1243.8 787.7 1546.70 913.90 1164.1 698.0 1453.9 810.0 

SHARES OVER 2019 AVIATION JET FUEL CONSUMPTION (%) 

 

Cropland areas, in 
pixels compliant 
with criteria 2.1 
and 7.1 (Section 

3.1) 

Cropland and 
grassland areas, in 
pixels compliant 

with criteria 2.1 and 
7.1 (Section 3.1) 

Cropland areas, in 
pixels compliant 
with criteria 1.1, 

2.1 and 7.1 
(Section 3.2) 

Cropland and 
grassland areas, in 
pixels compliant 
with criteria 1.1, 

2.1 and 7.1 (Section 
3.2) 

 Irrigated Rainfed Irrigated Rainfed Irrigated Rainfed Irrigated Rainfed 

Jatropha 2.7 1.7 3.6 2.1 1.2 0.8 1.7 1.0 

Maize 7.8 5.1 10.2 6.2 4.5 1.9 6.1 2.3 

Miscanthus 15.4 8.9 20.4 10.9 14.3 7.6 19.1 9.4 

Reed canary grass 5.3 3.9 6.8 4.7 2.4 1.1 3.3 1.4 

Soybean 0.8 0.5 1.0 0.6 0.4 0.2 0.5 0.2 

Switchgrass 8.6 5.5 10.7 6.3 8.1 4.8 10.1 5.6 

4. Discussion 

4.1 Limitations of the study 
This study implements spatially-explicit data into the IPCC approach (IPCC 2006, 2019) for the 

estimation of DLUC emissions for SAF production pathways. The IPCC guidelines provide a framework 

to calculate GHG emissions from land conversion into cropland, taking into account carbon cycle 

processes among pools at different levels of complexity. Both Tier 1 and 2 introduce spatial variability 

in carbon stocks (and flows) without the need for data-intensive mechanistic models that simulate 

biogenic system dynamics as in Tier 3 (Batlle-Aguilar et al., 2011; Goglio et al., 2018; Lugato et al., 

2014; Thomas et al., 2013); or to carry out field studies (Achten et al., 2013; Bailis & McCarthy, 2011; 

Batlle-Bayer et al., 2010). Both mechanistic models or direct field measurements are site-specific and 

can hardly provide global coverage. The IPCC Tier 1 is frequently applied to include DLUC in LCA 

studies, by identifying the sourcing regions, associated yields, and land uses being converted in each 

case (Achten et al., 2010; Malça & Freire, 2012; Shonnard et al., 2015). The influence of these and 

other assumptions, such as crop management, can be assessed through scenario analysis, defining a 

discrete number of alternatives (Castanheira et al., 2015; Castanheira & Freire, 2013; Seber et al., 
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2022). Although the revised guidelines (IPCC, 2019) expand the land conversion possibilities relative 

to IPCC (2006), mainly in terms of forest age, vegetation carbon stocks are given by default values at 

a coarse resolution – continental and agroclimatic zone level. Our study provides DLUC estimates at 

Tier 2 level, capturing spatial variability in global crop yields and carbon stocks in vegetation and soil 

at a relatively fine resolution.  

DLUC estimation follows CORSIA sustainability criteria 2.1 and 2.2 (ICAO, 2022e), assuming that 

producing SAF feedstock completely clears the existing vegetation in 2010-2015 (Jung et al. 2021), 

excluding primary forests and intact ecosystems. Eligible areas yet include some pixels with AGB > 100 

tC/ha (with values up to 160.09 tC/ha), mainly found in tropical countries such as Cameroon or 

Indonesia but also in temperate latitudes (e.g., US, Australia). These values are comparable to those 

given by IPCC (2019) for secondary forests (older than 20 years), e.g., in Asia (tropical rainforest: 131.6 

tC/ha), North and South America (tropical moist deciduous forest: 131.0 tC/ha; tropical dry forest: 

118.9 tC/ha), or Europe (temperate oceanic forest: 153.9 tC/ha). Similarly, SOC data is consistent with 

IPCC (2019) SOC values in reference soils. For instance, high activity clay soils in tropical moist climates, 

such as those found in Brazil, have around 40 tC/ha (top 30 cm) in IPCC (2019), while the country-

average SOC content for eligible areas for jatropha and miscanthus in Brazil is 40.8 tC/ha. The default 

SOC content in high activity clay soils in warm temperate dry climates is 24 tC/ha, e.g., in line with the 

country-average for RCG grown in Greece (28.3 tC/ha). One limitation of the carbon stock data used 

is that it is not land cover-specific, which prevents us from estimating DLUC factors for land transitions 

e.g., from degraded grasslands or marginal lands into SAF feedstock, which could result in lower DLUC 

values (Seber et al., 2022). 

