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Abstract
Effective nitrogen fertilizer management is crucial for reducing nitrous oxide (N2O) emis-
sions while ensuring food security within planetary boundaries. However, climate change 
might also interact with management practices to alter N2O emission and emission fac-
tors (EFs), adding further uncertainties to estimating mitigation potentials. Here, we devel-
oped a new hybrid modeling framework that integrates a machine learning model with an 
ensemble of eight process-based models to project EFs under different climate and nitro-
gen policy scenarios. Our findings reveal that EFs are dynamically modulated by environ-
mental changes, including climate, soil properties, and nitrogen management practices. 
Under low-ambition nitrogen regulation policies, EF would increase from 1.18%–1.22% 
in 2010 to 1.27%–1.34% by 2050, representing a relative increase of 4.4%–11.4% and 
exceeding the IPCC tier-1 EF of 1%. This trend is particularly pronounced in tropical and 
subtropical regions with high nitrogen inputs, where EFs could increase by 0.14%–0.35% 
(relative increase of 11.9%–17%). In contrast, high-ambition policies have the potential to 
mitigate the increases in EF caused by climate change, possibly leading to slight decreases 
in EFs. Furthermore, our results demonstrate that global EFs are expected to continue ris-
ing due to warming and regional drying–wetting cycles, even in the absence of changes 
in nitrogen management practices. This asymmetrical influence of nitrogen fertilizers on 
EFs, driven by climate change, underscores the urgent need for immediate N2O emis-
sion reductions and further assessments of mitigation potentials. This hybrid modeling 
framework offers a computationally efficient approach to projecting future N2O emis-
sions across various climate, soil, and nitrogen management scenarios, facilitating socio-
economic assessments and policy-making efforts.
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1  |  INTRODUC TION

Nitrous oxide (N2O) is one of the powerful and long-lived green-
house gases (GHG). Its atmospheric concentration has increased 
by approximately 24.8% from pre-industrial levels to 2023 (Lan 
et  al.,  2024). Among all known N2O surface emission sources, ag-
ricultural soil accounts for around 50% of the anthropogenic N2O 
emissions (Shcherbak et  al.,  2014; Tian et  al.,  2020). Emissions of 
N2O from soil have been rising, particularly in recent decades, largely 
due to increased nitrogen (N) inputs from fertilizers (Lu et al., 2022; 
Thompson et al., 2019). Although sufficient N fertilizer application is 
essential for food supply (Ahvo et al., 2023), overfertilization gives 
rise to N pollution leading to annual global economic costs of around 
200–2000 billion US$ (Kanter, Winiwarter, et  al.,  2020; Sutton 
et  al.,  2013), especially for the financial expenses associated with 
mitigating N2O emissions (Feng & Li,  2023). Furthermore, a wide 
variety of studies argue that the effectiveness of GHG mitigation 
is likely to decrease due to global warming (Köberle et  al.,  2021; 
Shaaban, 2024; Xu et al., 2022; Yao et al., 2024), suggesting an ur-
gency of early mitigation (Peng & Guan, 2021). Many studies seek to 
develop mitigation strategies that balance crop yields with reduced 
GHG emissions without compromising crop productivity in specific 
regions (Burney et al., 2010; Lamb et al., 2016; Lugato et al., 2018). 
Several mitigation pathways have been developed (Gu et al., 2023; 
Kanter, Chodos, et al., 2020; Sutton et al., 2021), which provide gen-
eral insights into how current N policies impact future environmen-
tal scenarios and targeted interventions for N pollution reduction. 
However, the applicability of these regionally specific hypotheses 
has not been fully tested on global scales, which limits our under-
standing of hotspot areas for N2O emission mitigation. More impor-
tantly, how effective different N regulating policies will be under the 
future climate has not been systematically investigated. This knowl-
edge gap may lead to missing key timing for actions to effectively 
reduce N2O emissions, that is relevant for simultaneously achieving 
both Goal 2 (Zero Hunger) and Goal 13 (Climate Action) of the United 
Nations Sustainable Development Goals (United Nation, 2015).

