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Models and Methods for Transport Demand and Decarbonisation: A 

Review 

Rising global greenhouse gas emissions from the transport sector pose a major 

challenge to meeting the targets of the Paris Agreement. This raises questions of 

how technology, infrastructure and societal trends and policies can influence 

transport demand and thus also emissions, energy demand and service levels. 

Here the literature on factors relevant to shifting total transport activity and mode 

shares, categorised into exogenous drivers, socio-behavioural, infrastructural and 

technological aspects, is reviewed. For each factor, current approaches to 

modelling and measuring the impact of each factor on transport systems are 

summarised, resulting in a proposed taxonomy to classify transport demand 

modelling approaches. We then comment on the suitability and sufficiency of 

existing modelling approaches for representing scenarios consistent with the Paris 

Agreement targets in models of the entire global energy system. Factors that 

affect transport demand are currently insufficiently represented in integrated 

assessment modelling approaches and thus emission reduction pathways. 

Improving the comprehension and representation of diverse factors that affect 

transport demand in global energy systems models, by incorporating features of 

complementary models with high resolution representations of transport, holds 

promise for generating well informed policy recommendations. Accordingly, 

policies could influence the development of the factors themselves and their 

potential role in mitigating climate change. 

Keywords: Transport demand modelling, Climate change mitigation, 

Transport demand, Energy demand transformation, Megatrends, IPCC 

1. Introduction 

Transport demand for both passenger and freight services is projected to increase 

significantly by 2050, driven by population growth, rapid urbanisation, and increases in 

economic activity and standards of living. Electrification is set to reduce the emissions 

intensity of many major transport modes. However, this will not happen fast enough to 

fully decarbonise the sector by 2050 (ITF, 2023). Thus, there is growing recognition 

that policies aimed at systemic changes and energy demand reductions are necessary 

alongside technological changes and improvements (IPCC, 2022). 

Different scientific communities emphasise distinct solution domains for 

reducing transport emissions: integrated assessment models focus on fuel switching; 

transport sector-focused models highlight efficiency measures; and spatial- or place-

based models put greater focus on behavioural changes and infrastructural mitigation 

options (Creutzig, 2016). To perform comprehensive, global, long-term assessments of 

the impacts of transport demand, mitigation options and knowledge from distinct 

research areas must be integrated. However, this integration is laborious; it requires 

significant effort in translation between concepts, metrics, and methods used to study 

both particular aspects of the transport system and the entire global human and earth 
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system. One such pathway that aims to incorporate aspects of the solutions favoured by 

different research communities is the global low energy demand (LED) pathway 

proposed by Grubler et al. (Grubler et al., 2018). In the LED pathway, diverse 

phenomena including trends, dynamics, changes in activity, individual and business 

behaviours, technology, and environmental impacts— hereinafter collectively factors 

(that affect transport demand)—combine to reduce energy demand whilst still meeting 

sustainable development targets. This has further been developed in, inter alia, the 

Providing Decent Living with Minimum Energy global scenario, by Millward-Hopkins 

et al., who consider the convergence of living standards globally and the associated 

minimum energy and material requirements (Millward-Hopkins et al., 2020). 

This review aims to contribute to advancing the representation of such diverse 

factors that affect transport demand in climate change mitigation pathways compatible 

with meeting the Paris Agreement targets of limiting global temperature rise to 1.5oC 

above pre-industrial levels. We begin by distinguishing factors that are included in low 

(transport) energy demand narratives. These factors were identified, collated, and 

selected through collaborative meetings of the transport working group of the Energy 

Demand changes Induced by Technological and Social innovations (EDITS) network, 

consisting of expert researchers on demand side climate change mitigation solutions. A 

literature search was then performed using the research databases Google Scholar, Web 

of Science and Scopus, using the various names and terms given for the factors as well 

as additional search terms on modelling, transportation, and climate change mitigation. 

The papers were then manually assessed and selected if they had a significant 

modelling element and focused on future transformations resulting in emissions 

reductions. Due to the deliberately broad choice of scope, including all categories of 

factors that might affect transport demand, this selection identified modelling methods 

most commonly applied to study each factor, rather than aim to exhaustively list all 

methods and synthesize them. We also identified and referenced existing reviews which 

cover subsets of the transport system or of the full list of targeted factors. From the 

selected studies, we identified methods, quantitative models, data (particularly 

concerning demand measures), scopes, resolutions, and categorisations used in each 

literature. We then propose a taxonomy to characterise the transport demand modelling 

approaches used. Finally, we comment on how high-level narratives for each factor 

affecting transport demand could be incorporated into comprehensive, global, long-

term modelling. This yields an agenda for research to perform such integration, which 

would enable valid and comprehensive assessments of how demand-related transport 

factors can contribute to a LED future. 

2. Factors that affect transport demand 

Factors that affect transport demand are observable phenomena, events, trends, 

developments, or interventions that could alter transport systems in ways that lead to 

changes in quantified transport activity, mode shares and vehicle use efficiency. 

Transport activity is the amount of transportation that happens; it is quantifiable in 
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many ways, including number of trips, time spent travelling, monetary expenditure, and 

most commonly distance, using metrics such as passenger-distance travelled (PDT, 

measured in kilometres, thus PKM or PKT, or miles, thus PMT), vehicle distance 

travelled (VDT, or likewise VKM, VKT, or VMT) and freight volume (measured in 

tonne-km) Mode share is the allocation of this activity to different transport modes 

(Edelenbosch, McCollum, et al., 2017). Factors that affect transport demand have been 

identified and selected from decarbonisation pathways synergistic with LED, such as 

those in (IEA, 2021), (IPCC, 2022), and (ITF, 2023). These factors include both mega-

trends, such as population changes, digitalisation, and urbanisation, which happen at a 

large scale and have widespread consequences across space and transport modes, and 

changes which may only impact specific aspects of transport demand, and/or occur in 

specific places (figure 1). 

 

 

Figure 1: The primary domains of the reviewed factors affecting transport demand. Note 

that almost all factors will have secondary impacts and feedbacks which may indirectly 

impact all categories.  

 

Following the recent demand-side classification of the IPCC sixth assessment report 

(Creutzig, Roy, et al., 2022), we sort transport policies into those concerning 

infrastructure types, locations and capacities; technology development and deployment; 

and socio-behavioural factors.  

 In each of the following subsections, we summarise identified studies specific to 

the factor or phenomenon, including their methods, data, and findings. We contrast 

these with mentions of how the factor is incorporated (or not) in typical global, 

integrative, long-term transport models. Quantitative projections from the latter are also 

used to frame the subsections. 
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2.1 Exogenous drivers of transport demand 

Transport is often understood as a “derived” demand, in that most freight and passenger 

activity are undertaken to satisfy other, more fundamental, human needs. The systems 

that meet this demand are intrinsically linked with and strongly affected by population, 

industrial and economic activity, energy systems, and are affected by major regionally 

or globally disruptive events. Causal relationships in the other direction are weaker: for 

instance, while population change affects (aggregate) transport demand, changing 

demand does not strongly influence population. For this reason, these factors are 

commonly represented as exogenous drivers. 

2.1.1 Population and economic trends 

The global population is projected to reach 9.7 billion people in 2050, characterised by 

aging societies, increased life expectancy and, if climate change impacts are not 

considered, a doubling of the population of sub-Saharan Africa. Countries such as 

Japan, China, Germany, and Italy, will experience ageing and declining populations 

(IEA, 2022). Population distribution and settlement patterns are a significant driver of 

transport demand. Economic activity, transport costs, geographic factors, and urban 

form determines around 90% of urban transport energy use (Creutzig, Baiocchi, 

Bierkandt, Pichler, & Seto, 2015). If long-term economic growth persists, as projected 

in most climate mitigation scenarios, it will stimulate transport activity (ITF, 2023). 

Sectoral models estimating global transport demand typically utilise population 

and economic projections to forecast future demand (Yeh et al., 2017). Exogenous 

population projections are used in the International Transport Forum (ITF) and 

International Energy Agency (IEA) transport demand models (ITF, 2023; Fulton, 

Cazzola, & Cuenot, 2009). The ITF models disaggregate transport into urban passenger 

travel, non-urban passenger travel, urban freight and non-urban freight. These models 

project a 79% increase in passenger transport demand, from 2019 to 2050 under current 

mitigation policies (ITF, 2023). There are however particular opportunities to avoid 

lock into high transport demand pathways in rapidly developing areas where current 

urban planning policies will drive future transport demand (Creutzig, Baiocchi, et al., 

2015). 