The method presented uses Tier 1 coefficients to quantify SOC changes through agricultural practices, 

relative to the reference soil. The same crop management is assumed for the annual (medium input, 

full tillage) and perennial crops evaluated (medium input, reduced tillage). IPCC Tier 1 coefficients are 

mapped with agroclimatic zones in GLOBIOM, hence reflecting spatial heterogeneity of SOC impacts. 
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The distinction in tillage practices is made because perennials need less tillage and maintenance 

compared to annual crops (Don et al., 2012; Iordan et al., 2023; Winkler et al., 2020). Although some 

studies highlight the potential of perennial crops to be grown with low input intensity, these mostly 

correspond to marginal lands, where production is oriented to deliver soil improvements and other 

environmental benefits (Achten et al., 2013; Scordia et al., 2022; Vera et al., 2021). Medium input 

application was assumed for all crops to minimize the comparative effect of this assumption, taking 

into account that attainable yield data from GAEZ v4 correspond to medium-high input intensities 

(Fischer et al., 2021). Agricultural practices greatly influence both SOC changes and yields, which are 

key determinants of the GHG performance of bioenergy/biofuel crops (Escobar et al., 2017; Fazio & 

Monti, 2011; Goglio et al., 2012). Therefore, DLUC values should aim to represent spatial 

heterogeneity in agricultural practices and input intensity, depending on edapho-climatic 

characteristics. When estimated with process-based models that simulate soil-plant system dynamics 

or with field experiments, perennial grasses normally deliver GHG benefits over annual crops, 

especially when produced at the cost of previous cropland or marginal lands (Dheri et al., 2022; Hillier 

et al., 2009; Zatta et al., 2014). These benefits vary with the level of input intensity, ranging from SOC 

losses to gains with increased input application (Don et al., 2012; Nguyen et al., 2017; Ogle et al., 

2010). SOC changes also depend on the irrigation regime, which determines the N input application 

(Iordan et al., 2023). Crop management is subject to temporal variability, as farmers adapt their 

choices to several factors, including climate, prices, etc. (Bessou et al., 2013; Boone et al., 2016). This 

challenges the generation of global datasets that cover spatial and temporal variability in crop-specific 

agricultural practices.  

Attainable yields had to be considered as most of the feedstocks assessed are not produced on a large 

scale (except maize and soybean) and there is no global data on actual yields and harvested areas for 

each feedstock. GAEZ attainable yields are obtained with simulation models that consider agro-

climatic and soil characteristics, water availability, as well as the impacts of climate change on crop 

productivity and irrigation water requirements under current and future climates (Fischer et al., 2021). 
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Actual yields may differ from the attainable yields considered, mainly due to differences in the actual 

areas employed – GAEZ v4 considers current croplands. Actual yields may also differ due to the effect 

of crop management, which is however difficult to represent consistently at a global level, as indicated 

above. Still, area-weighted average yields at the country level are in line with those of agri-food 

commodities in FAOSTAT (FAO, 2024), e.g., 3.10 t/ha and 3.20 t/ha for soybean in Brazil and USA 

(average 2010-2022), respectively; 10.4 t/ha for maize in the US (see Table S1.7). The same method 

could be replicated for other crops available in GAEZ v4 that are relevant for CORSIA.  

CORSIA-compliant area results in sections 3.1 and 3.2 have been used to estimate SAF production 

potentials. This constitutes a what-if scenario of maximum potentials to be achieved with each 

feedstock alone, assuming that it grows in available croplands (and grasslands), while these areas may 

be in practice used for the production of other crops with higher profitability. The approach is similar 

to that applied by Vera et al. (2021) and Iordan et al. (2023). However, these studies focus on 

biofuel/bioenergy potentials from perennial grasses in the EU. Iordan et al. (2023) consider available 

abandoned croplands and attainable yields from GAEZ v3 (Fischer et al., 2012). Vera et al. (2021) 

consider areas compliant with the EU Renewable Energy Directive according to the GHG emission 

savings of the resulting road biofuels, simulating future yields under specific agroclimatic and soil 

characteristics. Other factors may influence SAF potentials, such as crop production costs, actual land 

availability and profitability in competition with other uses, cost-competitiveness of SAF vs. 

conventional kerosene, or other policies and climate targets, which require integrated modelling 

assessments (Mandley et al., 2020; Popp et al., 2011; Reid et al., 2020). 

