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A B S T R A C T

Accurate and high-resolution land cover (LC) information is vital for addressing contemporary environmental
challenges. With the advancement of satellite data acquisition, cloud-based processing, and deep learning
technology, high-resolution Global Land Cover (GLC) map production has become increasingly feasible. With a
growing number of available GLC maps, a comprehensive evaluation and comparison is necessary to assess their
accuracy and suitability for diverse uses. This particularly applies to maps lacking statistically robust accuracy
assessment or sufficient reported detail on the validation procedures. This study conducts a comparative inde-
pendent validation of recent 10 m GLC maps, namely ESRI Land Use/Land Cover (LULC), ESA WorldCover, and
Google and World Resources Institute (WRI)’s Dynamic World, examining their spatial detail representation and
thematic accuracy at global, continental, and national (for 47 larger countries) levels. Since high-resolution map
validation is impacted by reference data uncertainty owing to geolocation and labelling errors, five validation
approaches dealing with reference data uncertainty were evaluated. Of the considered approaches, validation
using the sample label supplemented by majority label within the neighborhood is found to produce more
reasonable accuracy estimates compared to the overly optimistic approach of using any label within the
neighborhood and the overly pessimistic approach of direct comparison between the map and reference labels.
Overall global accuracies of the maps range between 73.4% ± 0.7% (95% confidence interval) to 83.8% ± 0.4%
with WorldCover having the highest accuracy followed by Dynamic World and ESRI LULC. The quality of the
maps varies across different LC classes, continents, and countries. The maps’ spatial detail representation was
assessed at various homogeneity levels within a 3 × 3 kernel. Although considered as high-resolution maps, this
study reveals that ESRI LULC and Dynamic World have less spatial detail than WorldCover. All maps have lower
accuracies in heterogenous landscapes and in some countries such as Mozambique, Tanzania, Nigeria, and Spain.
To select the most suitable product, users should consider both the map’s accuracy over the area of interest and
the spatial detail appropriate for their application. For future high-resolution GLC mapping, producers are
encouraged to adopt standardized LC class definitions to ensure comparability across maps. Additionally, the
spatial detail and accuracy of GLC maps in heterogeneous landscapes and over some countries are the key
features that should be improved in future versions of the maps. Independent validation efforts at regional and
national levels, as well as for LC changes, should be strengthened to enhance the utility of GLC maps at these
scales and for long-term monitoring.
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1. Introduction

Land cover (LC) maps play a vital role in helping to understand
human-induced as well as natural processes in the land system. Their
information is invaluable for various applications, such as agriculture,
land use planning, nature conservation, climate modeling, and water
management, enabling policy- and decision-makers to make informed
decisions (Ban et al., 2015). Given the escalating impacts of global
climate change and increasing human activity on ecological systems,
there is a growing demand for high-resolution, accurate, and up-to-date
LC maps to comprehend and effectively address environmental land
changes (Szantoi et al., 2020).

Recent advances in satellite data acquisition, cloud-based process-
ing, and the increased use of deep learning approaches in remote sensing
have ushered in a new era of Global Land Cover (GLC) mapping, char-
acterized by faster production and higher spatial resolutions. Although
the 30 m-resolution GLC maps derived from the extensive Landsat
archive continue to serve a substantial user base (Potapov et al., 2022;
Yu et al., 2022; Zhang et al., 2021), there is a proliferation of 10 m-
resolution GLC maps, leveraging Copernicus Sentinel-1 and 2 data,
which includes the FROM-GLC10 map for 2017 by Tsinghua University
in China (Gong et al., 2019), the ESRI Land Use/Land Cover maps (ESRI
LULC, 2017–2022) (Karra et al., 2021), the European Space Agency
(ESA) WorldCover 2020/2021 maps (Zanaga et al., 2022), and the Dy-
namic World (2015–2023) released by Google and the World Resources
Institute (WRI) (Brown et al., 2022). These maps, while sharing the same
high spatial resolution, often employ different classification models and
methodologies, leading to potentially divergent classification results,
which underscores the need for comprehensive evaluation and com-
parison to ensure their reliability for diverse applications.

With more GLC maps becoming available, users have the possibility
to decide which product to use. However, choosing the most suitable
product for a given application is not always straightforward. Users may
base their selection on reported accuracy from the map producer or on a
subjective visual assessment, but this can introduce uncertainties or
biases in their further analysis (Kinnebrew et al., 2022; Tsendbazar
et al., 2016). Thus, an independent and statistically rigorous comparison
of these products against the same validation dataset is crucial to aid
users in selecting the most appropriate map for their specific needs.
Some regional assessments have been conducted, such as Kang et al.’s
(2022) comparison of FROM-GLC10, WorldCover, and ESRI LULC for
northwestern China, Chaaban et al.’s (2022) evaluation of WorldCover
and ESRI LULC for Syria, and Wang and Mountrakis’s (2023) evaluation
of eleven 10–30 m global and regional LULC mapping products over the
conterminous U.S. However, only limited global level comparison of the
high-resolution GLC products is available. Wang et al. (2023b) con-
ducted a comprehensive review of 107 LULC products which included
the most recent 10 m products, while an independent validation was not
provided by this study. A global validation was done by Venter et al.
(2022) by comparing Dynamic World, World Cover, and ESRI LULC at a
global level using the Dynamic World validation dataset and within the
European Union using the LUCAS database (D’Andrimont et al., 2020).
However, the global validation for ESRI LULC was not completely in-
dependent, as the authors stated, because the Dynamic World validation
dataset was used by ESRI for both training and validation, with un-
known distribution of training tiles.

Validating high-resolution LC products is challenging due to poten-
tial inherent uncertainties in reference data. Typically, validation
datasets are created through visual interpretation of very high-
resolution (VHR) imagery, which is susceptible to various sources of
error (Pontius, 2000; Tarko et al., 2021). For instance, uncertainty in
reference label interpretation can make it difficult to clearly assign a
single LC label to a pixel due to multiple classes being present and
limited availability of VHR data (Tarko et al., 2021; Tsendbazar et al.,
2015). Additionally, geolocation mismatches betweenmap products and
validation datasets (Aguilar et al., 2017; Potere, 2008) can significantly

affect the estimated map accuracy, particularly at high resolution (Gu
and Congalton, 2021; Olofsson et al., 2014). However, most high-
resolution GLC maps did not consider reference data uncertainties
during validation. For example, DynamicWorld was validated through a
direct comparison of the map label with expert/non-expert annotations.
ESRI LULC did not provided many details of its validation process,
leaving users unsure about whether the accuracy assessment of the map
is statistically robust or not. Yet, disregarding reference data un-
certainties may lead to an unfair comparison of maps (Stehman and
Foody, 2019), thus, it is strongly recommended to consider reference
data uncertainty when validating the high-resolution GLC maps.

Various approaches have been proposed to address reference data
uncertainty during validation. For example, to assess the impact of
geolocation errors on map accuracy estimation, Gu and Congalton
(2021) discarded sample units in heterogeneous areas, considering that
geolocation error has little impact in homogeneous areas. Another
approach involves using alternative or secondary labels from the sur-
rounding area of the sample pixel to reduce the effect of reference data
uncertainty (Olofsson et al., 2014; Wickham et al., 2021). Understand-
ing the impact of different validation approaches is crucial to achieving
consensus on methodologies that improve the comparability of valida-
tion estimates for high-resolution LC maps.

With the use of high spatial resolution Sentinel-1 and 2 data at 10 m
pixel size, LC is expected to be discerned in greater spatial detail,
particularly in heterogeneous landscapes to capture small-scale features
and variations within a landscape (Drusch et al., 2012; Torres et al.,
2012). However, the added benefit of spatially detailed LC character-
ization with the high-resolution GLC maps has not been assessed despite
the presumed expectation of using high-resolution satellite products as
inputs.