The N2O emission factor (EF) is a widely used bottom-up approach 
for estimating anthropogenic soil N2O emissions from N fertilizer 
input. The recent report by the Intergovernmental Panel on Climate 
Change (IPCC) suggests a default EF (tier-1) (Hergoualc'h et al., 2019; 
Klein, 2006) and more detailed country-specific EFs (tier-2) to guide 
the N2O emission assessment. Despite being easy to use, this ap-
proach overlooks the large variance and long-term dynamics of EF 
due to different environmental conditions such as climate, soil, and 
management (Lesschen et  al.,  2011; Shcherbak et  al.,  2014; Wang, 
Zhou, et al., 2020). EF change is mainly attributed to factors like envi-
ronmental conditions, N fertilizer input rate, soil properties, or carbon 
substrates (Hu et al., 2016; Nelson et al., 2016; Shcherbak et al., 2014; 
Venkiteswaran et al., 2014). However, these attribution analyses are 
often based on short-term field observations that may not fully repre-
sent the long-term impacts of climate change (Harris et al., 2022) and 
evolving nitrogen management practices on EF dynamics. Although 
evaluating the spatial patterns of EF based on statistical models and 

field observations could provide insights into mitigation potentials 
and N2O emission projections (Cui et  al.,  2021; Harris et  al.,  2022), 
EF dynamics under climate change are not adequately addressed in 
the existing EF maps. This oversight may result in biases in EF-based 
estimates of N2O emissions and lead to a failure in identifying the op-
timal timing for implementing effective mitigation strategies (Harris 
et al., 2022). Such a lapse not only impedes the accuracy of global N2O 
estimations but also hampers policymakers from developing more ef-
fective mitigation strategies over both short- and long-term periods.

Process-based models represent another bottom-up approach to 
dynamically project N input-induced N2O emissions by simulating bi-
ological and biogeochemical processes in croplands and pasture lands, 
where N fertilizer is a primary input source, under climate change 
and different management practices (Del Grosso et  al.,  2022; Tian 
et al., 2018, 2019). These models provide dynamic predictions of N2O 
emissions driven by climate and environmental data. However, their 
application is limited by the requirement for input data preparation, 
extensive model calibration and validation (Ouatahar et  al.,  2021; 
Sandor et al., 2018), process representation, and substantial compu-
tational resources, particularly when various N management scenarios 
and future climate scenarios are assessed for N2O emission projection 
(Perlman et al., 2014; Tian et al., 2018). In the era of big data, arti-
ficial intelligence has become increasingly influential in fields based 
on large datasets (Delavaux et al., 2023; Ham et al., 2019; Reichstein 
et al., 2019; Wang et al., 2023; Xu et al., 2024). However, these ap-
proaches (e.g., machine learning and deep learning) can mainly provide 
references for responses under current conditions (Franke et al., 2020), 
and projects integrating different potential future N management and 
climate scenarios are challenging. Furthermore, statistical models can 
be misleading due to the lack of detailed understanding of processes 
and causal relationships (Feng et al., 2019). Thus, it may be of inter-
est to develop a hybrid approach that combines the advancement of 
process-based models and machine learning to emulate the process-
based model behaviors (Xiao et al., 2024). Such statistical emulations 
could offer an efficient and timely approach to estimating the efficacy 
of mitigation strategies under different climate scenarios.

Here, we develop a modeling framework that employs machine 
learning to emulate the behavior of eight state-of-the-art process-
based terrestrial biosphere model ensembles from the global 
Nitrogen/N2O Model Inter-comparison Project phase 2 (NMIP2) 
(Tian et  al.,  2024). This approach can dynamically evaluate global 
EF for N fertilizer input-induced N2O emission projections with im-
proved accuracy, effectively combining the two bottom-up meth-
ods. We then perform an attribution analysis of EF change based on 
our dynamic EF (Dym-EF) model. Finally, we estimate the potential 
change of EF based on seven N management scenarios from 2010 
to 2050, each N management scenario with a corresponding climate 
scenario based on 37 global climate models (GCMs) (Figure 1). The 
objectives of this study are to (1) explore the key factors influencing 
EFs and their potential changes over time; (2) reveal the nonlinear re-
lationships between EFs and environmental factors; (3) dynamically 
project EF under various nitrogen mitigation strategies and climate 
scenarios; (4) identify the opportunities and hotspots with high EF 
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reduction potentials from seven nitrogen regulation policies at three 
ambition levels that have been developed under the International 
Nitrogen Management System (INMS) project (Kanter, Winiwarter, 
et  al.,  2020). The INMS scenarios combine specific policies to re-
duce nitrogen pollution with the shared socioeconomic pathways 
(SSP: Riahi et al. (2017)) and the representative concentration path-
ways (RCP: Van Vuuren et al. (2011)) developed under the IPCC. This 
study can improve our understanding of balancing policies, N2O 
emission, and food production under future climate scenarios, which 
is crucial for developing effective mitigation strategies. Moreover, 
this Dym-EF modeling framework offers flexibility and can easily ex-
tend to other different nitrogen management scenarios, providing a 
broader and timely evaluation of global GHG mitigation potentials.