Population change and economic conditions are exogenous transport demand 

drivers in Integrated Assessment Models (IAMs). These typically contain aggregate 

transport demand metrics and endogenous links to other sectors, including energy 

systems, agriculture, and land use (Yeh et al., 2017). One such IAM is the MESSAGE 

model, which uses population projections and settlement patterns to determine 

technology adoption (McCollum et al., 2017). Similarly, the Global Change 

Assessment Model (GCAM), a technology-rich partial equilibrium model, assumes 

total PDT to be proportional to population (Speizer et al.  2024), while in practice 

overall transport activity is also influenced by the design of human settlements and 

urban areas. 
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2.1.2 Energy system 

The deployment of technological transport mitigation options depends on the transition 

of energy systems. There must be sufficient infrastructure for electrification and 

alternative fuel uptake, as well as enough material feedstock and renewable energy 

supply that can be allocated to transport (IEA, 2022). The observed rapidly accelerating 

development of intermittent renewable energies and their declining costs will play a key 

role (Creutzig, Hilaire, Nemet, Müller-Hansen, & Minx, 2023). Energy system and 

transport interactions are modelled within IAMs and energy, environment, economy 

models, which can assess different energy mixes and policies (Edelenbosch, 

McCollum, et al., 2017). Within optimisation-based models, fuel mix is typically 

derived from least cost vehicle configurations categorised by fuel type (McCollum et 

al., 2017). The integrated nature of these models allows representation of trade-offs and 

cost-related interactions with other energy end-use sectors. 

Changes to commodities traded in a LED future will also impact trade routes 

and flows. Transportation of fossil fuels accounts for 45% of global shipped trade by 

weight. As the energy system transitions away from fossil fuel use to alternative energy 

sources, demand for shipping such commodities will fall (Sharmina et al., 2021). This 

has been modelled using the ITF non-urban freight model, which disaggregates trade 

flows by commodity and uses a multinomial logit model to estimate mode shares on 

specific routes (ITF, 2023). 

2.1.3 Shocks 

Global events, such as pandemics, conflicts, natural disasters, and financial crises can 

significantly shape transport activity and energy demand (IEA, 2022). 

Between 2019 and 2020, global PDT decreased by 20% due to the COVID-19 

pandemic (ITF, 2023). Mode shares were also affected, with a comparative analysis of 

16 cities showing an 80% reduction in public transit use under lockdowns and a 64% 

reduction in individual motorised transport. Transport land use and infrastructure also 

changed, with cities globally providing 550 km of temporary cycling infrastructure and 

planning an additional 1500 km (Creutzig, Lohrey, & Franza, 2022). Reduced long-

distance travel particularly impacted aviation, with 60% less revenue PDT globally in 

2020 compared to pre-pandemic levels. Scenario analysis with the AIM2015 aviation 

system dynamics model, incorporating vehicle fleet information, economy and 

population-based demand projections, and passenger activity, suggested that cumulative 

aviation fuel use may be 6-9% lower than in scenarios not including the pandemic 

(Dray & Sch¨afer, 2021). 

Shocks can also trigger long-term structural changes. For example, teleworking 

has increased since the COVID-19 pandemic, impacting commuting and other travel. 

Regression can identify patterns in propensity to telework within populations, based on 

characteristics such as age, job sector, income and education level (Hensher, Beck, & 

Wei, 2021). These relationships can be incorporated in transport demand models, 

including sectoral transport models, by separating the impact on trip generation, 

distribution, and mode shares. For example, remote working patterns and risk 
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avoidance attitudes, modelled using a 4-stage transport demand model, were found to 

increase car ownership and cause reductions in public transport use (Christidis, 

Christodoulou, Navajas-Cawood, & Ciuffo, 2021). 

As transport demand is driven by economic activity, land use, and urban planning, 

disruptions from shocks have been studied through economic modelling using 

computable general equilibrium models. Interactions between supply side and demand 

side shocks can be assessed simultaneously, whilst decomposition analysis can 

disaggregate impacts of different factors (Chen, Rose, Prager, & Chatterjee, 2017). 

2.2 Infrastructural factors 

Transport demand in a LED future will depend on infrastructure, as infrastructure 

dictates the places accessible by transport (Creutzig, Roy, et al., 2022). Infrastructure 

planning typically uses cost-benefit analysis to evaluate project outcomes in terms of 

meeting policy objectives. However, cost-benefit analyses are critiqued as being often 

too narrow in scope to incorporate social and environmental externalities (Laird & 

Venables, 2017). 

2.2.1 Passenger transport infrastructure 

Providing infrastructure in a LED future may involve strategically investing in public 

transport infrastructure, operating with high occupancy rates in compact urban areas, 

rather than providing infrastructure as a reaction to predicted business as usual demand 

(ITF, 2023). Research using an integrated transport demand and energy systems model, 

reveals synergies between policies to reduce transport emissions and energy system 

transitions, with comprehensive and wide-ranging policies deemed to be most effective 

at reducing emissions (Zhang & Hanaoka 2022).  

Agent-based modelling can be used to estimate behavioural responses to 

proposed infrastructure development (W Axhausen, Horni, & Nagel, 2016). An agent-

based model for electric vehicle charging infrastructure development in Switzerland, 

revealed that electricity grid infrastructure development is necessary to support peak 

charging loads (Pagani, Korosec, Chokani, & Abhari, 2019). In New York, active travel 

infrastructure development was predicted to be conducive to increasing walking and 

cycling rates, alongside complementary social promotions (Aziz et al., 2018). 

Infrastructure decisions can be a direct result of policies or an indirect result of 

population behaviour changes and technology development (Malmaeus et al.,2023). 

Empirical observations can retrospectively analyse infrastructure impacts.  Improved 

cycling infrastructure led to a 5% increase in cyclist numbers in Copenhagen (Skov-

Petersen, Jacobsen, Vedel, Thomas Alexander, & Rask, 2017). Pop-up cycling lanes 

during COVID-19 resulted in a 10-40% increase in cycling for every 10km additional 

bicycle lane built (Kraus & Koch, 2021). Also, 30% increases in walking and cycling 

were observed after active travel infrastructure development in small cities in New 

Zealand (Keall, Shaw, Chapman, & Howden-Chapman, 2018). 
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Further studies combine empirical data with regression models to disaggregate 

the effects of infrastructure on transport demand. A synthesis of empirical studies found 

that high-speed rail can stimulate the redistribution of air travel and that the spatial 

distribution of economic activity can change as accessibility changes (Zhang, Wan, & 

Yang, 2019). Further substitution effects were identified using a difference-in-

differences econometric model that shows how high-speed rail development in China 

induced a reduction in passenger vehicles on parallel roads (Lin, Qin, Wu, & Xu, 

2021). 

2.2.2 Freight transport infrastructure 

Global freight demand is projected to triple between 2015 and 2050. Significant 

changes to trade routes and trade network traffic may also occur. Large transcontinental 

infrastructure projects could establish new routes between East Asia and Europe, whilst 

increasing market accessibility in Central Asia and Africa (ITF, 2019). 

Although unlikely, new arctic shipping routes opened by melting sea ice could 

reduce shipping times between Asia, Europe and North America by 2050. It was 

estimated, using a general equilibrium model and trade elasticities, that the Northern 

Sea Route could account for 4.7% of global trade value (Bekkers, Francois, & Rojas-

Romagosa, 2016). Arctic shipping has considerable environmental impacts, with short-

lived pollutants causing significant damage and offsetting emissions savings from 

shorter routes. Further, complications include reduced fuel efficiency, uncertain transit 

times and safety considerations, reducing economic benefits and increasing uptake 

uncertainty (Theocharis et al., 2018). 

China’s Belt and Road initiative is a complex set of interlocking trade and 

transport infrastructure policies. Its impact on bilateral trade flows was estimated using 

a gravity model and comparative advantage model. New trade routes could increase 

bilateral trade by 4.1%, with countries experiencing the greatest increases if they 

become heavily involved in global supply chains (Baniya, Rocha, & Ruta, 2020). 

Further consideration of infrastructure developments was modelled in the ITF freight 

model. The model disaggregates trade flows and allocates trade value-to-weight using a 

discrete mode choice model and an equilibrium-based route choice model (ITF, 2019). 

The environmental impacts of infrastructure are modelled using life cycle 

assessments. For example, the lower environmental impact of electric road systems 

compared to the current diesel system for heavy goods vehicles across several impact 

categories has been demonstrated through life cycle assessments (Schulte & Ny, 2018). 

2.3 Infrastructural-socio-behavioural factors 

Infrastructure provision and land use can determine transport activity and mode shares. 

Reciprocally, transport service availability can influence infrastructure development 

choices and land use (Acheampong & Silva, 2015). Car use is strongly related to land 

use diversity; walking and public transport use is related to presence of pedestrian 
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routes; and cycling is associated with active travel infrastructure (Eldeeb, Mohamed & 

Paez. 2021). 