4.2 Further improvements and considerations 
Further work could consider simulating yields for alternative input intensity and tillage scenarios. This 

could be done with the EPIC-IIASA model (Izaurralde et al., 2012; Williams et al., 1989), provided that 

it progressively includes all crops in this study and others of interest for CORSIA in the GLOBIOM 

framework (IIASA-IBF, 2023). The analysis could also include ETJ production from second-harvest 

maize, which has become an important bioenergy feedstock in Brazil (Eckert et al., 2018), normally 
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grown in rotation with soybean (Moreira et al., 2020; Spera et al., 2014). Including second-harvest 

maize would require data on cropping frequencies, double-cropped areas, and underlying crop 

rotations on a global scale. GAEZ v4 only includes attainable yield information for single-cropped 

maize, while CORSIA does not provide core-LCA or ILUC values for second-harvest maize. Second-

harvest maize would also have implications for the DLUC factors of soybean produced in Brazil, as this 

would imply further allocation of emissions among all crops in the rotation (Escobar et al. 2020). 

The estimation of DLUC factors assumes an average value for carbon sequestration in living biomass, 

whereas it should vary with yield. A similar approach was used by WWF & IIASA (2019) to examine 

SAF production potentials in Sub-Saharan Africa under sustainability constraints. The authors consider 

different values for living biomass in perennial feedstocks only, depending on the agroclimatic zone, 

e.g., between 14.9 tC/ha and 17.9 tC/ha for miscanthus. Bailis & Baka (2010) defined different 

scenarios for carbon sequestration in jatropha in Brazil depending on the fertilization doses and 

associated yields: e.g., carbon sequestration jatropha ranges from 11 to 20 tC/ha with yields of 1.8 

t/ha and 5.35 t/ha, respectively. Achten et al. (2013) consider low (12 tC/ha), medium (17.8 tC/ha), 

and high (21.4 tC/ha) scenarios for the average living biomass in a 20-year jatropha plantation in 

(semi)arid areas. Applying the same approach would entail additional assumptions to define different 

carbon sequestration levels in line with yields, since both depend on the plantation age. In the absence 

of empirical evidence, we tried to represent conservative carbon sequestration scenarios per 

feedstock not to benefit the GHG balance, e.g., 12.4 tC/ha in miscanthus; 12.0 tC/ha for jatropha. 

Although these values do not capture the expected variability of living biomass, they are aligned with 

the area-weighted global yields (Table S1.1 in ESM), i.e., 2.5 t/ha for irrigated jatropha or 17.3 t/ha for 

irrigated miscanthus. It must be noted that GAEZ v4 is optimistic as for attainable yields of switchgrass 

in current cropland compared to the literature surveyed, but this is because the latter mostly covers 

switchgrass produced in marginal or poorly productive land (Table S1.2). In any case, these 

calculations ignore the temporal asymmetry between emissions from vegetation loss and uptake by 
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crop re-growth (Cherubini et al., 2016). Further improvements should capture the relation between 

crop management, irrigation regime, yields, living biomass, and SOC changes. 

The results underline that location is decisive for the DLUC emission intensity of SAFs, justifying the 

need for higher tiers than IPCC Tier 1 to conveniently capture spatial variability in DLUC. The 

production site determines the existing land uses, carbon stocks, and yields. Our analysis distinguishes 

between irrigated and rainfed production, determining the attainable yields and the extension of 

suitability areas. Although attainable yields are only available for locations in which production is 

agronomically feasible, also considering water availability, the estimation of DLUC as gCO2/MJ 

excludes pixels with yields below the first quartile (15th percentile for switchgrass) to represent those 

locations where production may not be financially viable. Water scarcity can pose further 

environmental impacts (Liu et al., 2017; Schmitt et al., 2022; WWF & IIASA, 2019). Same as DLUC 

factors in this study, CORSIA core-LCA values do not reflect variability in management systems, even 

though fertilizer use and tillage play a key role in agricultural emissions (Eliasson et al., 2023; Escobar 

et al., 2020). Core-LCA emissions of SAFs from rainfed feedstocks should be slightly lower than those 

from irrigated ones, due to lower energy consumption. Although out of scope, considering the spatial 

variability of core-LCA would help identify the sourcing regions of low-carbon SAFs. Multiple LCA 

studies have shown that assumptions associated with DLUC are yet a more important source of 

uncertainty in life cycle GHG emissions than uncertainty in life cycle inventory data (Capaz et al., 2021; 

Malça & Freire, 2011; Seber et al., 2022).  