2  |  DATA AND METHODS

2.1  |  Estimating the N2O EF by 
learning the non-linear EF dynamics from the NMIP2 
model ensemble

In this study, we estimate the N2O EFs based on eight process-
based Terrestrial Biosphere models that participate in N2O Model 
Intercomparison Project phase 2 (NMIP2) (Tian et  al.,  2018, 

2024), including CLASSIC, DLEM, ELM, ISAM, LPX-Bern, OCN, 
ORCHIDEE, and VISIT. These models integrate the impacts of at-
mospheric N deposition, biological N fixation, manure N applica-
tion, and N fertilizer use on the nitrogen cycle processes related 
to N2O emissions (Tian et  al.,  2019, 2020). Each of the models 
uses a “Demand and Supply-driven” approach for plant N uptake. 
Differences in how models represent nitrification and denitrifi-
cation processes and their contributions to N2O emissions with 
the modification of climate and agricultural management prac-
tices are a main source of uncertainty in our estimates. More in-
formation on the N2O emission approaches in NMIP2 models is 
described in Tian et al.  (2024). A set of factorial simulations was 
performed to disentangle the respective contribution of drivers 
to the N2O emissions. Among these simulations, the SH1 aims to 
estimate the dynamics of N2O emission in response to changes 
in Climate + CO2 + Land cover + Irrigation + N deposition + N 
Fertilizer + Manure N; while the SH3 yields the estimates of N2O 
emissions without considering N fertilizer input, that is estimations 
driven by changes in Climate + CO2 + Land cover + Irrigation + N 
deposition + Manure N. To estimate the EF, we first obtain the 
N2O emissions directly resulting from N fertilizer inputs that were  
calculated using SH1–SH3 (i.e., simulations with vs. without N 
fertilizer input). We estimate the annual EF from 1961 to 2020 
allowing us to assess how changes in warming trends and nitrogen 

F I G U R E  1 Modeling framework integrating machine learning and process-based model ensembles (NMIP2) for assessing global nitrogen 
fertilizer input-induced nitrous oxide (N2O) emission factors (EFs) and projecting EF change under various climate and N management 
scenarios. The NMIP2 was performed under 0.5° × 0.5° resolution. This modeling framework was used to emulate the NMIP2 ensemble 
behaviors rather than individual NMIP2 models. RF, Random Forest model; seven scenarios including INMS1, business-as-usual; INMS2, 
low N regulation (Low ambition); INMS3, medium N regulation (moderate ambition); INMS4, high N regulation (High ambition); INMS5, best 
case (High ambition); INMS6, best-case plus (High ambition); INMS7, Bioenergy (High ambition); NMIP, global N2O model intercomparison 
project. Dym-EF, Dynamic EF.
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application rates have influenced the variation in EFs. The NMIP2 
models were driven by consistent input datasets, including nitro-
gen inputs, atmospheric CO2 concentrations, daily climate vari-
ables, irrigation, and land cover changes, ensuring a standardized 
basis for comparison and analysis of global N2O estimation. Most 
models output monthly N2O estimates (Tian et  al.,  2024). The 
complete list of abbreviations is shown in Table S1.