2.3.1 Compact urbanisation 

70% of the total population is projected to live in urban areas by 2050 (ITF, 2023). 

Compact urbanisation is typified by dense and proximate development patterns, 

enabling good accessibility to services and jobs (Ye et al., 2018). Urban sprawl 

prevention, rural and agricultural land protection, and urban community development 

can improve quality of life (ITF, 2023). Compact urbanisation reduces average travel 

distances and promotes public transport use, thus avoiding the need for private vehicle 

ownership (Matsuhashi, Ariga, & Ishikawa, 2023). Urban compaction can however be 

detrimental for urban resilience and climate adaptation, which can be analysed by 

combining land use and transport with environmental models (Dehghani, Alidadi, 

Sharifi, 2022), and also in an urban economic modelling setting (Pierer & Creutzig, 

2019). 

Retrospective studies have quantified the impact of population density on 

passenger transport use. Empirical travel survey data is typically analysed alongside 

categorised land use and population density information (Berrill et al. 2024; Matsuhashi 

et al., 2023; Xu, Haase, Su, & Yang, 2019). For example, annual car mileage per capita 

and per vehicle was found to be low in Japanese municipalities with high population 

densities (Matsuhashi et al., 2023). Within the EU, urban compactness and population 

density are not necessarily correlated, with high population density and low physical 

compactness beneficial for reducing energy use (Xu et al., 2019). A recent high-

resolution study of 19 European cities suggested that distance to the city centre rather 

than population density is the most important predictive factor of trip distance, car 

ownership and mode choice, thus driving transport GHG emissions (Berrill et al., 

2024). 

Future scenarios typically indicate that compact urbanisation has a 

complementary effect on transport emissions reductions. Passenger vehicle emissions in 

Japanese municipalities were estimated to fall by 64% by 2050, due to vehicle 

efficiency improvements and electrification, with a further 6% emissions reduction 

possible from urban compaction (Kii, 2020). Furthermore, wider factors impacting 

urban emissions and energy consumption, such as freight patterns, buildings, private 

vehicle ownership, disaster resilience and well-being, should be considered as well (Xu 

et al., 2019; Ye et al., 2018). 

2.3.2 Transit oriented development 

Transit-oriented development (TOD) is an urban planning strategy concerning 

organising compact and diverse mixed land use urban areas around public transport 

(Ford, Dawson, Blythe, & Barr, 2018). This can ensure good accessibility by active 

transport and reduce travel times, travel distances, urban sprawl and private car use (Ali 

et al., 2021). As buildings and infrastructure can have long service lifetimes 
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adjustments to urban structure and stimulating changes to associated travel patterns can 

be complex and expensive (Ford et al., 2018). 

Integrated land use transport models have evolved from assessing relationships 

between transport and land use using aggregate data with gravity and entropy 

maximisation models; to better represent behavioural theories and spatial choices using 

discrete choice models; to using agent-based models to analyse responses to land use 

changes (Engelberg et al., 2021). Urban planning uses integrated land use transport 

models to prescribe suitable land uses based on land-use-by-activity ratios and 

maximum density limits (Moeckel, Garcia, Chou, & Okrah, 2018). Further, transport 

demand influenced by land use patterns can be disaggregated by mode and time, 

allowing calculation of transport flows and accessibility metrics (Hawkins & Habib, 

2019).  Future integrated land-use transport models are expected to adopt disaggregate, 

activity-based accessibility metrics, enabling individual changes in use of 

communication and mobility technologies, activity patterns and time use to be 

aggregated into behaviour of the whole system (Engelberg et al. 2021). 

Machine learning models based on “big data” can assess transport and land use 

interactions (Milojevic-Dupont & Creutzig, 2021). Pattern recognition algorithms can 

identify spatially explicit urban forms predictive of travel patterns, energy use and 

emissions (Wagner et al., 2022). These algorithms have been used in Porto to identify 

drivers of greenhouse gas (GHG) emissions and estimate future emissions under 

different urban planning scenarios (Silva, Horta, Leal, & Oliveira, 2017; Silva, Leal, 

Oliveira, & Horta, 2018). Another study used a double machine learning approach to 

identify induced transport demand by newly planned settlements in Berlin (Nachtigall, 

Wagner, Berrill, & Creutzig, 2023). 

Integrated land use transport models that integrate environmental factors are 

still uncommon (Ford et al., 2018). The OECD Multi-Objective Local Environment 

Simulator (MOLES) attempted this integration by modelling interactions between 

urban land use, mobility patterns, economic activity, policy interventions and their 

impacts, notably air pollution and emissions (OECD, 2020). Further models containing 

this integration include the IRPUD model and Urban Integrated Assessment Facility 

(UIAF) which model relationships between population, economic conditions, land use, 

transportation and the environment (Moeckel et al., 2018) 

2.3.2 Trade network optimisation, supply chains, local production and 

consumption of goods 

Optimising trade networks can decrease product’s embodied energy and emissions, by 

reducing supply chain travel distances and promoting local production and consumption 

(Sharmina et al., 2021). Further, global trade flow changes could stem from consumer 

behaviour changes, relocation of industrial production facilities, and technology 

adoption altering the commodity types traded (Moran et al., 2018). 

Re-configuring global supply chains by sourcing commodities from nearby 

locations can reduce cargo ship use. Linear optimisation has been used to calculate 

which flows need to be re-routed to reduce global shipping emissions by a maximum of 
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38% (Wang et al., 2021). Logistics facility location is largely driven by market 

proximity and is commonly observed using Geographic Information Systems (GIS). 

GIS are typically used to make observations rather than to predict impacts on transport 

demand (He, Shen, Wu, & Luo, 2018). 

Local supply chains can also be reconfigured by using different vehicle types. 

Traffic simulation models suggested that cargo bikes can replace up to 10% of 

conventional vans for trips in a 2 km radius without changing the overall network 

efficiency in Porto (Melo & Baptista, 2017). Further, cost analyses found cargo 

bicycles to be effective in displacing vans for deliveries close to distribution centres, in 

densely populated areas, and with low delivery volumes at each stop (Sheth, Butrina, 

Goodchild, & McCormack, 2019). 

Additive manufacturing is the construction of three-dimensional objects from 

digital models, through deposition, joining or solidification of material (Savolainen & 

Collan, 2020). Additive manufacturing could reduce freight transport demand through 

consolidating manufacturing activities and simplifying supply chain logistics (IPCC, 

2022). Despite recent growth, there is uncertainty around short to medium-term growth 

of these impacts, due to limited economies of scale, and regulatory, cost, material, and 

product size limitations for the underlying technologies (Boon & van Wee, 2018). 

Life-cycle assessments can model the impact of factors related to transport 

demand, including vehicle fleets and supply chains. For instance, light-weight 

aeroplane components produced by additive manufacturing are found using a life cycle 

inventory model to reduce cumulative emissions from the global fleet by 215MtCO2 by 

2050 (R. Huang et al., 2016). Additive manufacturing is also found using a linear 

programming model to reduce costs and tonne-kms per component through the 

reconfiguration of supply chain networks (Barz, Buer, & Haasis, 2016). 

2.3.4 Shared economy 

The term “shared economy” refers to peer-to-peer based activity of obtaining, giving, or 

sharing access to goods and services, often coordinated through online platforms (Craig 

Standing & Biermann, 2019). 

Freight sharing through business-to-business collaboration can reduce costs, 

vehicle ownership rates and induce time savings (Craig Standing & Biermann, 2019). 

Similarly, crowd-shipping can create informal urban delivery networks where people 

act as couriers on trips they are making already, with optimisation algorithms used to 

allocate deliveries to suitable travellers (Allahviranloo & Baghestani, 2019). The 

propensity to participate in crowd shipping is studied through stated preference surveys 

to identify socio-demographic characteristics that typically indicate a greater 

willingness to work (Miller, Nie, & Stathopoulos, 2017). 

Shared mobility allows users to access transport services without owning the 

vehicle they use. Ubiquitous digitalisation has enabled on-demand shared services and 

allows efficient matching of supply and demand over short time periods, especially in 

densely populated areas with potentially large user bases (Machado, De Salles Hue, 

Berssaneti, & Quintanilha, 2018). Shared mobility could impact mode shares and 
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vehicle ownership rates, with current implementations indicating mode shifts away 

from public transport and active travel, and lower vehicle ownership rates amongst car 

sharing program participants (Javaid, Creutzig, & Bamberg, 2020; Craig Standing & 

Biermann, 2019). 