The objective of this study is to assess the strengths and weaknesses
of recent 10 m-resolution GLC products in terms of accuracy and rep-
resentation of spatial detail by considering several validation ap-
proaches that address reference data uncertainty. To achieve this, we
utilized the validation dataset produced by the Copernicus Global Land
Service - Land Cover (CGLS-LC) project (Tsendbazar et al., 2021) to
compare and assess three recent and openly accessible 10 m GLC
products: WorldCover, ESRI LULC, and Dynamic World. We compared
five validation methods that account for reference data uncertainty,
highlighting their advantages and disadvantages. Additionally, we
evaluated the accuracy of the GLC maps across different scales and their
capability to represent spatial detail.

2. Methods

2.1. Validation dataset

The multi-purpose Global Land Cover Validation dataset
(Tsendbazar et al., 2021) was used for validating the GLC maps. This
dataset employs the Sentinel-2 Universal Transverse Mercator (UTM)
grid as the geographic base. The dataset is based on a global stratifica-
tion (combination of Köppen biome and population density), making the
stratification independent of LC maps. The dataset has>21,000 primary
sampling units (PSUs) at a 100 m-resolution globally with a minimum of
3000 PSUs distributed per continent (Fig. 1).

The CGLS-LC validation dataset offers a robust framework for
assessing large-scale LC maps. Each PSU within the validation dataset
contains one hundred 10 × 10 m reference pixels (SSUs; secondary
sampling units), enabling the assessment of LC maps with resolutions
ranging from 10 m to 100 m. The LC information for these locations has
been updated annually for the period of 2015–2021, focusing on areas
that underwent changes since 2015. For this study, we utilized the data
from 2021. Fig. 2 provides an example of the LC labelling in a sample
site. The dataset comprises LC validation sample units at a 10 m-reso-
lution, which was contributed by >30 regional experts from around the
world and involved extensive review and feedback by international
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experts (Tarko et al., 2021; Tsendbazar et al., 2021). The LC validation
data consist of 10 classes (shown in Table 2), as well as the flooding
condition (Tsendbazar et al., 2018). For a detailed description of this
validation dataset, such as the sampling design and response design,
readers can refer to Tsendbazar et al. (2021).

2.2. Global land cover maps, legend harmonization, and data processing

In this study, we evaluated and compared three GLC maps, namely
WorldCover (Zanaga et al., 2022), ESRI LULC (Karra et al., 2021), and
Dynamic World (Brown et al., 2022). These maps were selected as they
represent the most recent developments among 10 m GLC maps and for
their open access to users. The year 2021 was chosen because the
WorldCover V200 map was released only for the year 2021, with an
improved algorithm and accuracy in comparison to the previous 2020

version. In this study, a one-year composite of Dynamic World was
evaluated. More detailed information on the maps is presented in
Table 1.

To ensure that the maps are thematically comparable, we reclassified
their LC classes into seven types. Table 2 provides an overview of both
the harmonized and original classes. The original class definition of each
product is shown in Table S1 of the supplementary material. We created
a mixed vegetation class as an umbrella category encompassing shrub-
land, herbaceous vegetation, and wetland herbaceous vegetation from
the reference dataset. This reconciliation of classes was undertaken in
order to compare the products as the ESRI LULC does not distinguish
between grassland and shrublands. Additionally, Dynamic World and
ESRI maps include seasonally flooded areas that are a mix of grass/
shrub/trees/bare ground as flooded vegetation (Brown et al., 2022;
Karra et al., 2021), hence this class of the two maps as well as the
mangrove class and herbaceous wetland of WorldCover were attributed
to the “mixed vegetation” class (Table 2).

To obtain the map data at the reference locations, the Google Earth
Engine (GEE, Gorelick et al., 2017) platform was used. The values of
each map at the reference sample sites were extracted using the
reduceRegions() function in GEE, sampled at the map’s original
resolution. For ESRI LULC, we used the most recently updated version
(July 2023). This data is not available on GEE but can be accessed
through Amazon Web Services (AWS), Esri Living Atlas, and Microsoft
Azure (see links in Table 1).

To determine a pixel that confidently belongs to a Dynamic World
class over time, it is recommended to use the probability bands (Google
Earth Engine, 2022), which indicate the estimated likelihood of the
original 9 LC classes. We firstly composited the annual probability bands
using the median value for each of the LC class, and then the class with
the highest probability was chosen as the LC label for that pixel.
Nevertheless, the derived annual LC label has some tendency to over-
estimate snow & ice, crops, and bare ground. Thus, the annual labels

Fig. 1. Distribution of the validation data used for the global and continental accuracy estimation. Classes shown in this figure represent the dominant type in each
primary sampling unit (PSU) at 100 m-resolution in 2021. The numbers in the brackets indicate the number of PSUs for the dominant types.

Fig. 2. Screenshot of an example interpretation for a PSU composed of 100
secondary sampling units (SSU). Sub-squares represent SSUs and the colors
green, orange and yellow represent trees, shrubs and grassland respectively.
Source: Tsendbazar et al., 2018. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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were further adapted using data from the growing season with the
following rules:

• The “cropland” in the annual label was changed to a corresponding
class if it is “grass”, “trees”, or “shrubs” during the growing season.

• The “snow& ice” in the annual label was changed to a corresponding
class if it is “water”, “trees”, “grass”, “flooded vegetation”, “shrubs”,
“crops”, or “bare ground” during the growing season.

• The “bare ground” in the annual label was changed to a corre-
sponding class if it is “trees”, “grass”, “shrubs”, “flooded vegetation”,
or “crops” during the growing season.

Specifically, the growing season was defined as June–August for the
Northern Hemisphere and December–February for the Southern Hemi-
sphere. Here we simplified the definition of growing season to guarantee
easier implementation for large-scale map users and to avoid creating
harsh/artificial boundaries in the LC representation, while users focused
on a smaller scale are recommended to define growing season based on
the phenological cycle and climatic conditions of their interested area.
The LC type for the growing season was obtained using the same
approach applied to obtaining the annual label from probability bands.
Through these adaptations, we ensured that the derived LC labels
accurately reflected LC on an annual level in the Dynamic World prod-
uct. Afterwards, the classes were harmonized according to Table 2.

In the definition of built-up areas, the DynamicWorld and ESRI LULC
products consider urban green (such as lawns, trees, or buildings sur-
rounded by vegetative land covers) as urban, while our reference data
do not categorize urban green as built-up. To accommodate our refer-
ence data to the two maps with a different definition of built-up areas,
we included extra steps in the validation process (see section 2.4).

2.3. Assessing the spatial detail of GLC maps

At the 10 m level, the GLC maps are expected to have greater spatial
detail in characterizing various LC types in heterogeneous landscapes
compared to maps based on coarser spatial resolution. To assess if the
landscape spatial details are adequately reflected in these 10mmaps, we
introduced the concept of “homogeneity level”.

Based on a moving 3 × 3 kernel, the homogeneity level is defined as
the number of pixels in the 3 × 3 kernel that match the LC label of the
centre SSU. If none of the surrounding SSU labels matches that of the
centre, the homogeneity level is set to “1” and if all labels of the sur-
rounding SSUs match the LC at the centre SSU, the homogeneity level is
set to “9” (Fig. 3). The kernel size 3 × 3 was determined in accordance
with previous studies (Stehman et al., 2003; Wickham et al., 2021) and
accommodates a positional shift of one pixel in the reference data.

The GLC maps were assessed at different homogeneity levels. Firstly,
we assessed to what extent the GLC maps and the validation data agree
at different homogeneity levels. To do so, we calculated the proportion
of sample locations (i.e., SSU) that agree in terms of mapped and
reference LC. More specifically, the agreement between the mapped and
reference labels was calculated at homogeneity level 1–9, respectively,
given both the map and validation data. Secondly, the percentage of
sample SSUs in each homogeneity level was calculated for the map and
the validation data to identify the proportion of sample units in each
homogeneity level.