While this study focuses on stochastic uncertainty, DLUC estimates are also subject to epistemic 

uncertainty (Plevin et al., 2010), derived from the parameters and assumptions to represent changes 

in carbon cycles and implications for carbon stocks (Curtright et al., 2012; Harris et al., 2015; Whitaker 

et al., 2018). These include the default input intensity and tillage practices that determine the 

selection of IPCC Tier 1 coefficients, based on which SOC losses are quantified. The influence of crop 

management assumptions is assessed by defining alternative scenarios vs. the default one: all 
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feedstocks with reduced tillage and low input intensity or all with tillage and high input intensity. The 

yields are the same as in the default scenario and do not vary with crop management. The 2006 IPCC 

coefficients were also tested. Mean values across scenarios are shown in Figure S2.5 in the ESM. On 

the one hand, low input application increases the DLUC1 factors of both perennial and annual crops, 

as it decreases carbon gains both with 2006 and 2019 coefficients. The effect of fertilization on SOC is 

not fully understood, yet this captures how chemical fertilizers enhance soil quality and SOC stability 

(Han et al., 2016; Mahal et al., 2019; Zhou et al., 2022). On the other hand, reduced tillage tends to 

lower DLUC1 factors of annual crops, relative to the default scenario, as it reduces tillage-induced N 

mineralization (Feng et al., 2018). Reduced tillage could lead to increased N2O emissions through 

decreased soil aeration and higher soil moisture contents (Don et al., 2012). The 2019 IPCC coefficients 

reflect how reduced tillage can decrease SOC in dry climates, in contrast to 2006 coefficients that lead 

to SOC increases in all climates. Furthermore, 2019 coefficients consider that perennial production 

reduces SOC in polar and temperate latitudes, regardless the crop management, while the 2006 Flu 

coefficient had no effect on SOC. The updated 2019 Flu coefficients probably reflect the more variable 

and context-dependent effect that perennial crops have on SOC (Ledo et al., 2020; Qin et al., 2016; 

van Straaten et al., 2015). This is why DLUC1 decreases for perennial crops with IPCC 2006 coefficients, 

especially for those crops with large eligible areas in temperate climates (miscanthus, RCG or 

switchgrass). These differences highlight the importance of understanding the effect of agricultural 

practices on SOC to decrease GHG emissions of SAFs relative to fossil kerosene (Kent et al., 2020; Qin 

et al., 2018). Other important assumptions are the reference soil and land uses considered as baseline, 

and the amortization period. The latter is arbitrarily defined by CORSIA, implying a linear variation of 

emissions in the years following conversion, which however take place as a one-time effect (Fabbri et 

al., 2023; Maciel et al., 2022). For SOC decreases, the rate of change is highest during the first years; 

while for SOC increases, the rate of accumulation tends to follow a sigmoidal curve (IPCC, 2006). 

The results can be compared to those from previous studies. Vera et al. (2021) quantify mean DLUC 

emissions below zero for ethanol from miscanthus, switchgrass, and RCG in the EU, considering 
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spatially-explicit biomass productivities in marginal land. Our DLUC results show wider variability and 

positive mean values for the three crops (Table S2.1), with the highest DLUC for RCG (27.2 gCO2eq/MJ). 

The maximum biomass potential of lignocellulosic energy crops in EU varies between 1.95 EJ/year in 

2030 and 2.27 EJ/year in 2050. Iordan et al. (2023) find miscanthus, switchgrass, and RCG promising 

feedstocks for EU bioenergy production, with bioenergy potentials between 1 and 7 EJ/year. Under 

rainfed conditions, switchgrass has the largest supply potential (174 Mt/year), while miscanthus has 

the lowest life cycle GHG emissions (169 kgCO2eq/t or 1.5 tCO2eq/ha). Production of all grasses under 

rainfed conditions leads to net negative GHG emissions through SOC increases in abandoned 

croplands. With irrigation, annual GHG emissions turn positive for switchgrass and RCG, mostly due to 

the additional energy required to secure productivity in marginal lands. The effect of irrigation on SOC 

is however minor, and their estimated SOC changes are in the same range as the ones in this study 