Shared mobility can also improve accessibility and first and last mile 

connectivity with public transport (IPCC, 2022).  However, a stated/revealed preference 

study found that additional policies and incentives would need to be provided to 

prevent shifts away from public transport, as public transport users are the most likely 

to adopt trip sharing (Li & Kamargianni 2020). Agent-based models can simulate 

shared vehicle uptake, including the use of shared autonomous vehicles. An agent-

based model applied to Singapore found that shared autonomous vehicle introduction 

could double the size of the current national taxi fleet, cause a shift away from public 

transport use, and increase vehicle-km by up to 17% (Oh et al. 2020). An agent-based 

model applied to Lisbon suggested that full implementation of shared autonomous 

vehicles, replacing private car, bus and taxi use, would significantly reduce distances 

travelled and emissions (Martinez & Viegas, 2017). 

Bike sharing schemes are growing in popularity in urban areas. Data collection 

from dock stations and location information from free-floating bicycles enables 

collection of large quantities of trip data. This information can be used alongside 

regression and optimisation techniques to determine bike relocation strategies to areas 

of high demand (Faghih-Imani, Hampshire, Marla, & Eluru, 2017). Further, agent-

based models can estimate bike sharing uptake potential in terms of impacts on mode 

shares, accessibility, emissions and energy use (Lu, Hsu, Chen, & Lee, 2018). 

2.4 Socio-behavioural factors 

Transport energy use is dependent on several factors, including the need to travel, the 

transport mode and vehicle used, and destination and route choice. Furthermore, 

transitioning away from the self-reinforcing incumbent car-centric transport system in 

many countries will depend on interactions between economies of scale, industry, 

consumers, public policy, infrastructure and cultures (Mattioli, Roberts, Steinberger, & 

Brown, 2020). Additionally, transport systems transitions will depend on considerations 

related to the social and cultural aspects of transport, such as the non-use value users 

place on private cars (Moody, Farr, Papagelis, & Keith, 2021). 

2.4.1 Social movements and trends 

Individual, social and infrastructural factors influence transport mode choice. 

Individuals are more likely to shift towards low energy and emission modes if these 

transport modes are accessible, affordable and safe in the areas where they live and 

work. Mode choice is also influenced by perceived social norms resulting from 

observations of social norms which are in turn determined by public policy (Javaid et 

al., 2020). 

Page 12 of 43AUTHOR SUBMITTED MANUSCRIPT - ERL-118410.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 

 

Society-centric transport planning involving community engagement could 

improve transport justice by addressing inequalities in access to goods and services 

(Karner et al. 2020). Transport planning often employs state-maintained sectoral 

transport demand models, with generally relatively little consideration of social equity 

(Vecchio, Tiznado-Aitken & Hurtubia, 2020). Further inclusion of social equity metrics 

could generate outcomes that stimulate new social norms and changes in mode shares 

and transport activity (Karner et al., 2020). 

Flygskam (flight shame) is a social movement that emerged in Sweden in 2017, 

concerning an individual’s unease with flying due to the climate implications and social 

stigma of air travel (G¨ossling, Humpe, & Bausch, 2020). Social movements and 

opinions, such as flygskam, can be tracked using surveys. Survey results indicated that 

flygskam had increased awareness of aviation impacts and there is some public support 

for policies that increase the cost of flying (Go¨ssling et al., 2020). 

In 2013, tourism was estimated to contribute 8% of global emissions (Lenzen et 

al., 2018). As a major emitting sector, tourism is typically endogenously included 

within larger-scale decarbonisation scenarios. Measures relating to touristic transport, 

in the IEA’s net zero roadmap, included keeping long haul leisure air travel at 2019 

levels, choosing closer destinations, shifting short haul flights to rail and introducing 

carbon prices to influence travel costs (Scott & Go¨ssling, 2022). 

General theory of planned behaviour models are psychological behavioural 

models used to predict and explain destination decisions (Cao, Zhang, Wang, Hu, & 

Yu, 2020). Prospective transport demand is studied through the push-pull framework 

and perceived fit theory, which aims to understand destination choice decisions (Tojib, 

Tsarenko, Hin Ho, Tuteja, & Rahayu, 2022). Further, potential changes in destination 

choice, due to climate adaptation in alpine regions for example, have been studied 

through agent-based modelling (Scott, Steiger, Rutty, Pons, Johnson, 2020). 

2.4.2 Demand reduction policies 

Policy can stimulate transport demand changes, by encouraging mode shifts and 

restricting vehicle use. Ghent and Pontevedra have banned cars from inner cities, with 

Paris planning to do so in 2024 (Creutzig, 2022). Congestion charges in cities, 

including London, Milan, and Singapore, have reduced urban traffic and associated 

externalities (Green, Heywood, & Navarro Paniagua, 2020).  

Price-based measures can be analysed using elasticities that measure the 

sensitivity of demand to changes in price (B¨orjesson & Kristoffersson, 2018). Price 

elasticities can be integrated into transport and energy optimisation models to represent 

modal shifts (Salvucci, Tattini, Gargiulo, Lehtila¨, & Karlsson, 2018). Stated preference 

surveys can monitor the impact of demand reduction measures on passenger behaviour. 

Responses to congestion management strategies, including changing parking charges, 

introducing shared bicycles and subsidising public transport, can be recorded in cross 

sectional stated preference surveys to evaluate the effectiveness of different strategies 

(Guzman, Arellana & Alvarez 2020).  
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Demand reduction measures can also be included within travel demand 

simulation models. Travel demand management policies have been found to contribute 

to emissions reductions and can be included in urban location decision models by 

incorporating travel costs and comparing them with household incomes (Wegener, 

2021). Discrete choice modelling can also be used to model demand reduction 

measures. For example, a multinomial logit model was used to evaluate the utility of 

different mode choices when congestion pricing policies are applied in New York (He 

et al. 2021). 

2.5 Socio-behavioural-technological factors 

Adoption of technologies can stimulate behaviour changes that impact transport 

demand. For example, remote working where possible can reduce the need for 

commuting trips; e-commerce can alter shopping trips and increase consumer 

deliveries; and online tools can help change accessibility and perceptions of passenger 

transport services (ITF, 2023). 

2.5.1 Mobility as a Service 

Mobility as a Service (MaaS) generally refers to integrated platforms that allow users to 

access services provided by various different transport modes (ITF, 2023). Inter-modal 

connectivity could facilitate increased public transport and shared mobility use. In a 

trial in Japan, GPS data and questionnaires were used to empirically observe behaviour 

changes caused by the introduction of MaaS and free public transport access. 

Introduction of MaaS accelerated modal shifts towards public transport and changed 

trip frequency and locations visited (Miyawaki, Tomioka, Takayama, & Morimoto, 

2020). 

There is uncertainty surrounding the potential impacts of MaaS on transport 

demand, with several barriers currently limiting widespread adoption (Zhao, Andruetto, 

Vaddadi, & Pernest˚al, 2021; Laine et al., 2018). Scenario analyses, containing 

assumptions on adoption rates, car ownership and vehicle-km travelled, have been used 

to estimate impacts on transport activity (Zhao et al., 2021). For example, the role of 

MaaS in changing travel behaviour was studied using a vehicle fleet model. Reducing 

car ownership by 10%, viable through increased use of MaaS, could lead to greater 

emissions reductions than a 10% increase in vehicle efficiency (Laine et al., 2018). 

An activity-based transport demand model was used to simulate the impacts of 

MaaS on travel activity and mode shares in Amsterdam, with propensity for adopting 

MaaS determined using a multinomial logit model. It was estimated that emissions 

could be reduced by 3-4% if 20% of the population adopt MaaS or 43-54% if 85% of 

the population adopt MaaS (Labee, Rasouli, & Liao, 2022). 

2.5.2 E-commerce 

E-commerce is the sale of goods or services over computer networks using methods 

specifically designed for receiving or placing orders (ITF, 2023). The share of e-
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commerce in all sales tripled between 2014 and 2019. Growth is set to continue, with 

last mile transport demand set to grow by 78% between 2020 and 2030 and e-

commerce projected to increase unabated freight emissions by 4% by 2050 (Deloison et 

al., 2020; ITF, 2019). This growth is driven by urbanisation, widening customer bases 

globally, online product availability, and new digital business models (Deloison et al., 

2020). 

Urban density, mode shares, the energy mix, as well as physical, psychological 

and socio-demographic factors will determine the direction and magnitude of e-

commerce’s impact on transport demand. Empirical evidence as to the effect of e-

commerce on transport demand is currently inconclusive, with diverse purchasing 

models, complex behaviour changes and rebound effects making it difficult to define 

system boundaries to assess the overall impact (Buldeo Rai 2021). Furthermore, on-

demand deliveries in narrow time windows reduce vehicle payload factors and 

customer returns increase overall delivery vehicle-km (ITF, 2019). 