In this assessment, only complete 3 × 3 kernel grids (nine pixels)
were included, excluding the edge SSUs in the 10× 10 SSUs of each PSU.
For all the three maps, the same procedure was applied. Finally, to assess
the homogeneity at the PSU-level, we compared the number of LC types
present within a 100 × 100 m PSU given both the map and validation
data.

Table 1
Overview of GLC products used in this study.

Dataset
name

Data
source

Classification
model

Period of
data

Number
of classes

Spatial
resolution
(m)

Temporal
frequency

Reported
overall
accuracy

Reference GEE asset ID

WorldCover
Sentinel-
1,
Sentinel-2

Gradient boosting
decision tree
(CatBoost)

2020, 2021 11 10 Yearly 76.7% Zanaga
et al., 2022

“ESA/WorldCover/v200”

Dynamic
World

Sentinel-2

Fully
Convolutional
Neural Network
(FCNN)

2015–2023 9 10 2–5 days 73.8% Brown
et al., 2022

“GOOGLE/DYNAMICWORLD/V1”

ESRI LULC Sentinel-2
Convolutional
Neural Network -
UNet

2017–2022 9 10 Yearly 85.0% Karra
et al., 2021

The most recent version (July
2023) is not available on GEE but
can be accessed through AWS1,
Esri Living Atlas2, and Microsoft
Azure3.

1 https://registry.opendata.aws/io-lulc/
2 https://www.arcgis.com/home/item.html?id=cfcb7609de5f478eb7666240902d4d3d
3 https://planetarycomputer.microsoft.com/dataset/io-lulc-annual-v02

Table 2
Overview of harmonized and original land cover classes of the GLC products. Numbers in the brackets indicate class code. The original class definitions can be found in
Table S1 of the supplementary material.

New label Reference data WorldCover Dynamic World ESRI LULC

Water (0) Open water (80) Permanent water bodies (80) Water (0) Water (1)
Trees (1) Closed forest (11); Open forest (12) Tree cover (10) Trees (1) Trees (2)
Mixed
vegetation
(2)

Shrubs (20); Herbaceous vegetation (30);
Wetland herbaceous vegetation (90)

Shrubland (20); Grassland (30); Moss and lichen
(100); Herbaceous wetland (90); Mangroves (95)

Grass (2); Shrub & Scrub (5);
Flooded vegetation (3)

Rangeland (11);
Flooded vegetation (4)

Crops (4) Cropland (40) Cropland (40) Crops (4) Crops (5)
Built area (6) Urban/built up (50) Built-up (50) Built area (6) Built Area (7)
Bare ground (7) Bare/sparse vegetation (60) Bare / sparse vegetation (60) Bare ground (7) Bare ground (8)
Snow & Ice (8) Snow and ice (70) Snow and ice (70) Snow & Ice (8) Snow/ice (9)

P. Xu et al.

https://registry.opendata.aws/io-lulc/
https://www.arcgis.com/home/item.html?id=cfcb7609de5f478eb7666240902d4d3d
https://planetarycomputer.microsoft.com/dataset/io-lulc-annual-v02


Remote Sensing of Environment 311 (2024) 114316

5

2.4. Approaches to deal with reference data uncertainty

In this study, five approaches dealing with reference data uncertainty
were compared to assess the effect of validation methods on the map
accuracy estimation. These approaches are visually depicted in Fig. 4.

The “Direct” or “Primary” approach (Approach 1, Fig. 4) involved a
straightforward pixel-to-pixel comparison between the mapped and
reference LC types. In this method, all discrepancies between the

reference and map labels were considered map errors. This approach
considers the reference class as the absolute truth and does not account
for geolocation and reference class ambiguity (Stehman and Foody,
2009).

Next, we explored the incorporation of alternative or secondary la-
bels from the surrounding area (3× 3 kernel) of each SSU. This approach
concerns the step of defining the agreement between the map and the
reference label. Here, the use of alternative labels from the surrounding

Fig. 3. Example of the homogeneity levels (H) based on the LC labels in a 3 × 3 kernel. A. H = 1: An isolated centre SSU (*). B. H = 4: Three neighboring SSUs match
the centre SSU (*) in terms of land cover. C. H = 9: Complete homogeneous for the centre SSU (*).

Fig. 4. Five approaches to deal with reference data uncertainties when validating 10 m-resolution GLC maps. Approach 1: “Direct/Primary” uses only the centre SSU
(*) as reference label. Approach 2: “Primary + Alternative label: Any” uses any LC class in the 3 × 3 kernel as reference label in addition to the centre pixel label.
Approach 3: “Primary + Alternative label: Majority” uses the centre SSU (*) as well as the majority LC class of the 3 × 3 kernel as reference label. Approach 4:
“Homogeneity filter 4/9” discards SSU whose homogeneity level (H) < 4 and uses the centre SSU (*) as reference label. Approach 5: “Homogeneity filter 9/9”
discards SSU whose homogeneity level (H) < 9.

P. Xu et al.
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area aims to reduce the effect of geolocation mismatch or labelling un-
certainties such as uncertainties in assigning a dominant label within a
small SSU (e.g., 10 × 10 m). Two options, “Primary + Alternative label:
Any” and “Primary + Alternative label: Majority” (Approaches 2 and 3
from Fig.4, respectively), were considered. The selection of the kernel
size was inspired by previous work such as Wickham et al. (2021), who
employed a 3 × 3 kernel of a centre pixel to interpret an alternate label
when collecting validation data to assess the National Land Cover
Dataset (NLCD) of the USA for 2016. This approach enabled using
landscape context to account for the labelling ambiguity and geo-
location error, while on the other hand, the use of alternative labels may
blur the definition of agreement between the map and reference labels
(Stehman et al., 2003).

The “Primary + Alternative label: Any” approach (Approach 2,
Fig. 4) takes the LC class of the SSU as the primary label and any of the
LC classes in the 3 × 3 kernel grid of the SSU as alternative labels. All
primary and alternative labels are then matched with the mapped label
at the SSU location (Wickham et al., 2021). In the “Primary + Alterna-
tive label: Majority” approach (Approach 3, Fig.4), we considered the
majority or modal LC class within the 3× 3 kernel grid in addition to the
reference LC class of each SSU. Stehman et al. (2003) employed a similar
concept by utilizing the majority label within a 3 × 3 kernel as alter-
native label to validate the NLCD products. A mapped label was deemed
correct if it matches either the primary LC class of the SSU or the
alternative label representing the majority LC class in the kernel
(Stehman et al., 2003). Only the clear majority class was used, in case of
two or more modal classes, no alternative label was used.

Lastly, we excluded sample units in heterogeneous kernels, assuming
higher reference data uncertainty in these areas following Gu and
Congalton (2021) who have adapted this approach to assess the effect of
reference data uncertainty. We used two homogeneity thresholds. First,
the “Homogeneity filter 4/9” retained SSUs with H ≥ 4. Second, the
“Homogeneity filter 9/9” retained only SSUs with H = 9. The filtering
was done for both the mapped and reference LC labels. Since hetero-
geneous SSUs were excluded, the resulting map accuracy estimates
represent accuracy only for the more homogeneous areas and do not
represent the accuracy of the entire mapped area. The numbers of SSUs
and PSUs used for each validation method as well as each GLC map are
listed in Table S2 of the supplementary material.

To accommodate our reference data for validating built areas of
Dynamic World and ESRI LULC, which depict urban green areas as
urban (Table S1 of the supplementary material), we included an urban
refinement process, which checks the number of built-up pixels in the 3
× 3 kernel. If at least one built-up pixel exists in the 3 × 3 kernel of the
reference data, the map label is considered correct.