(Figure S2.2). In terms of CPTs, Elshout et al. (2015) find longer values for maize and soybean, with 

large areas with CPTs>500 years, mainly because they considered natural (intact) vegetation 

conversion. Replacing no-input farming with high-input farming tends to shorten the CPTs, by more 

than 100 years. We only found CPTs >500 years in few pixels in the tropics, with most values <100 

years. Elshout et al. (2015) also included N2O emissions from soil mineralization and (de)nitrification, 

as well as N2O from fertilizer application. Gibbs et al. (2008) find higher CPTs and wider variability 

depending on the land uses converted, including natural vegetation, e.g., between 300-1500 years for 

maize produced on deforested land. Conversion of grasslands, pastures and existing croplands for 

biofuel feedstock production yields much shorter CPTs (<100 years); and using marginal lands may 

generate trade-offs through more energy-intensive management to remain productive. 

5. Conclusions 

This study provides spatially-explicit estimates at 0.5-degree resolution of DLUC factors, CPTs and SAF 

production potentials for six CORSIA feedstocks. DLUC emissions originate from the clearing of 

observed vegetation to produce the crop, excluding primary forests and biodiversity-rich land uses 
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according to CORSIA sustainability criteria 2.1 and 7.1. The analysis represents a what-if scenario in 

which observed vegetation in CORSIA-eligible land uses is replaced by SAF feedstock. GHG emissions 

(removals) are estimated at IPCC Tier 2 level as the difference in carbon stocks across pools (soil, 

vegetation, living biomass) relative to previous uses, using spatially-explicit data and regionalized 

information on attainable crop yields, land uses converted and underlying carbon stocks. DLUC 

estimates indicate where producing these specific SAF feedstocks could be counterproductive in terms 

of GHG savings, reflecting spatial variability in biophysical processes determined by local conditions 

(e.g., rainfall, soil, and slope characteristics). The irrigation regime translates into differences in yields 

and the extension of each crop’s suitable areas, which vary in terms of initial SOC and vegetation. The 

results are used to assess compliance with criteria 1.1 and 2.2, i.e., to identify those locations where 

SAFs would deliver reductions in life cycle GHG emissions of 10%, relative to fossil kerosene, and assess 

if DLUC > ILUC at the country level., while further market-mediated land use changes are not 

considered.  

The production location is critical for the SAF’s GHG emission intensity, and considering only a mean 

DLUC factor at the country or global levels to identify CORSIA eligible feedstocks can be misleading. 

Maximum DLUC factors are found across the tropics for those feedstocks that grow in tropical 

(subtropical) latitudes, where emissions from vegetation loss make the largest share of absolute DLUC 

emissions. Sustainability criterion 2.1 effectively excludes the most carbon-rich land uses but still 

includes relatively carbon-rich ones, not categorized as primary forests. When applying criterion 1.1 

(10% GHG reduction) to DLUC emissions and excluding non-compliant pixels, soybean SAF shows the 

highest mean DLUC factor (gCO2/MJ) (31.9±20.7), followed by RCG (27.2±21.6). Jatropha SAF shows 

the lowest mean DLUC factor (3.6±31.4), followed by miscanthus (9.2±18.6) and switchgrass 

(14.5±17.4). When including core-LCA emissions, miscanthus-ETJ and switchgrass-ETJ keep more than 

65% of the eligible areas under criteria 2.1 also compliant with criterion 1.1. This percentage is lower 

for RCG-ETJ (28%), jatropha-HEFA (36%), maize-ETJ (37%), and soybean-HEFA (47%). The sensitivity 

analysis shows that crop management assumptions are key to quantifying DLUC emissions under the 
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IPCC approach. Thus, critical aspects remain, such as considering spatial variability in agricultural 

practices, living biomass, crop rotations or the extent of abandoned and unused land, on which global 

data is scarce. 

When comparing DLUC with CORSIA’s ILUC values, most pathways based on perennial grasses or 

jatropha still meet the 10% reduction criterion 1.1, with some exceptions, mainly for RCG. Country-

average DLUC values are higher than ILUC ones for all pathways except for maize, emphasizing the 

need to provide accepted DLUC values and more specific calculation guidelines for CORSIA, with the 

challenge of not overlooking variability. Other pathways based on agricultural residues, used cooking 

oil, and tallow are assumed to have no ILUC/DLUC implications. ILUC modelling usually considers 

agricultural area savings associated with co-product generation under consequential approaches, 

especially when these replace crop production for animal feed, such as in maize- and soybean-based 

SAF pathways. By definition, DLUC estimation excludes these substitution effects through allocation. 