Collection points, off-peak deliveries, zero-emission zoning and distance-based 

charging can encourage distribution companies to use vehicle capacity better, thus 

limiting emissions and congestion from last mile deliveries. Traffic micro-simulation 

can predict congestion and emissions impacts of additional delivery vehicles in urban 

areas (Laghaei et al., 2015). Agent-based modelling can also compare the dynamics of 

door-to-door deliveries and consolidated delivery patterns, by simulating customer 

movements and freight deliveries (Calabr`o et al., 2022). Econometric models can 

analyse longer-term impacts of e-commerce, such as changes in urban form and 

employment types, linking e-commerce activity with specific transport mode use 

(Bonilla, 2016). 

2.5.3 Teleworking 

Teleworking is where work is completed away from an employer’s site while staying 

connected via network technologies (Hook, Court, Sovacool, & Sorrell, 2020). 

Globally, between 2-40% of employees telework, with rates influenced by country, 

labour laws, cultures, and occupation sector (Gschwind et al., 2017). Certain socio-

demographic and geographical factors determine propensity to telework, with women 

and employees with high incomes, children, high education levels, and long commutes 

more likely to telework than other groups (Singh, Paleti, Jenkins, & Bhat, 2013). 

The trip and transport mode displaced, climate, induced energy use patterns, 

office and remote working environment energy characteristics, and electricity mix 

determine the net effects of teleworking. Further, there is large uncertainty concerning 

rebound effects including increases in non-work travel, home energy use and the 

distances people live from their workplace (Hook et al., 2020). For example, regression 

models found that teleworking has a complementary rather than substitutive effect on 

the total number of trips made, especially in larger metropolitan areas in the USA (Zhu, 

Wang, Jiang, & Zhou, 2018). Despite this, empirical evidence suggested that 

teleworking can reduce traffic volumes by up to 2.9% (Giovanis, 2018). Illustrating the 

interaction with exogenous shocks (§2.1.3 above), teleworking during the Covid-19 
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lockdowns contributed to a 40% reduction in land transport emissions (Le Qu´er´e et 

al., 2020). 

Teleworking’s impact on transport can be modelled using empirical data from 

household travel surveys (Zhu et al., 2018; Giovanis, 2018). Further, binary probit 

regression can be used in generalised ordered response models to represent the choice 

to telework (Singh et al., 2013). Scenario analyses can also estimate potential impacts. 

In a scenario, where teleworking affects between 3-30% of urban trips by 2050, global 

urban PDT and related CO2 emissions were found to be 2% lower than in a current 

policy ambition scenario (ITF, 2019). 

2.6 Technological factors 

Transport decarbonisation strategies involve significant transformation to the 

technologies used in the transport sector (ITF, 2023). In hard-to-decarbonise sectors 

such as marine transport and aviation, decarbonisation strategies rely heavily on 

alternative low-carbon fuels, whose development and deployment are highly uncertain 

(IPCC, 2022). 

2.6.1 Activity feedbacks of technology/fuel changes 

Heavy goods vehicles account for 23% of transport emissions globally, with road 

freight demand expected to increase in the future (ITF, 2023; Mulholland, Teter, 

Cazzola, McDonald, & O Gallachoir, 2018). Short-term decarbonisation strategies 

comprise vehicle efficiency improvements and measures to improve freight systems 

efficiency (Mulholland et al., 2018). Under such strategies, liquid fuels remain 

prevalent due to their high energy density, portability, storage stability, and ease of 

delivery owing to the extensive distribution infrastructure (Mulholland et al., 2018). 

However, decarbonisation will ultimately depend on using alternative energy sources, 

such as electricity, hydrogen or low-carbon liquid fuels (Sharmina et al., 2021). 

Biofuels could reduce net emissions, have high energy density, and have been produced 

at scale from crops in Brazil and the United States (IEA, 2022). However, significant 

increases in crop-based production would entail large-scale land conversion, potentially 

impacting food supply and land use change, offsetting emissions savings (Maia & 

Bozelli, 2022). Difficulties in scaling up fuel production, fuel costs, high life-cycle 

emissions, limited infrastructures, vehicle costs and performance limitations all 

currently limit alternative technology deployment (Moultak, Lutsey, & Hall, 2017). 

Electric road system capital costs are projected to be lower than hydrogen fuel 

cell and liquefied natural gas vehicles by 2030 in China, the USA and Europe (Moultak 

et al., 2017). The potential environmental impact of alternative power trains can be 

studied through life cycle assessments. Generally, catenary electric heavy goods 

vehicles have lower life-cycle emissions than conventional diesel vehicles and 

hydrogen fuel cell vehicles due to inefficient hydrogen production pathways (Moultak 

et al., 2017). 
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Aviation decarbonisation pathways typically include: low-carbon fuels, aircraft 

efficiency improvements, operational efficiency measures, novel propulsion 

technologies and residual emission offsets (Dray et al., 2022). Hydrogen and electric 

aircraft are under development and could complement conventional aircraft using 

sustainable aviation fuel, however they will likely only operate on short to medium-

haul routes due to technological limitations (Scha¨fer et al., 2018). Sustainable aviation 

fuel typically refers to cellulosic biofuels or synthetic fuels produced using hydrogen 

and carbon dioxide. Widespread biofuel use may be constrained by land use and 

feedstock yields and synthetic fuel uptake is currently limited by high production costs 

and limited production infrastructure (Dray et al., 2022). 

System dynamics methods have been used to construct global integrated 

aviation models representing interactions between demand generation, aircraft 

technology and cost, fleet dynamics, and environmental and economic outputs. Future 

passenger activity is estimated using a gravity-based demand sub-model and is updated 

by achieving partial equilibrium with supply through factors such as airfares and 

operational costs (Dray et al., 2022). The ITF non-urban passenger model is also used 

to simulate global air transport activity, mode shares, and emissions for intercity and 

regional travel to 2050. For each air route, the optimal fuel type and propulsion 

technology is assessed every 5 years, with sustainable aviation fuel mandates used to 

update fuel costs. In a high ambition scenario, this model projected that high fuel costs 

will likely limit passenger demand, reducing PDT by 30% compared to a current 

ambition scenario (ITF, 2023). 

The shipping sector has set a goal to halve its sectoral emissions by 2050 

compared to 2008 (Tillig, Ringsberg, Psaraftis, & Zis, 2020). For this transport mode, 

short-term emissions savings rely on fleet planning, improved harbour logistics, route 

planning, slow steaming, and ship design improvements (Tillig et al., 2020). Using a 

profit maximisation model combining economic inputs and technical ship data, studies 

have found that fuel use impacts the viability of ship use for different purposes and on 

different routes (Joseph et al. 2021). 

Wind-assisted ship propulsion could reduce fossil fuel use between 1- and 50% 

depending on the specific technology used. This energy saving can be maximised 

through using shipping routes with stronger winds, changing travel distances and times 

(Chou, Kosmas, Acciaro, & Renken, 2021). Route optimisation tools, using techniques 

including the branch and bound approach, can incorporate wind speed and weather data 

to assess the most fuel-efficient routes (Bentin et al., 2016). Further models couple 

economics and ship energy systems models to assess decarbonisation strategies that 

will alter trip distances and travel times. Emissions savings from wind-assisted 

propulsion and slow steaming are greatest when fuel prices are high, as lower speed 

operation becomes economically optimal (Tillig et al., 2020). 
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2.7 Infrastructural-technological factors 

Infrastructure and technology use are highly interdependent. Infrastructure allows 

transport technologies to be used and technology determines infrastructure choices and 

development. 

2.7.1 Autonomous passenger vehicles 

The future energy use of autonomous passenger vehicles is uncertain, and will depend 

strongly on use patterns, ownership models, induced demand, and regulations (Millard-

Ball, 2019; Bo¨sch, Becker, Becker, & Axhausen, 2018). Automation may improve 

vehicle efficiency, reduce congestion and increase public transport use by providing 

first and last-mile accessibility. Conversely, it may decrease travel costs, stimulating 

increases in travel activity and shifts away from conventional public transport (Fagnant 

& Kockelman, 2014). The Swiss national transport model, which uses origin-

destination matrices containing capacity and demand data, has been used to model 

autonomous vehicle adoption. Autonomous vehicle use improved accessibility, with the 

magnitude of the improvement dependent on network capacity (Meyer, Becker, & 

Axhausen, 2017). The potential impact of autonomous vehicles on transport demand 

has also been assessed using micro-simulation models (Fagnant & Kockelman, 2016; 

Millard-Ball, 2019). Autonomous vehicle parking was also investigated by combining 

traffic micro-simulation with an activity-based transportation model. Autonomous 

vehicle parking may induce additional car use from decreased parking costs and 

increase congestion from vehicles relocating to access inexpensive parking (Millard-

Ball, 2019). 