2.2  |  N regulation scenarios

Optimizing management practices can improve N use efficiency 
(NUE) and reduce N2O emissions (Winiwarter et  al.,  2018). These 
N policy data have been used to estimate the N pollution globally 
(Cui et  al.,  2024; Kanter, Chodos, et  al.,  2020). Thus, understand-
ing the potential changes in N2O emissions from food production 
under future land management scenarios (based on current and po-
tential technological advancements) is essential for developing more 
comprehensive and cohesive nitrogen strategies, while additionally 
reducing the conflicts in food production and its environmental im-
pacts (Gu et al., 2023; Kanter, Chodos, et al., 2020). They have been 
formalized by Kanter, Winiwarter, et al. (2020), who developed seven 
scenarios within the SSP/RCP framework that include three differ-
ent levels of policy ambition to tackle nitrogen pollution in general 
(low, moderate, and high ambitions to remove nitrogen pollution, 
See Table 1), as part of the project Towards an International Nitrogen 
Management System (INMS: see https://​www.​inms.​inter​national). In 
this paper, we use projections of synthetic N fertilizer consumption 
as implemented in the GAINS model (Amann et al., 2011; Winiwarter 
et al., 2018) and in accordance with these seven scenarios.

2.2.1  |  High ambition N regulation scenarios

The high-ambition scenarios align with the sustainable development 
goals, which extend to 2030. These ambition levels include four 
distinct approaches: high N regulation (INMS4, under RCP4.5 and 
SSP2), the “best case” (INMS5, under RCP4.5 and SSP1), the “best-
case plus” (INMS6, under RCP4.5 and SSP1), and bioenergy (INMS7, 

under RCP2.6 and SSP1). The high ambition N regulation level rep-
resents technological advancements within the period of the sus-
tainable development goals until 2030. The “best case” scenario 
envisages ambitious climate action combined with a strong commit-
ment to sustainable agriculture and low-meat diets in line with the 
expectations under SSP1. The best-case “plus” scenario extends this 
ambition further, incorporating significant dietary changes and re-
ducing food loss. As for the bioenergy scenario, improving bioenergy 
production is likely crucial for achieving the targets of a 1.5°C and 
2°C world. From an N perspective, the RCP 4.5 scenario appears 
to be more favorable than RCP 2.6, unless substantial efforts are 
undertaken to improve NUE in bioenergy production in RCP 2.6. 
Generally, the high nitrogen policy ambition is expected to achieve 
the target NUE by 2030 and maintain it through to 2100 (Kanter, 
Winiwarter, et al., 2020).

2.2.2  | Moderate ambition N regulation scenario

The moderate ambition (Medium N regulation, INMS3, under 
RCP4.5 and SSP2) scenario aims to achieve the same goals but over 
a longer period, either by 2050 or 2070. It expects countries to con-
tinue their current high-input, low-efficiency N fertilizer for 30 years 
before making improvements.

2.2.3  |  Low ambition N regulation scenarios

The low ambition scenarios indicate no significant improvement 
and a stagnant NUE. The INMS1 scenario assumes a continuation of 
past trends (RCP8.5 and SSP5) while INMS2 considers climate policy 
(RCP4.5 and SSP2) but little policy attention to N pollution.

To integrate the seven scenarios, we employed the relative 
change metrics, comparing the future period (2011–2050) against 
a baseline period (1990–2010). This approach was used to align 
with the NMIP2 nitrogen (N) input data, which include synthetic 
N fertilizer. Since the NMIP-derived EFs used to train our Dym-EF 
model were based on specific NMIP N fertilizer data, the nitrogen 
regulation pathways from INMS1–S7 could not be directly applied 

TA B L E  1 The seven future climate, land use, diet, and N management scenarios.

Name Scenario Climate
Land use 
regulation Productivity Diet

Ambition 
level

INMS1 Business-as-usual RCP8.5 Medium High Meat & dairy-rich Low

INMS2 Low nitrogen regulation RCP4.5 Medium Medium Medium meat & dairy Low

INMS3 Medium nitrogen regulation RCP4.5 Medium Medium Medium meat & dairy Moderate

INMS4 High nitrogen regulation RCP4.5 Medium Medium Medium meat & dairy High

INMS5 Best-case RCP4.5 Strong High Low meat & dairy High

INMS6 Best-case “Plus” RCP4.5 Strong High Ambitious diet shift and food loss/waste 
reductions