2.5. Accuracy estimation

Our validation dataset conformed to a stratified, one-stage cluster
design (Pengra et al., 2015). Sample inclusion probability, which is the
likelihood of a given sample unit being included in the sample, was
calculated for the primary sampling units (PSUs) and secondary sam-
pling units (SSUs) following the methods described in Pengra et al.
(2015) and Tsendbazar et al. (2018). The PSU is a cluster, and each
cluster is assigned to a stratum h. As the selection of PSUs in the vali-
dation dataset is based on stratified sampling (see Section 2.1), the in-
clusion probability (π) per stratum (h) was calculated as πh = kh/Kh,
where kh is the number of PSU sampled in stratum h and Kh is the
population size (total possible number of PSUs) for stratum h
(Tsendbazar et al., 2021). The inclusion probability for each sampled
PSU was available in the validation dataset (Tsendbazar et al., 2021).

Because map accuracy can be expressed as a ratio, the ratio estimator
provides a general approach for accuracy estimation for clustered
sampling while accounting unequal inclusion probabilities (Pengra
et al., 2015). Based on the SSUs within PSUs, following Pengra et al.
(2015), the ratio estimator can be calculated as:

R̂ =

∑H
h=1

∑kh
i=1

∑Nhi
j=1ωhijyhij

∑H
h=1

∑kh
i=1

∑Nhi
j=1ωhijxhij

(1)

where j is the index of the SSU (j = 1,…,Nhi), Nhi is the number of SSUs
in cluster i (PSU) of stratum h, i is the cluster index in stratum h (i = 1,2,
…,kh), h is the stratum index (h = 1,2,…,H), and ωhij is the estimation
weight (i.e., inverse of the inclusion probability) for SSU j in cluster i
(PSU) of stratum h. xhij and yhij are defined to yield the parameter of
interest, such as the overall accuracy meaning the total percentage of
sample units with correct classification divided by the total number of
possible units in the region. The ratio estimates R̂ for the overall accu-
racy (%) is calculated with yhij defined as 1 if map and reference labels
agree and 0 otherwise, and xhij defined as 1, to derive the ratio of correct
classification based on all possible sample units.

The variance estimator for R̂ is based on a Taylor series approxi-
mation (Pengra et al., 2015)

V̂(R̂) =
∑H

h=1
V̂h (R̂) =

∑H

h=1

kh
(

1 − kh
Kh

)

kh − 1
∑kh

i=1
(ghi. − gh..)2 (2)

where

ghi. =

∑Nhi

j=1
ωhij

(
yhij − xhij R̂

)

∑H
h=1

∑kh
i=1

∑Nhi
j=1ωhijxhij

(3)

and

gh.. =

∑kh

i=1
ghi.

kh
(4)

If a stratum has kh = 1, the contribution of that stratum to the esti-
mated variance is 0.

Based on the estimation weight per PSU, each SSU was assigned 1/
100th of the weight of the PSU it belongs to, as there are 100 SSUs in
each PSU (Fig. 2). Next, using the mapped and reference LC types at each
SSU, a confusion matrix was constructed accounting for unequal sample
inclusion probabilities (Stehman et al., 2003; Wickham et al., 2021). In
the approaches using homogeneity filtering, only the SSUs meeting the
filtering thresholds were considered together with their estimation
weights. The estimation weights of excluded SSUs were not accounted
for in accuracy estimation.

Overall accuracies and their confidence intervals (at a 95% confi-
dence level) were calculated for each of the validation approaches
following the eqs. (1–4). Following a similar concept, class specific ac-
curacies were calculated as detailed in Pengra et al. (2015). The accu-
racy estimation was done globally, per continent (seven sub-continents),
and for 47 countries having>100 PSUs based on the initial design of the
validation dataset (Tsendbazar et al., 2021).

3. Results

3.1. Approaches dealing with reference data uncertainty

Fig. 5 shows the overall global accuracies for the three GLC maps
when different validation approaches are applied. The global overall
accuracy varied between 82.8 and 91.4% for WorldCover, 70.8–82.1%
for Dynamic World, and 70.3–82.2% for ESRI LULC based on the five
validation approaches.

For all the three GLC maps, the “Direct” or “Primary” approach
yielded the lowest accuracy estimates; this is expected as this approach
considers all differences between reference and map labels as map er-
rors, regardless of possible reference data errors. Conversely, the
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“Primary + Alternative label: Any” approach produced the highest ac-
curacy estimates, followed by those of the “Homogeneity filter 9/9”. The
“Primary + Alternative label: Majority” and the “Homogeneity filter 4/
9” produced comparable accuracy estimates.

The number of SSUs and PSUs used by the two different kinds of
approaches, namely, alternative labelling and filtering based on homo-
geneity, is different (Table S2). More specifically, the “Primary +

Alternative label” approaches used all available SSUs and PSUs, while

Fig. 5. Global overall accuracy of the GLC maps when applying different validation methods. Error bars represent 95% confidence interval (CI) of the esti-
mated accuracy.

Fig. 6. Global and continental overall accuracies for the GLC maps based on the “Primary + Alternative label: Majority” approach. Error bars represent 95% CI of the
estimated accuracy.
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the “Homogeneity filter 4/9” discarded 7% - 9% of SSUs and the “Ho-
mogeneity filter 9/9” discarded almost 59% - 61% of SSUs (calculated
from Table S2; considering all the three GLC maps). Therefore, the
confidence interval ranges of the accuracy estimates were larger in the
two filtering approaches compared to those of the “Primary + Alterna-
tive label” approaches (Fig. 5).

3.2. Accuracy comparison

To further compare the class-specific and overall accuracies of the
GLC maps over the globe, per continent, and in the selected countries,
we used the “Primary + Alternative label: Majority” approach, because
it was expected to produce middle range (neither too optimistic nor too
pessimistic) accuracy estimates while utilizing all available SSUs.

Fig. 6 illustrates how the accuracies of the three GLC maps differ
between the continents. Globally, the greatest overall accuracy was
achieved byWorldCover (83.8%± 0.4%, 95% CI), followed by Dynamic
World (74.1% ± 0.6%) and ESRI LULC (73.4% ± 0.7%); thus, the
overall accuracy of the different maps varied within about 10%. Among
the three maps, WorldCover obtained the highest overall accuracies for
all continents. For DynamicWorld, South America was found to have the
greatest continental accuracy (79.1% ± 1.2%) and Oceania the smallest
(65.4% ± 1.7%). The ESRI LULC mapped LC most accurately in South
America (80.1% ± 1.2%) but for this map, Asia (65.4% ± 1.6%) was the
least accurately mapped continent. The continental accuracies of Africa,
Asia, Eurasia, and Oceania showed larger variation compared to the
other continents for the three GLC maps (Fig. 6).

Table 3 shows the global class-specific accuracies for the seven LC
classes. Among the seven LC types, water and trees were mapped with a
relatively high accuracy by all the three GLC maps. For the trees class,
the three maps tended to have more error of commission (100% - UA)
than omission (100% - PA). Mixed vegetation (including grassland,
shrubs, and flooded vegetation) was better mapped by WorldCover,
while it was mapped with a low PA (53.5% ± 1.2%) by Dynamic World
due to its confusion with trees and bare ground (Table S4 in supple-
mentary material). Built areas were considerably overestimated by ESRI
LULC and Dynamic World, for which the misclassification comes at the
expense of trees and mixed vegetation mostly (Tables S4-S5), while on
the other hand, the PA of built area in the two maps were all higher (>
87%) than that in WorldCover (73.5% ± 2.6%). Crops had considerable
confusion with mixed vegetation in Dynamic World and ESRI LULC
(Tables S4-S5), while in comparison, WorldCover achieved higher PA
and UA for crops (Table 3). ESRI LULC had considerable underestima-
tion (PA: 42.7% ± 3.2%) of bare ground that was misclassified into

mixed vegetation (Table S5), while it achieved the highest UA (96.1% ±

0.8%) and Dynamic World achieved the highest PA (87.4% ± 1.1%) for
bare ground. Snow & ice was best mapped by WorldCover (both UA and
PA > 93%), while the Dynamic World and ESRI LULC maps had
considerable overestimation of this class, which resulted from its
misclassification between mixed vegetation and bare ground. The
confusion matrices of the three GLC maps can be found in Tables S3-S5
of the supplemental material.