Shared autonomous vehicle adoption could decrease vehicle ownership rates 

and reduce the number of vehicles required to meet car transport demand (Bo¨sch et al., 

2018; Meyer et al., 2017). An agent-based model has been used to estimate the impact 

of shared autonomous vehicles compared to conventional private car use, in a 

theoretical grid network. Each shared autonomous vehicle is estimated to replace eleven 

conventional vehicles but travel 10% further than equivalent private vehicles from 

picking up passengers (Fagnant & Kockelman, 2016). However, cost analysis 

suggested that uptake may be limited due to competition with private autonomous 

vehicles with less variable costs (Bo¨sch et al., 2018). Furthermore, compared to 

conventional privately owned and operated vehicles, the additional costs of driving 

without passengers and high operator profit expectations may hinder uptake (Nunes & 

Hernandez, 2022) 

Autonomous vehicle uptake may induce urban land use changes (Hawkins & 

Habib, 2019). Reductions in travel time sensitivity from increased productivity while 

travelling may induce urban sprawl (Meyer et al., 2017). Conversely, streets could be 

redesigned for walking and cycling, with land previously devoted to parking repurposed 

for pedestrian oriented urban centres (Millard-Ball, 2019). 
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2.7.2 Autonomous freight vehicles 

Automated trucks could reduce operating costs, as labour accounts for 35-45% of road 

freight operating costs in Europe (ITF, 2017). Driverless trucks could operate at all 

times, enabling better asset use and flexible fleet management. Furthermore, inter-

vehicle communication could enhance safety and enable efficient driving practices 

(ITF, 2017). Currently, there are significant uncertainties around deployment timelines, 

operational capabilities, infrastructure requirements and regulatory acceptance of 

automated freight vehicles (Engholm, Kristoffersson, & Pernestal, 2021). 

Operational costs of automated freight have been estimated to be 12-58% lower 

than for conventional vehicles (Engholm et al., 2021). Lower operational costs could 

stimulate decentralisation, increased specialisation in supply chains, and the 

development of freight consolidation centres (ITF, 2017). Transport economics can be 

combined with vehicle characteristics and routing optimisation to assess the impact of 

autonomous vehicles on routes and optimal vehicle types for logistics. Optimising for 

cost leads to adoption of smaller vehicles for trips with few stops and urban deliveries. 

For larger trucks transporting bulk commodities, using smaller vehicles had negligible 

impact on cost compared to driver removal savings (Bray & Cebon, 2022). 

Agent-based traffic simulation models can assess impacts of automation on road 

freight logistics. Automated coordination of freight services and planning could 

improve dispatching process flexibility and speed, reduce empty vehicle mileage and 

increase vehicle capacity utilisation (Arendt, Klein, & Barwig, 2016). Furthermore, 

connected autonomous vehicles could reduce travel times in congested areas by using 

optimised vehicle routing strategies (Djavadian, Tu, Farooq, & Hatzopoulou, 2020). 

2.7.3 Transport materiality 

Decoupling the services provided by in-use material stocks from material stocks has 

large mitigation potential, with long-term management of in-use stocks crucial for 

meeting climate targets (Haberl et al., 2021). Circular economy principles such as 

recovery and re-use of energy-intensive and critical materials, re-use of components, 

material substitution and material efficiency improvements can reduce material use 

impacts (Walker, Coleman, Hodgson, Collins, & Brimacombe, 2018). 

Future transport sector material requirements are highly dependent on several 

factors, including average vehicle size, use intensity, lifetimes, overall fleet numbers 

and fleet composition (Zeng et al., 2022). 

Material requirements are modelled using dynamic stock models, that for 

instance have shown how rapid lithium demand increases could cause a mismatch with 

supply by 2050, limiting electric vehicle deployment rates (Watari et al., 2019). At the 

global scope, forecasts using dynamic material flow analysis suggested a 15- to 31- fold 

increase in global demand for critical battery materials, requiring a substantial 

expansion of manufacturing capacity (Xu et al., 2020). Recycling electric vehicle 

batteries could provide 60% of cobalt, 53% of lithium and 53% of nickel required 

globally by 2040 (Richter, 2022). Reducing primary material demand for vehicle 

batteries could be achieved through increasing battery energy density, commercialising 
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cobalt-free battery technologies and increasing recycling rates (Abdelbaky, Peeters, & 

Dewulf, 2021). 

Material substitution can reduce vehicle weight and increase vehicle efficiency. 

Reducing conventional steel and iron consumption in cars is possible by increasing use 

of high-strength steel, magnesium, aluminium, plastics and composites (Serrenho, 

Norman & Allwood, 2017). However, material substitution can be environmentally 

detrimental if it requires new mines, limits end-of-life product recovery, and/or 

increases transport demand in supply chains (Rodrigues, Carmona, Whiting, & Sousa, 

2022). 

Vehicle choice and consumer preferences can also greatly impact the material and 

energy requirements of transportation. Reversing trends towards larger and more 

powerful vehicles (downsizing) could be highly effective at reducing vehicle life-cycle 

emissions and material requirements. It was estimated, using life cycle assessment 

methods, that shifting all vehicles to the next smallest vehicle class could reduce 

vehicle mass by 16-44% and fuel consumption by 9-37% (Wolfram, Tu, Heeren, 

Pauliuk, & Hertwich, 2021). 

2.8 Summary of factors’ impact on transport demand 

The classifications used in Table 1 indicate each factor’s general effect on aspects of 

transport demand. For compactness, Table 1 uses abbreviations given in Table 2. These 

effects are representative of the dominant aspects and impacts mentioned in the 

reviewed literature. The supplementary information contains additional information on 

the specific model types used in each reviewed study. 

Table 1: Summary of categorisation of factors affecting transport demand and the 

modelling approaches used. 

 

Factor 

type 

Factor affecting 

transport demand 

Impacts 
Transp

ort 

demand 

area 
Locati

on 

Mod

es 

Directi

on 

Are

aa 

Tri

p 

typ

e 

Exogenous 

drivers 

Population and 

economic growth 

All All I All All Ac, MS, 

LU 

Page 20 of 43AUTHOR SUBMITTED MANUSCRIPT - ERL-118410.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 

 

Table 2: Categorisations used to characterise factors that affect transport demand. 

 

Impact variable Category 

Location HIC – High Income Countries, LMIC – Low- and Middle-

Income Countries, All- All countries 

§2.1 Energy systems All All U All All All 

Shocks All All U All All All 

Infrastruct

ural 

§2.2 

Passenger 

infrastructure 

All P U All All All 

Freight 

infrastructure 

All F U All All All 

Infrastruct

ural - 

socio-

behavioura

l 

§2.3 

Compact 

urbanisation 

All All D Ur L Ac, MS, 

LU, R 

Transit-oriented 

development 

All All D Ur L All 

Trade network 

optimisation, supply 

chains, local 

production/consump

tion 

All F D All All Ac, EI, 

V, R 

Shared economy All All D All All Ac, MS, 

EI, V 

Socio-

behavioura

l 

§2.4 

Social movements 

and trends 

All All U All All Ac, MS 

Demand reduction 

policies 

All All D All All Ac, MS, 

V, R 

Socio-

behavioura

l – 

technologi

cal 

§2.5 

Mobility as a 

service 

HIC P D Ur L Ac, MS, 

EI 

E-commerce HIC All U All L Ac, MS 

Teleworking/confer

encing 

HIC P D All All Ac, MS, 

R 

Technolog

ical 

§2.6 

Activity feedbacks 

of technology/fuels 

All All U All All Ac, MS, 

EI, V 

Infrastruct

ural – 

technologi

cal 

§2.7 

Autonomous 

passenger vehicles 

HIC P U All L, 

R 

Ac, MS, 

EI, V, R 

Autonomous freight 

vehicles 

HIC F U All All Ac, MS, 

EI, V, R 

Transport 

materiality 

All All D All All EI, V 
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Trip type L - Local, R - Regional, I - International, All - All distances 

Modes P - Passenger, F - Freight, All - All modes 

Direction I - Increase, D - Decrease, U - Uncertain 

Area classification Ur - Urban, Ru - Rural, All - All areas 

Transport demand area 

impacted 

Ac - Activity (Trip generation), MS - Mode share, EI - Energy 

intensity (Fuel type, Use efficiency i.e. Vehicle capacity 

utilisation), R - Routes, LU - Land use, V - Vehicles 

 

3 Modelling and representation of factors that affect transport demand 

In the previous sections, factors relating to transport demand that could conceivably 

contribute to a LED future were introduced and current approaches to modelling their 

effects on transport demand were reviewed. Naturally, the factors all have different 

impacts, transport modes they affect, uncertainties, and interactions with other factors 

and sectors. Therefore, the modelling techniques used are specific to their ability to 

represent the factors and the relevant aspects of transport demand. Here, we propose a 

taxonomy to characterise transport demand modelling approaches. This will help 

identify gaps in current modelling practices and shortcomings in the integration of the 

factors affecting demand in integrated models of the total global transport system.  