The four perennial feedstocks assessed bear potential to mitigate GHG emissions from international 

aviation according to CORSIA sustainability criteria, provided that these are produced in areas where 

yields are sufficiently high. Irrigated miscanthus provides the highest SAF production potential across 

CORSIA-compliant areas (2.75 EJ), followed by switchgrass (1.45 EJ), and maize (0.87 EJ), although this 

depends on the land uses assumed to be available for conversion (cropland and/or grassland). 

Collective action from policymakers, industry, and investors is needed to ensure SAFs are produced in 

sites that deliver low DLUC emissions, while overcoming other economic and technological barriers to 

scale up SAF production and use. Beyond CORSIA, quantifying other environmental impacts is 

desirable to understand sustainability trade-offs and challenges for SAF promotion, for instance, 

related to irrigation water demand and scarcity, which can limit production potentials further. 
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Annex 

• Equations for DLUC emission estimation under the IPCC Tier 1 approach. 

∆𝐶 = 𝐶𝐿𝑈1 − 𝐶𝐿𝑈0
  (eq. 1) 

𝐶𝐿𝑈0
= 𝐶𝐴𝐺𝐵0

+ 𝐶𝐵𝐺𝐵0
+ 𝐶𝐷𝑊0

+ 𝐶𝐿𝐼0 + 𝐶𝑆𝑂𝐶0 + 𝐶𝐻𝑃𝑊0
      (eq. 2) 

𝐶𝐿𝑈1
= 𝐶𝐴𝐺𝐵1

+ 𝐶𝐵𝐺𝐵1
+ 𝐶𝑆𝑂𝐶1

         (eq. 3) 

𝐶𝑆𝑂𝐶0 = 𝐶𝑅𝐸𝐹 (eq. 4) 

𝐶𝑆𝑂𝐶1 = 𝐶𝑅𝐸𝐹 × 𝐹𝐿𝑈 ×  𝐹𝑀𝐺 ×  𝐹𝐼  (eq. 5) 

 

Where, 

∆C (t/ha): carbon losses (gains) from on-site (direct) land conversion into SAF feedstock production 

CLU0 (t/ha): total carbon stocks in land uses prior SAF feedstock production 

CLU1 (t/ha): total carbon stocks in land converted into SAF feedstock production 

CAGB0 (t/ha): carbon stocks in aboveground biomass (AGB) before land conversion 

CBGB0 (t/ha): carbon stocks in belowground biomass (BGB) before land conversion 

CDW0 (t/ha): carbon stocks in dead wood before land conversion 

CLI0 (t/ha): carbon stocks in litter before land conversion 

CSOC0 (t/ha): soil organic carbon (SOC) in mineral soils before land conversion 
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CHWP0 (t/ha): carbon stocks in harvested wood products before land conversion; assumed to be zero 

in Tier 1 

CAGB1 (t/ha): carbon stocks in AGB after land conversion 

CBGB1 (t/ha): carbon stocks in BGB after land conversion 

CSOC1 (t/ha): SOC in mineral soils after land conversion 

CREF (t/ha): SOC in reference mineral soils 

FLU (dimensionless): Land use coefficient 

FMG (dimensionless): Land management coefficient 

FI (dimensionless): Input coefficient 

In this study, ∆C (tC/ha) is calculated per feedstock (f) at the pixel level (i). Note that CAGB1 and CBGB1 

refer to the carbon sequestration in living biomass shown in Table S1.1 (in ESM), which is downscaled 

but still the same for all pixels inside the land suitability areas for each crop. FLU, FMG, and FI are taken 

from IPCC Tier 1 default values (IPCC, 2006) assuming the same management and input intensity for 

each feedstock (depending in whether it is annual or perennial crop), but still vary with the climatic 

area in which each pixel is located. 

• Equations for DLUC emission factor estimation in different units, after energy allocation. 