The continental class-specific accuracies are listed in Table S6 of the
supplemental material. Generally, WorldCover presented better perfor-
mance than the other two maps in characterizing most of the LC types in
most continents. Dynamic World had comparable (and sometimes bet-
ter) performance in characterizing built area in Africa, Europe, Eurasia,
and North America, and bare ground in Africa, South America, and Asia.
ESRI LULC accurately mapped mixed vegetation in Oceania (PA and UA
> 83%) and crops in Europe (PA > 90%). Bare ground tended to be
underestimated in most continents by WorldCover and ESRI LULC.

The accuracy estimates of the 47 larger countries having >100 PSUs
are provided in Table S7 of the supplementary material. WorldCover
was found to be more accurate in most of the countries. In contrast, ESRI
outperformed the other two maps in Greenland (with an OA of 95.3%),
which is dominated by snow and ice, while its performance is compa-
rable to WorldCover in Colombia, Romania, Brazil, and Democratic
Republic of the Congo with an OA above 80%. Dynamic World achieved
a high OA in Saudi Arabia (95.8%) and Egypt (96.6%), which are
dominated by desert, and it also performed good in Greenland (90.4%)
and Peru (84.4%). Countries such as Mozambique, Tanzania, Nigeria,
and Spain were mapped with an OA of <70% by all the three maps.
Moreover, Nigeria, Iran, and Pakistan were mapped with an OA of
<50% by ESRI LULC.

3.3. Map assessment at different homogeneity levels

Fig. 7 shows, at different homogeneity levels, the agreement between
the map and validation data (left column) and the proportion of sample
locations (i.e., SSUs) of the map and reference data (right column). As
can be seen from the green matrices (Fig. 7), the agreement between the
map and the reference data was higher at higher homogeneity levels (i.
e., levels 7–9), which applies to all maps. In general, the agreement was
greater when the homogeneity levels of the map and reference data
matched (diagonal values in Fig. 7a, c, e) and smaller when the map and
reference data did not agree on the level of homogeneity (off-diagonal
values in Fig. 7a, c, e). This pattern was more visible in WorldCover
(Fig. 7e) which showed closer agreement with validation data in terms
of LC characterization, also at lower homogeneity levels (homogeneity
levels 1–3) that represent more heterogeneous areas. Some relatively
high agreement values were noticeable in the lower levels of homoge-
neity (such as the highlighted green cells in map homogeneity level 1 of
Dynamic World in Fig. 7a), however, these could be related to the
negligible number of SSUs in these homogeneity levels (Fig. 7b).

A difference in the total number of SSUs corresponding to different
homogeneity levels can be observed among the GLC maps. As can be
seen in Fig. 7b, d, f, WorldCover has the SSUs most spread out over
different homogeneity levels, resulting in more SSUs at lower homoge-
neity levels compared to the other two products. The ESRI LULC shows
the least number of SSUs in the lower homogeneity levels. Completely
homogeneous SSUs (map homogeneity 9) account for 88.54%, 85.40%,
and 78.79% of the sample locations for ESRI LULC, Dynamic World, and
WorldCover, respectively, indicating that ESRI LULC tends to map less
spatial detail than the other maps.

To assess the effect of land cover heterogeneity on the performance
of the maps, we evaluated the accuracy of the maps at three different
homogeneity levels (Low: H = 1–3, Medium: H = 4–6, and High: H =

7–9) according to the respective map homogeneity as shown in Fig. 7.
The results of the validation are shown in Fig. 8. Compared with the
global OA obtained using the entire validation dataset (Fig. 6), all the

Table 3
The global class-specific accuracies for the GLC maps, including 95% CI. The
highest PA and UA per class are highlighted in bold.

Class
code

LC Type WorldCover Dynamic World ESRI LULC

PA
(%)

UA
(%)

PA
(%)

UA
(%)

PA
(%)

UA
(%)

0 Water
87.1
± 1.7

89.5
± 1.8

85.1
± 2.5

79.8
± 2.4

80.5
± 2.8

83.8
± 2.4

1 Trees
92.7
± 0.5

80.1
± 0.7

92.0
± 0.5

72.7
± 0.9

87.0
± 0.7

78.7
± 0.9

2 Mixed
vegetation

77.7
± 0.8

83.4
± 0.7

53.5
± 1.2

81.7
± 0.9

75.5
± 0.9

67.0
± 1.2

4 Crops 79.4
± 1.5

80.7
± 1.5

66.5
± 2.0

64.6
± 2.3

73.3
± 2.0

71.9
± 1.8

6 Built area
73.5
± 2.6

65.9
± 3.3

87.3
± 2.1

52.6
± 2.5

87.9
± 2.1

48.0
± 2.5

7
Bare
ground

83.0
± 1.2

92.2
± 0.9

87.4
± 1.1

76.1
± 1.7

42.7
± 3.2

96.1
± 0.8

8 Snow & Ice 99.1
± 0.4

93.0
± 2.4

99.6
± 0.4

57.5
± 3.3

99.0
± 0.5

68.3
± 3.2

Overall accuracy (%) 83.8
± 0.4

74.1
± 0.6

73.4
± 0.7
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Fig. 7. Agreement proportion of sample locations (SSUs) for homogeneity levels of the map and reference data (a, c, e) and the percentage of sample locations at
different homogeneity levels of the map and reference data (b, d, f). 0.0* indicates that the percentage of sample locations is <0.01%.
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maps had reduced accuracy in heterogenous areas (H= 1–3) with an OA
ranging between 47.8% and 51.8% (Fig. 8). On the contrary, the OA of
the maps in strongly homogeneous areas (H = 7–9) was greater than the
global OA calculated using the entire validation dataset. This indicates
that the homogeneity level influences the validation accuracy and the
evaluated GLC maps are less accurate in heterogeneous landscapes.

For both the GLCmaps and the validation data, we also assessed their
homogeneity at PSU-level and Table 4 shows the frequency of PSUs with
different number of LC classes being present in a 100× 100 m PSU. Note
that Fig. 7 is based on 3 × 3 kernels at the resolution of the maps, while
Table 4 reflects how many LC types are mapped within a PSU regardless
of the map’s spatial resolution. Results showed that all maps more often
predict a single LC type in a PSU than observed in the reference data.
PSUs with a single LC type accounted for 41.1% of the validation data,
59.3% for WorldCover, 71.3% for Dynamic World, and 82.2% for ESRI
LULC. ESRI LULC had a greater tendency to predict only one class in a
PSU, while its multi-class (i.e., two or more LC types) proportion was
much lower compared to that of Dynamic World and WorldCover.

4. Discussion

4.1. Effect of the applied validation approach

The validation methods produced widely different accuracy esti-
mates, showing that the way of dealing with reference data uncertainty
has an impact on the final validation results. The “Primary+ Alternative
label: Any” option reported the greatest accuracies for the three GLC
maps. By allowing any LC types within the 3× 3 kernel as an alternative
label, this approach is the most lenient towards the map to produce a
“match” with the reference data. It is noted that the relatively small
number of LC classes taken into consideration in this study made the
validation results to be rather optimistic. With only seven classes, there

is a great chance that the map class matches one of the LC classes in a 3
× 3 kernel of the validation data, particularly in heterogeneous areas.
For products with a larger number of LC classes such as the Corine land
cover map (Büttner et al., 2004)–which has 44 LC classes–the leniency
towards the map will be much less.