3.1 Taxonomy of transport demand modelling approaches 

 

There are a number of distinct modelling approaches, which differ in their scope, 

structure, assumptions, and inputs and outputs, that have emerged in transport demand 

modelling. 

Microsimulation refers to approaches where the unit of analysis –individual 

people artifacts—used cannot be subdivided. It is used to model factors affecting 

transport demand where aggregate representations of demand, such as traffic flow 

within a set time or overall PDT, are not appropriate (Linton et al., 2015). 

Agent-based models are used to capture behavioural and social changes by 

simulating individual agents’ actions and interactions within a transportation system 

(Bastarianto, Hancock, Farheen Choudhury, & Manley, 2023). Agent-based modelling 

considers the heterogeneity and autonomy of agents, such as travellers, vehicles, or 

infrastructure components, allowing for a realistic representation of system dynamics. It 

incorporates various aspects of human behaviour and social dynamics that influence 

travel patterns, including mode choice, route selection, and interactions with social 

networks (Castiglione, 2020). Agent-based modelling enables the exploration of 

emergent phenomena and the effects of interactions between agents on system-level 

outcomes, offering insights into how individual decisions shape collective behaviour 

and system performance (J. Huang et al., 2022). 
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Sectoral transport demand models represent transport subsystems, with 

exogenous relationships with other sectors and drivers of demand. Modelling 

approaches are often modular with distinct steps used to model different aspects of 

demand. The classical “four-step model”, or trip-based model, for example, uses trip 

generation, trip distribution, mode choice and route choice stages to simulate transport 

demand (McNally, 2007). Activity based models generally better represent trip 

chaining, with activity generation used instead of trip generation, derived from activity 

sequences, locations and durations (Joubert & de Waal, 2020). 

Systems dynamics approaches model interactions such as positive and negative 

reinforcement and non-linear behaviour in complex systems. Quantitative system 

dynamics analysis uses stocks and flows which are represented using non-linear 

differential equations (Shepherd, 2014). System dynamics can be applied to model 

vehicle stocks, alternative fuel uptake, urban passenger demand and strategic policy at 

various geographical levels (ITF, 2023; Shepherd, 2014). 

Integrated transport land use models directly consider interactions between 

transport and land use and are used in urban planning. Two main approaches exist, with 

equilibrium-based models assuming cities are markets that gradually approach 

economic equilibrium, and dynamic models focusing on adjustment processes of 

different speeds. Within integrated transport land use models, transport demand can be 

modelled using microsimulation, agent-based models and activity-based models 

(Wegener, 2021). 

Aggregate transport demand metrics are also included within integrated models, 

including IAMs and energy, environment, economy (E3) models. Integrated models 

span multiple domains and link the main aspects of society, the economy and the 

environment within single modelling frameworks. One IAM classification differentiates 

between cost-benefit oriented models and technology-rich process-based models. Cost-

benefit oriented IAMs use econometric relationships to examine the trade-offs between 

damage from climate change and mitigation costs. Technology-rich or process-based 

models, represent industrial production and consumption sectors and are used to 

identify and quantify mitigation pathways, assuming economic equilibrium (Pauliuk et 

al., 2017). Both general and partial equilibrium approaches are used, and many different 

techniques are used, including recursive simulation, inter-temporal optimisation, 

recursive dynamics and linear optimisation (Edelenbosch, McCollum, et al., 2017). 

Table 3: Summary of modelling approaches used to assess factors that affect transport 

demand. 
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There is no universal categorisation of transport demand modelling approaches. 

Modelling taxonomies have been proposed to characterise modelling approaches for 

land use transportation models (Torrens, 2000), travel behaviour models (Sharma et al., 

2021) and for inter-modal freight simulations (Crainic, Perboli, & Rosano, 2018). Yet, 

Modelling 

approach 

Scope Units/measures 

of 

analysis 

Main model 

use 

Granularity Reference(s) 

Microsimulation Typically 

local 

Individual or 

vehicle 

Detailed 

description of 

transport 

movements. 

High (Linton, 

Grant-Muller 

& Gale 2015) 

Agent-based 

models 

Local to 

global 

Autonomous 

agents 

Interactions 

between 

independent 

entities. 

Medium high (J Huang et 

al., 2022; 

Linton et al., 

2015) 

Sectoral transport 

models 

Local to 

global 

Trip/ tour/ 

activity 

Transport 

demand with 

exogenous 

interactions with 

other sectors. 

Medium (McNally, 

2007; Joubert 

& de Waal, 

2020; Linton 

et al., 2015) 

Integrated 

transport land 

use 

Urban 

areas 

(Varies) Relationship 

between land use 

and transport 

demand. 

Medium low (Wegener, 

2021; Linton 

et al., 2015; 

Nachtigall et 

al., 2023) 

System dynamics Local to 

global 

Stocks and 

flows 

Interactions and 

causal 

relationships 

between different 

aspects of 

transport 

demand. 

Low (Shepherd, 

2014; Linton 

et al., 2015) 

Multi sector 

models 

National 

to 

Global 

Aggregated 

transport 

demand 

Model transport 

as a derived 

demand and 

interaction with 

other sectors. 

Low (Edelenbosch, 

McCollum, et 

al. 2017; 

Pauliuk, 

Arvesen, 

Stadler & 

Hertwich, 

2017; Linton 

et al. 2015) 
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no taxonomies exist for transport demand modelling approaches as a whole. Because, 

many approaches contain shared methods, scopes and techniques, constructing a 

hierarchical classification based on model characteristics, structure and methods is 

difficult. For example, optimisation methods can be used to determine agent behaviour 

within an agent-based model, while also being used to determine least cost pathways in 

IAMs; these and other applications will use different independent and dependent 

variables, and have different consequences for model validity. Thus, we propose a 

transport demand model taxonomy (figure 2) that characterises different transport 

demand models and multi-sectoral models containing explicit representations of 

transport demand.  

For any existing or new model or model-based study, providing the seven 

attributes in this taxonomy can enable straightforward assessment of which subsystems 

of the complex global transport system are within the model boundaries, thus which 

demand factors are captured endogenously, partially, or treated as exogenous. 
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3.1.1 Complementary modelling approaches 

Besides transport demand models, further modelling approaches and associated data are 

used to represent factors that interact with transport demand, such as land use and 

vehicle characteristics. Data outputs from these models can be useful inputs to transport 

demand models and can help ensure transport demand model outputs are physically and 

socio-economically realistic. 

Industrial ecology techniques, including life cycle assessments and material 

flow analysis, can assess environmental and material impacts of vehicles and 

infrastructure (Pauliuk et al., 2017). Surveys can be used to derive activity patterns for 

activity-based models and monitor qualitative social and behavioural factors, helping to 

create realistic scenarios (Guzman, Arellana & Alvarez 2020). Similarly, empirical data 

can be used for model validation and to study statistical relationships in the absence of 

transport demand models (Skov-Petersen et al., 2017).  GIS data can be input to 

transport land use models (He et al., 2018). Machine learning can be used to identify 

and categorise land uses and thus identify how urban form can be modified to 

encourage transport demand changes (Wagner et al., 2022). 

4 Discussion and conclusions 

Transport demand is typically empirically measured and quantified within models using 

metrics such as PDT, VDT and freight volume (measured in tonne-km). Data for these 

measures can have different dimensionality, scope, and resolution or granularity. For 

example, at the most aggregate level multi-sector models may have representations of 

transport demand where total activity in terms of PDT, VDT or freight volume is 

represented as a single variable, often as a function of other model inputs. At the other 

end of the scale, microsimulation models can represent the activity of individual persons 

or vehicles, potentially with additional details such as routes taken, within the wider 

system, and compute total PDT, VDT or freight volume across many such individuals 

or vehicles. Other approaches fall in between these two extremes, with many 

approaches reporting PDT, VDT and tonne-km apportioned to different transport modes 

for example. Despite the ability of high-resolution models to represent different aspects 

of transport demand and influencing factors in detail, such detail introduces model 

complexity, data requirements for calibration, and increases the difficulty of testing 

model accuracy. We conclude this review by discussing potential methods of improving 

the representation of transport demand in aggregate or multi-sectoral models in 

particular by incorporating features of models with more detailed representations of 

transport demand. 