𝐷𝐿𝑈𝐶1𝑓,𝑖  (
𝑡𝐶𝑂2

ℎ𝑎
) =

∆𝐶𝑓,𝑖 (
𝑡𝐶

ℎ𝑎
) × 

44

12

𝑇 (𝑦𝑒𝑎𝑟𝑠)
× 𝐴𝐹1𝑓 × 𝐴𝐹2𝑓 (eq. 6) 

 

𝐷𝐿𝑈𝐶2𝑓,𝑖  (
𝑔𝐶𝑂2

𝑀𝐽
) =

𝐷𝐿𝑈𝐶1𝑓,𝑖 (
𝑡𝐶𝑂2

ℎ𝑎
)

𝑌𝑖𝑒𝑙𝑑𝑓,𝑖 (
𝑡

ℎ𝑎
) 𝑥 𝐶𝐸1𝑓 (%) 𝑥 𝐶𝐸2𝑓 (%) 𝑥 𝐿𝐻𝑉 (

𝑀𝐽

𝑘𝑔
)

× 1000 (eq. 7) 

 

𝐶𝑃𝑇𝑓,𝑖  (𝑦𝑒𝑎𝑟𝑠) =  
𝐷𝐿𝑈𝐶2𝑓,𝑖 (

𝑔𝐶𝑂2
𝑀𝐽

) × 𝑇 (𝑦𝑒𝑎𝑟𝑠)

89 (
𝑔𝐶𝑂2

𝑀𝐽
)−𝑐𝑜𝑟𝑒𝐿𝐶𝐴𝑓 (

𝑔𝐶𝑂2
𝑀𝐽

)
  (eq. 8) 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

35 

 

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑓,𝑖,𝑠 (𝑃𝐽) =   𝐴𝑟𝑒𝑎𝑓,𝑖,𝑠  (ℎ𝑎) 𝑥 𝑌𝑖𝑒𝑙𝑑𝑓,𝑖 (
𝑡

ℎ𝑎
)  𝑥 𝐶𝐸1𝑓 (%) 𝑥 𝐶𝐸2𝑓 (%) 𝑥 𝐿𝐻𝑉 (

𝑀𝐽

𝑘𝑔
)  𝑥 10−6 

(eq. 9) 

Where, 

∆Cf,i (tC/ha): change in carbon stocks in soil, AGB and BGB after land conversion into SAF feedstock (f) 

production in each pixel (i)  

AF1f (dimensionless): allocation factor to the intermediate product (vegetable oil in HEFA and DDGS 

or straw in ETJ pathways) – see Table S1.5 in ESM 

AF2f (dimensionless): allocation factor to the jet fuel – see Table S1.5 in ESM 

T (years): amortization time, 25 years in CORSIA 

LHV (MJ/kg): lower heating value of the jet fuel (44 MJ/kg) 

Yieldf,i (t/ha): yields of each feedstock (f) in each pixel level (i). Yields are estimated as tonnes of dry 

biomass for lignocellulosic crops (switchgrass, miscanthus, reed canary grass, maize) and as tonnes of 

dry seed per ha for oilseed crops (jatropha and soybean). 

CE1f (%): conversion efficiency of feedstock into intermediate product, i.e., kg of refined oil per kg of 

dry seed in HEFA (after extraction losses) and kg ethanol per kg of dry biomass in ETJ pathways – see 

Table S1.4 in ESM 

CE2f (%): conversion efficiency of intermediate product into jet fuel, as kg of jet fuel per kg of refined 

oil in HEFA pathways or per kg of ethanol in ETJ pathways – see Table S1.4 in ESM 

CPTf,i (years): carbon payback time for of each feedstock (f) in each pixel level (i) 

CoreLCAf emissions (gCO2eq/MJ): core-LCA emissions from well to wake, for SAF from each feedstock 

(f); these are both pathway- and feedstock-specific 
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Areaf,i,s (ha): pixels (i) for producing SAF from each feedstock (f) in each scenario (s): compliant with 

criteria 2.1 and 7.1; also compliant with criteria 1.1 

Potentialf,i,s (PJ): production potential for SAF based on each feedstock (f) in each pixel level (i), in each 

scenario (s): compliant with criteria 2.1 and 7.1; also compliant with criteria 1.1. 
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• Study provides spatially-explicit (50x50 km) direct LUC emissions of aviation fuels 

• DLUC emissions arise from carbon stock changes in soil and biomass at IPCC Tier 2 

• Results show CORSIA-compliant areas, C payback times and SAF potentials for 6 crops 

• Soy jet fuel has the highest mean DLUC factor (gCO2/MJ) and jatropha the lowest 

• Miscanthus, switchgrass and jatropha show large areas where jet fuel decreases GHG 