The accuracies based on the “Primary + Alternative label: Majority”
were lower than those of the “Primary + Alternative label: Any”
approach (Fig. 5). Likely, validation based on any alternative label
within the 3 × 3 kernel leads to overly optimistic accuracy estimates.
Both approaches use an alternative labelling principle, introducing a
problem of blurring the agreement determination between the map and
the validation labels. This impedes estimating the area of LC classes
(Stehman, 2013).

Although the “Homogeneity filter 4/9” approach generated similar
accuracies as the “Primary + Alternative label: Majority”, the former
only uses a subset of the original reference data. Removal of sampling
units in heterogeneous areas introduces zero inclusion probability in
heterogeneous areas and therefore invalidates the probability sampling
requirement of “known and non-zero inclusion probability” (Olofsson
et al., 2014). As such, the estimated accuracy does not represent the
entire mapped area, but rather only more homogeneous areas, which is a
major limitation of this approach. Another problem with this approach
is that the determination of the homogeneity benchmark is arbitrary
because the level of homogeneity as well as the kernel size can be varied
in different assessment cases.

The “Homogeneity filter 9/9” deals with reference data uncertainty
by only accounting for locations where all the SSUs in a 3 × 3 kernel
have the same LC class. Similar to the “Homogeneity filter 4/9”, this
approach considers that the reference data error is smaller in homoge-
neous areas. However, it eliminates a considerable number of sample
units in heterogeneous areas. In this study, the “Homogeneity filter 9/9”
discarded 59% to 61% of the SSUs (calculated from Table S2 for the
three GLC maps). Especially for the maps depicting higher heterogene-
ity, this leads to the removal of a great number of sample units and the
validation would therefore include a relatively small subset, which
consequently leads to biased accuracy estimates representing only a
small subset of the mapped area (Stehman et al., 2003).

The direct approach uses a single-pixel (SSU) comparison and does
not account for possible reference data uncertainties owing to positional
errors and labelling ambiguity (Gu and Congalton, 2020). This produces
an underestimation of accuracy, especially in heterogeneous areas
where the positional shift of a pixel and ambiguity in labelling a
dominant LC class in a small sized sample unit can have a large impact
(Stehman and Foody, 2009). Our current study tested the impact of
approaches dealing with reference data uncertainty when validating 10
m-resolution LC maps. However, the tested approaches did not address
interpretation variability or interpretation errors (e.g., labelling the
entire PSU as shrubs instead of trees) (McRoberts et al., 2018; Tarko
et al., 2021). Ideally these reference data error variability should be
quantified, and its individual and combined impacts need to be analysed
and accounted for in accuracy estimation in future studies (Stehman
et al., 2022).

In Table 5, we summarize the most noticeable strengths and limita-
tions of each validation method. Considering the advantages and dis-
advantages of each validation approach to address reference data
uncertainty (Table 5), a careful assessment is required when applying a
method to validate a high-resolution LC product. The “direct” approach
is likely too pessimistic whereas the “Primary + Alternative any” is
likely too optimistic about achieved accuracy. The major downside of
the homogeneity filter approaches was the exclusion of sample units;
hence the estimated accuracies do not represent the entire mapped area.
The “Primary + Alternative majority” is somewhere in between the two
extremes and from that perspective a reasonable choice.

The large differences between the validation results indicate that
future studies should consider the reference data uncertainty when
estimating the accuracy of high-resolution LC maps (Stehman and

Fig. 8. Overall accuracies of the GLC maps at different homogeneity levels (H).
The homogeneity levels Low (H = 1–3), Medium (H = 4–6), and High (H = 7–9)
are based on the map homogeneity calculated in Fig. 7.

Table 4
Frequency of PSUs with different number of LC classes present in a 100 × 100 m
area for the validation data and the GLC product.

Data PSUs
with a
single
LC
class
(%)

PSUs
with 2
LC
classes
(%)

PSUs
with 3
LC
classes
(%)

PSUs
with 4
LC
classes
(%)

PSUs
with 5
LC
classes
(%)

PSUs
with 6
LC
classes
(%)

Validation
data 41.11 39.23 13.56 4.82 1.25 0.03

WorldCover 59.31 30.52 8.11 1.80 0.24 0.00
Dynamic
World 71.33 24.46 3.76 0.42 0.01 0.02

ESRI LULC 82.15 15.69 2.04 0.12 0.01 0.00
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Foody, 2019). The variation in the estimated accuracies also highlights
the importance of transparency in reporting. The selected validation
method greatly influenced the quantitative results, even though the
relative ranking of the compared maps was mostly consistent across
methods. Guidance on validating high-resolution LC maps would ensure
easier comparison of these products for both users and producers.
Although some guidelines on LC validation are available, such as the
good practices proposed by Olofsson et al. (2014) and the approaches for
estimating map accuracy dealing with ground reference data error
suggested by Foody (2010), they should be updated to account for the
challenges of high-resolution LC products.

4.2. Evaluation of recent 10 m-resolution GLC maps

This study presents a comprehensive, independent, and statistically
rigorous accuracy assessment for the recent 10 m-resolution GLC maps
following the internationally recommended validation guidelines
(Strahler et al., 2006). According to the validation results, WorldCover
achieved the highest global overall accuracy, followed by the Dynamic
World and ESRI LULC maps (Fig. 6). The accuracy estimates reported in
this study are different from those reported by map producers (Table 1)
and some previous studies, which stems from the used validation
methods, validation datasets, year of the map, data processing (e.g.,

resampling), and the reclassification to seven LC classes performed in
the current study.

Our validation results conflict with a previous comparison of the
same three GLCmaps (WorldCover, DynamicWorld, and ESRI LULC) for
the year 2020 done by Venter et al. (2022), where ESRI LULC was re-
ported to have the highest overall accuracy among the 10 m-resolution
maps. However, since they used the validation dataset provided by the
Dynamic World team, the global assessment cannot be considered in-
dependent for validating ESRI LULC because some of the Dynamic
World’s validation data may have been used in the training process of
the ESRI LULC map production (Venter et al., 2022). Nevertheless, their
regional assessment across Europe based on an independent validation
dataset (ground truth data from the European Union’s Land Use/Cover
Area frame Survey (LUCAS)), where WorldCover showed the highest
accuracy, aligns with our results. Moreover, our validation results are
consistent with several findings of previous national comparisons. For
example, Wang and Mountrakis, 2023 found that WorldCover and ESRI
LULC performed better than Dynamic World in the conterminous U.S.,
which alignes with our results for North America (Table S6) when
examining class-specific accuracies. Kang et al. (2022) found that
WorldCover performed better than ESRI LULC over northwestern China,
which is consistent with our findings for China (Table S7) when
considering the overall accuracy.

The mapping accuracy of the three GLC maps varies across the
considered LC classes and continents. Generally, the three maps have
relatively high accuracy for water and trees, and lower accuracies for
mixed vegetation, crops, bare ground, and built-up areas. WorldCover
outperforms Dynamic World and ESRI LULC at a global scale, but for
some LC classes and over some continents and countries, their perfor-
mances are comparable. For instance, Dynamic World has relatively
high accuracies in characterizing the built-up areas in North America
and ESRI LULC is good at mapping the mixed vegetation in Oceania.
Despite that, users should be aware of the weaknesses of the maps for
overall mapping at the global scale. Notably, the three maps tend to
overestimate trees; Dynamic World overestimates bare ground, while
ESRI LULC and WorldCover underestimate this class globally. All the
three maps have lower accuracies in areas with greater heterogeneity
(Fig. 8), revealing that current GLC products are still limited in accu-
rately identifying LC types in heterogeneous areas. The maps’ quality
varies across regions and countries. For instance, the OA of Iran de-
creases from 85.3% ± 3.5% (by WorldCover) to 42.9% ± 7.5% (by ESRI
LULC). All maps have low accuracies (<70%) in countries such as
Mozambique, Tanzania, Nigeria, and Spain.