 

Integrated models take a whole systems approach to modelling future energy, economic 

and environmental systems and their interactions (Edelenbosch, McCollum, et al., 

2017). Yeh et al. (2017) introduce the term "global transport energy model" (GTEM) to 

refer to models that (a) have global spatial scope, (b) capture the entire transport 

system, as opposed to one or a few aspects of it, and (c) include energy use or demand 

as a dependent variable. Per this definition, global integrated assessment models 
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(IAMs) are included with GTEMs, as these satisfy condition (a); include (b) but also 

other sectors; and include (c) but also other outcomes including emissions, pollution, 

changes in natural systems, etc. The aggregated nature of GTEMs necessitates 

simplified representations of some factors, which are better represented using 

disaggregate or sector-specific models. Thus, translation between scales, model 

resolutions, and scopes is required to represent relevant factors in GTEMs (Hanmer, 

Wilson, Edelenbosch, & van Vuuren, 2022). Reducing transport activity growth and 

modal shifts towards less carbon intensive transport modes, caused by demand-side 

changes (e.g., more compact cities), typically have limited contributions in GTEM 

emission reduction pathways (Edelenbosch, McCollum, et al., 2017; Creutzig, Jochem, 

et al., 2015)—this can be viewed as a consequence of changes that are well represented 

in high-resolution models, but below the resolution of GTEMs. Many proposed 

improvements involve “soft linking” sector-specific and more disaggregate models to 

GTEMs (Pauliuk et al., 2017). For example, behavioural choices of individual travellers 

such as time budgets and luxury levels represented in modular transport sector models 

can be combined with GTEMs to estimate the impact of behavioural constraints 

(Andreou et al., 2022). Further, the outputs of transport sector models with behaviour 

representations can be used as inputs or constraints for GTEMs, to ensure consistency 

of model solutions between approaches (Anable, Brand, Tran, & Eyre, 2012). Such 

linking strategies allow continued representation of costs and aggregate multi-sectoral 

mitigation potentials, whilst ensuring quantifications of socio-behavioural and demand 

side factors and their effects are consistent with models where they are directly 

represented and not subsumed in spatial, temporal or sectoral aggregates. 

Considering local infrastructure and land use change, current GTEMs lack the 

resolution to explicitly consider the effects of these factors (Creutzig, Jochem, et al., 

2015). Furthermore, explicit physical representations of infrastructure and urban form 

could better depict links between energy and material throughput and service provision 

in GTEMs (Pauliuk et al., 2017). This could be achieved by better operationalising 

infrastructure costs and secondary effects, particularly infrastructure re-purposing costs. 

This could help prevent infrastructural lock-in which can be endogenised in integrated 

models, if projections stem from historical trends and developments. For example, re-

purposing roads for active travel infrastructure is relatively inexpensive, but 

implementation requires policies that explicitly take non-standard preferences, beliefs, 

and decision-making processes into account (Mattauch, Ridgway, & Creutzig, 2016). 

The geographic relevance of integrated transport land use models varies (Taki, 

Maatouk, Qurnfulah, Aljoufie, et al., 2017). However, no models are currently linked to 

global GTEMs, representing a major frontier in the cost-benefit analysis of LED 

scenarios. The regionally detailed patterns revealed by integrated transport land use 

models must be captured to translate factors affecting land use into GTEMs. A method 

to circumvent the problem could be to adopt urban types or categories from typological 

research to collectively model areas with similar land use and transport patterns. This 

aggregation reduces the number of regions modelled while allowing representative 

analyses for each urban agglomeration (Tang, Jayakar, Feng, Zhang, & Peng, 2019). 
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However, there is an inherent trade-off between the resolution of categorisations 

developed to capture idiosyncratic effects and model complexity (Creutzig, 2016). 

Societal movements and trends surveys are often not repeated making it 

difficult to track trends in social acceptability of different measures and policies 

(G¨ossling et al., 2020). Continued monitoring of policy acceptability would allow 

politically and socially feasible scenarios to be regularly updated and input into 

GTEMs. As mitigation pathways involving behaviour changes are typically poorly 

represented in GTEMs, the mitigation potential of social trends is not fully accounted 

(Venturini, Tattini, Mulholland, & Gallach´oir, 2019). Thus, the impact of behavioural 

changes must be represented in the exogenous pathway narratives input into integrated 

models, as in (Grubler et al., 2018). 

Further GTEM improvements could involve better representation of 

heterogeneous behavioural decisions of populations (Mercure, Pollitt, Bassi, Vin˜uales, 

& Edwards, 2016). Empirical evidence suggests that energy end users often do not 

make decisions in a completely rational way that can be captured by the economic 

relationships used in GTEMs. Furthermore, it is argued that consumer decisions are 

often over emphasised as a solution to ecological sustainability compared to systematic 

structural economic changes. Thus, their role in GTEM modelling pathways should be 

reflected as such (Akenji, 2014). Bounded rationality of decision makers, non-

optimising heuristics in decision making and social influences and norms are typically 

not included in GTEMs (McCollum et al., 2017). Further representation of these 

behavioural aspects using heterogeneous decision-making agents could enable better 

representation of factors concerning technology uptake and deployment, as they can 

influence factors that cannot be operationalised as costs. Multi-Level Perspective 

approaches can generate quantitative narratives on the role of socio-technical solutions, 

to be input to GTEMs, capturing the actions of different actors, however this has not 

been completed on a global scale (van Sluisveld et al., 2020). At a practical level, 

simulation based GTEMs could endogenise heterogeneous decision-making, for 

instance, using (multinomial) logit functions (the core method in some of the other 

transport models reviewed), whereas decision making may need to be soft linked to 

optimisation based GTEMs (McCollum et al., 2017). 

The future adoption of some technologies, such as autonomous vehicles, is 

highly uncertain. Modelling approaches must be able to account for incremental 

technology adoption, tipping points, and saturation. Static or equilibrium-based 

approaches often simplify technology adoption and assume discrete addition of new 

infrastructure and technologies. Conversely, dynamic modelling approaches often lack 

the structure needed to maintain reasonable outputs under large perturbations from base 

conditions (Hawkins & Habib, 2019). Stated preference surveys can be used to develop 

realistic model inputs and principles from complex and evolutionary systems theory 

could be incorporated into integrated models to capture uncertain dynamics (Wilson, 

2016). 

Short-term technology and fuel demand elasticities projected by GTEMs 

typically match up well with empirical evidence. However, demand elasticities of fuel 
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prices in long-term forecasts (30-40 years) show significant divergence between 

different models (Edelenbosch, van Vuuren, et al., 2017). The uptake of different fuels 

can be represented in integrated models by soft linking the outputs from disaggregate 

models that capture effects of price changes on transport activity and mode shares to 

integrated computable general equilibrium models (Mittal, Dai, Fujimori, Hanaoka, & 

Zhang, 2017). Furthermore, new technology uptake could be limited by material supply 

constraints (Watari et al., 2019). Integrating material cycles into integrated modelling is 

required to ensure that scenario outputs are physically realistic. To achieve this, 

material stocks and flows should be linked to service indicators across different sectors, 

including transport (Wiedenhofer et al., 2019). 

Models containing high resolution representations of transport demand, such as 

micro-scale or agent-based analyses, can capture specific effects of many factors that 

impact transport demand. Outputs from these models should be used to either generate 

detailed narratives that can be input to high level, multi sector, broad scope models used 

to assess decarbonisation pathways. Furthermore, high resolutions allow for changes in 

the co-benefits and externalities of the transport sector, such as access, safety and 

welfare, to be evaluated. Further, techniques from high resolution transport models 

could be used to generate detailed responses to factors influencing transport demand, 

which can be applied using different area or sector categorisations to capture local and 

regional impacts in aggregate models. 

These modelling strategies, and the many kinds of soft-linking suggested in the 

cited literature, also point to the need for fluent and clear exchange of data representing 

many distinct but important aspects of transport systems and factors affecting transport 

demand. In addition to describing their models’ characteristics according to the 

taxonomy of Figure 2—which draws the boundaries of the transport sub-systems 

represented in a model—researchers should seek to provide open data with clear and 

complete metadata in standard, interoperable formats, for both model inputs and 

outputs. Such interoperable data would improve the feasibility of constructing, using, 

and maintaining the model–model connections necessary to fully capture changing 

transport demand. 

Given many factors that affect transport demand are uncertain, improving their 

representation in GTEMs could lead to better-informed policy recommendations 

stemming from models. Thus, policies informed by integrated modelling can more 

deliberately shape and use the factors and other phenomena, to more fully unlock their 

contribution to energy demand reduction, climate change mitigation and a LED future 

with high well-being for all. 
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