The map assessment at different homogeneity levels reveals that the
ESRI LULC exhibits the least spatial detail with 88.54% of SSUs at
completely homogeneous areas (Fig. 7d) compared to the other GLC
maps. Maps are expected to capture the level of spatial/landscape detail
discernible with the spatial resolution of the data used for their creation.
However, ESRI’s map characterization does not match its spatial reso-
lution of 10 m. Compared to ESRI LULC and Dynamic World, World-
Cover has a much smaller percentage (78.8%) of SSUs in completely
homogeneous 3 × 3 kernels (Fig. 7f), indicating that it depicts a greater
landscape spatial detail than the other two 10 m maps. This can also be
seen from Fig. 9, where WorldCover depicts more landscape detail than
ESRI LULC and Dynamic World, preserving small features and complex
patterns, such as roads and individual agricultural fields.

The spatial detail representation among the three 10 m-resolution
maps—Dynamic World, ESRI LULC, and WorldCover—varies substan-
tially owing to differences in their data sources, classification methods,
and the training data. In examining classification methodologies and
input data sources, WorldCover employs gradient boosting decision tree
algorithms (i.e., CatBoost), integrating Sentinel-1 and Sentinel-2 data as
well as their temporal dynamics. These dynamics are derived from 10-
day median composites of the data, enabling the capturing of seasonal
variations. Radar data penetrates cloud cover and captures surface
structure, which can enhance LC classification, particularly in cloudy or

Table 5
The major advantages and disadvantages of the five applied validation
approaches.

Validation approach Advantages (+) and disadvantages (− )

Direct/Primary + No alterations of the data and all sample points are
included.

- Does not take reference data uncertainties into
account, all errors are deemed map errors.
- Tends to be too pessimistic.

Primary + Alternative
label: Any

+ Uses all sample units in the validation.
+ Reduces the potential effect of reference data
uncertainty.

- Less suitable for products with a relatively small
number of land cover classes.
- Uses alternative reference labels, hence class area
estimation based on reference data may become
problematic.
- Tends to be too optimistic.

Primary+ Alternative
label: Majority

+ Uses all sample points in the validation.
+ Limits the potential effect of reference data
uncertainty.

- Uses alternative reference labels, hence class area
estimation based on reference data may become
problematic.

Homogeneity filter 4/9 + Limits the potential effect of reference data
uncertainty.

- Eliminates sample units that do not match the
homogeneity criteria, which invalidates the probability
sampling requirement: “non-zero” probability of being
selected in the sample for all units in the population.
Thus, the estimated map accuracy does not represent
the entire mapped area.
- Selection of the homogeneity level is relatively
arbitrarily; only areas meeting the homogeneity
criterion are validated.

Homogeneity filter 9/9 + Minimizes the potential effect of reference data
uncertainty.

- Eliminates sample units that do not match the
homogeneity criteria, which invalidates the probability
sampling requirement: “nonzero” probability of being
selected in the sample for all units in the population.
Thus, the estimated map accuracy does not represent
the entire mapped area.
- Validates only completely homogeneous areas.
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Fig. 9. Comparison of the spatial representation of GLC maps in a) Long Island, New York, USA (72.6◦W, 40.9◦N), b) Achterbos, Netherlands (4.9◦E, 52.2◦N), c)
Pongola, South Africa (31.8◦E, 27.4◦S), d) Xintian, Hong Kong, China (114.1◦E, 22.5◦N), e) Puni, Auckland, New Zealand (174.9◦E, 37.2◦S), and f) São Luís, Brazil
(44.2◦W, 2.5◦S).
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mixed vegetated areas where optical data alone are insufficient (Slagter
et al., 2020; Xu et al., 2022). Using Sentinel-2 data as inputs, Dynamic
World uses a Fully Convolutional Neural Network (FCNN) model that
classifies each Sentine-2 imagery individually (Brown et al., 2022) and
ESRI LULC utilizes a UNet model that incorporates multiple observa-
tions primarily in cloudier regions. Both models did not utilize the
temporal characteristics of the LC types. The minimum mapping unit
(MMU) of training data directly impact the model’s ability to classify LC
types accurately. DynamicWorld and ESRI LULC share a training dataset
annotated in 50 × 50 m units, while the training data for WorldCover
was annotated at a 10 m-resolution, which is more capable of delin-
eating LC transitions and smaller landscape features, contributing to the
superior spatial detail observed in WorldCover’s classifications.

When choosing the most suitable LC map for specific application
goals, users should consider both the quantitative accuracy and the
representation of spatial detail. It’s crucial not to base the decision solely
on the map’s resolution. Instead, assess how accurately the map captures
the landscape’s detail. For an overview of the accuracies, users are
referred to the global, continental (Table S6), and national (Table S7)
validation metrics in the supplementary materials. When combining
different GLC maps in an analysis, users should bear in mind the
disagreement in class definitions between the maps (see Table S1). For
the use of Dynamic World, it is advised to select an appropriate way to
derive the LC labels from its near-real-time maps and their probability
layers for specific use cases. For snow& ice, crops, and bare ground, data
from the growing season are useful to determine the LC type on a yearly
basis.

4.3. Limitation of the current study and implications for future GLC
mapping and validation

This study assessed three 10 m-resolution GLC maps in terms of ac-
curacy and their ability to represent spatial detail of landscape.
Accordingly, comparative accuracy estimates at global, continental, and
national (for 47 countries) levels are provided to aid users in selecting
maps with the best accuracy for their class or area of interest. The
findings of this study offer insights into the future of GLC mapping and
the associated validation processes. Several key implications emerge
from the results and observations, which can guide future endeavors in
this field.

4.3.1. Standardization of LC class definitions
One of the limitations of the current study is that the grouping of

some classes, especially those that are challenging to separate using
remote sensing data such as shrubs, herbaceous vegetation, and flooded
vegetation, will lead to inflation in the accuracy for the evaluated maps.
This is caused by inconsistencies in the legend definition among the
maps and it underscores the need for future GLC mapping efforts to
standardize LC class definitions. Disagreements in class definitions
across different maps, such as “built area” or “crops” can also lead to
substantial inconsistencies for comparative assessments. For instance,
urban green areas (e.g., parks and lawns) are classified as built areas in
the evaluated GLC maps except WorldCover and the validation data.
Despite the adjustments made in the validation data to assess urban
classes for Dynamic World and ESRI LULC, there may still be in-
consistencies in the reference data for characterizing “urban” instead of
“built-up areas” (Liu et al., 2014), leading to the low user’s accuracy of
built areas for the two maps. In the case of cropland, fallow plots are
included as crops in Dynamic World and ESRI LULC while they are
considered “herbaceous vegetation” in the validation data, which might
explain higher confusion rates between crops and mixed vegetation in
the validation results. Thus, addressing the discrepancies and aligning
class definitions will be pivotal for enhancing the consistency and
comparability of LC maps over large scales.

4.3.2. Improving LC characterization and spatial detail representation
Firstly, efforts should be directed towards improving classes that are

difficult to characterize, particularly in heterogeneous landscapes.
Similar LC types, such as crops and mixed vegetation (i.e., grassland,
flooded vegetation, and shrubs), are spectrally and physically alike,
leading to misclassification. Multitemporal information and land surface
phenology that are intrinsic to the definition of these classes can
contribute to differentiating such LC categories (Ienco et al., 2019). As
discussed in section 4.2, Convolutional Neural Network (CNN)-based
approaches (e.g., ESRI LULC, DynamicWorld) should consider including
temporal dynamics in their models.

Secondly, the capability of high-resolution maps for representing LC
detail should be improved to match its respective spatial resolution.
Although recent studies have demonstrated the superiority of deep
learners over traditional machine learning classifiers (Mountrakis and
Heydari, 2023), in the current study, it is observed that the pixel-based
machine learning classification achieved better accuracy and spatial
detail representation than the kernel-based CNN approaches, indicating
room for further improvements for the latter approaches to map LC at
high resolutions. The MMU of training data is crucial for model per-
formance. Annotating training data at a finer MMU and ensuring a
diverse representation of LC types especially in heterogeneous areas,
will enable more detailed LC classification. Integrating multiple data
sources could complement single data source. These approaches, as
demonstrated by WorldCover and other recent studies (Venter and
Sydenham, 2021; Xu et al., 2022), can enhance the accuracy of LC
classifications. Regarding the CNN models, future efforts could explore
adapting existing networks (Wang et al., 2023a), training new networks
(Li et al., 2022), or using hybrid models that combine the strengths of
different architectures. For instance, integrating the global contextual
understanding of visual transformer (ViT) with the local detail captured
by CNN could offer a balanced approach to capturing both broad LC
patterns and fine spatial details (Yue et al., 2024), and combining CNN
with Long Short-TermMemory (LSTM) network can capture both spatial
and temporal information (Masolele et al., 2021; Mountrakis and Hey-
dari, 2023). Enhancement in the above aspects will improve the spatial
detail representation of the maps and benefit the accurate character-
ization of LC types in heterogeneous areas (Mountrakis and Heydari,
2023).

4.3.3. Reducing reference data uncertainty
As shown in this study, varied accuracy estimates were obtained

when choosing different ways of dealing with reference data uncer-
tainty. To address reference data uncertainty effectively in high-
resolution LC validation, it is crucial to quantify and account for refer-
ence data errors in map validation (Stehman and Foody, 2019) and
select validation methods that consider neighboring pixels and spatial
context. This requires moving from reference data at a single pixel (as
sample unit) to collecting neighborhood or spatial heterogeneity infor-
mation for validation data targeting high-resolution maps. Such ap-
proaches enhance the reliability of validation efforts, particularly in
regions known for their heterogeneity. In addition, land dynamics
should be considered in the reference data collection process. The
interpretation of cropland/fallow dynamics, snow & ice, or bare ground
should use both intra- and inter-annual time series data to determine the
maximum/minimum coverage of the LC type (Potapov et al., 2022).
Furthermore, transparency in reporting and validation methods is
paramount to ensure the delivery of accurate and meaningful results for
diverse applications.

4.3.4. Next steps: addressing validation at regional/national levels and for
LC changes

The practical utility of GLC maps often concerns regional and na-
tional levels. Countries with limited capacities for national monitoring
have a high tendency to rely on these global maps. However, national-
level validation in the current study was conducted exclusively for
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larger countries with >100 PSUs and our validation dataset does not
support conclusions regarding smaller countries. Currently, the acqui-
sition of validation data that is representative at regional or national
scales for global products is still challenging. This difficulty arises from
the extensive time and financial resources required for data collection at
these scales, coupled with the need for an in-depth understanding of
regional LC characteristics that necessitates local expertise. To facilitate
validation at regional/national level in the future, collaborative initia-
tives should be undertaken to gather high-quality validation data that
accurately represent LC conditions at these finer scales. One potential
strategy involves promoting open access to existing datasets through
collaboration with local and national agencies and research institutions.
Furthermore, leveraging public engagement and data collection plat-
forms, such as Collect Earth Online (Saah et al., 2019), could signifi-
cantly contribute to this endeavor. Such efforts will improve the
applicability and reliability of LC maps for specific geographic regions
and facilitate informed decision-making at various levels.

Advancements in satellite data availability enable near-real-time
mapping and time-series analysis of LC changes. These capabilities are
vital for monitoring LC types with significant temporal dynamics and
tracking land changes. Except WorldCover, the evaluated maps are
updated annually (i.e., ESRI LULC) or weekly (i.e., Dynamic World).
However, LC changes suggested by these datasets are not validated. The
challenge in validating LC changes, particularly on a sub-annual basis,
largely stems from the limited availability of high-frequency validation
datasets (Lamarche et al., 2021). The existing validation dataset is pri-
marily updated on an annual level and with limited change information,
which reduces its effectiveness in assessing the accuracy of maps that are
updated more frequently. Hence, there is a pressing need to develop
comprehensive validation datasets that capture the intra-annual dy-
namics of LC changes as well as changes over longer periods. Such
datasets will be instrumental in ensuring the accuracy and reliability of
time-series GLC maps.

As we journey forward, high-resolution GLC mapping holds the po-
tential to significantly enhance environmental monitoring and informed
decision-making. Incorporating these implications into future GLC
mapping and validation endeavors will contribute to producing more
accurate, consistent, and reliable LC maps.

5. Conclusion

This paper presents a comprehensive and independent evaluation of
the accuracy and spatial detail representation of three recent 10 m-
resolution GLC maps, i.e., ESA WorldCover, Google-WRI Dynamic
World, and ESRI LULC. We compared five approaches to deal with
reference data uncertainty, an essential factor in assessing high-
resolution maps. The “Direct/Primary” approach, “Primary + Alterna-
tive label” approaches, and “Homogeneity filter” approaches produced
widely different accuracy estimates, underscoring the significance of
accounting for reference data uncertainty in high-resolution map vali-
dation. We propose to use the direct label supplemented by alternative
labels from the majority of neighboring pixels (“Primary + Alternative
label: Majority”) to account for reference data uncertainties.

Our analysis reveals differences in the performance among the GLC
maps for different LC classes and geographic regions. Overall, World-
Cover has achieved the highest global accuracy, followed by Dynamic
World and ESRI LULC. For some LC classes over some continents, the
latter two maps have comparable or better performance than World-
Cover. The spatial homogeneity analysis shows that ESRI LULC and
Dynamic World have less spatial detail compared to WorldCover,
tending to generate more homogeneous LC characterizations. All the
evaluated maps have low accuracy in heterogeneous areas, with an OA
of around 50%. The maps’ performance varies in countries, and some
countries are mapped with low accuracies, which needs to be considered
with care before applying the data in a national context.

Based on these findings, we recommend the following to the global

community of GLC map users and producers:
For Users: When selecting a GLC map, consider not only the accuracy

for the extent of the area of interest (e.g., global, continental, national)
but also the spatial detail appropriate for the application, noting that the
level of spatial detail varies across the maps despite all being at 10 m
resolution.

For Map Producers:

• Use standardized LC class definitions to ensure consistency and
comparability across different GLC maps. This will help address
discrepancies and facilitate the integration of multiple maps.

• Improve the spatial detail and accuracy of the GLC maps for difficult
classes (such as mixed vegetation), heterogeneous landscapes, and at
the national level by enhancing deep learning models. Annotating
training data at finer MMUs and incorporating temporal dynamics
and multi-source data can aid in this effort.

• Account for reference data uncertainty in high-resolution map vali-
dation. Include assessments of regional and national-level validation
and for LC changes in future validation efforts. Collaborative initia-
tives and leveraging public engagement platforms can help acquire
high-quality validation data at these scales.

With advances in satellite data acquisition, improved computation,
and deep learning approaches in remote sensing, the production of high-
resolution GLC products is accelerating. Anticipating the availability of
more high-resolution GLC products in the future, independent valida-
tion will be crucial to ensure the credibility and reliability of these maps
and support diverse applications at global, regional, and national levels.
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