High

INMS7 Bioenergy RCP2.6 Strong High Low meat & dairy diet High

Note: Modified from Kanter, Winiwarter, et al. (2020). The colors represent different scenarios.
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as inputs to project future EFs. Consequently, we adapted the seven 
scenarios to align with the NMIP inputs as follows:

where the NFerS_NMIP represents the synthetic fertilizer N input for 
the seven NMIP-compatible scenarios (2011–2050), NFerH_NMIP is 
the historical NMIP synthetic fertilizer N input data (1990–2010), RN 
is the relative change, S_INMS represents the seven future scenarios 
(Table 1), and His_INMS is the historical N input data for these N reg-
ulation scenarios during 1990–2010. We developed the N manage-
ment data at gridded scales with 0.5° by 0.5° grids. Through the above 
approach, we have developed a set of N input data tailored to these 
seven future scenarios for NMIP2. This ensures that the scenarios are 
appropriately linked to the current NMIP's N input data, thereby facil-
itate the creation of a series of detailed N input scenarios. Figure S1 
shows the total N inputs under seven scenarios during 1961–2050.

2.3  |  Climate data

We collect monthly temperature and precipitation data from 37 
GCMs under SSP126 (SSP1, RCP2.6), SSP245 (SSP2, RCP4.5), and 
SSP585 (SSP5, RCP8.5) of CMIP6 (Table S2). The use of 37 global 
climate models (GCMs) allows for comprehensive coverage of the 
range of equilibrium climate sensitivity (ECS) and transient climate 
response (TCR) values (Meehl et al., 2020). This breadth is crucial for 
adequately representing the spectrum of potential climate change 
scenarios. To match the resolution of NMIP2 input, we resample 
these GCMs to 0.5° by 0.5° grids. Since the historical data from the 
GCMs exhibit discrepancies when compared with NMIP2 inputs, we 
employ the delta approach for bias correction at grid scales:

where the GCMb is the bias-corrected GCMs during 2011–2050, 
GCMraw is the raw GCMs climate variable (seasonal temperature and 
precipitation, and annual aridity index) during 2011–2050, and Delta 
is Observed Historical Data−Model Historical during 1980–2010. In 
a few small arid regions where bias correction resulted in negative 
precipitation values, we adjusted these to zero. NMS1 corresponds 
to SSP5 (“Fossil-fueled Development”), INMS2–S4 corresponds to 
SSP2 (“Middle of the Road”), and INMS5–S7 corresponds to SSP1 
(“Sustainability”). However, since SSP1-4.5 is not available for all 
GCMs (O'Neill et al., 2016), we use climate projections from SSP2-4.5 
to approximate it and assemble the scenarios of best-case and best-
case+ (INMS5–S6) as the combination of moderate-mitigation climate, 
sustainable development (SSP1), and high ambition N regulation pol-
icies. More details can be found in Kanter, Winiwarter, et al.  (2020). 
Figures S2 and S3 show the time series for precipitation and tempera-
ture, and their changes over areas of nitrogen application. Generally, 
there is a significant increase in temperature across various scenarios, 

especially under SSP585. Precipitation demonstrates a slight increase, 
with SSP126 marginally exceeding SSP245 and SSP585 during 
2011–2050.

2.4  |  Developing an explainable model to project 
EF change

The process-based models are capable of estimating nonlinear re-
sponses of N2O emissions through various biophysical processes, 
such as nitrification and denitrification. These models consider 
factors that potentially impact N2O emissions and EFs, such as soil 
properties (including soil pH, initial soil organic carbon content, bulk 
density, and clay content), as well as environmental conditions like 
precipitation and temperature, along with management practices. 
Several studies have compared N2O models in agriculture under 
historical conditions (Ehrhardt et  al.,  2018; Fuchs et  al.,  2020). 
However, for future projections, these models require substantial 
computational resources (Franke et  al.,  2020) and are challeng-
ing to apply directly to a large number of GCMs for assessing the 
N2O dynamics under climate change scenarios. Statistical models 
can capture the nonlinear relationship between N2O emissions and 
environmental variables. However, these statistically based models 
do not incorporate biophysical processes, and their performance 
largely depends on the quality and quantity of the available data (Li 
et al., 2023). Thus, there is growing interest in developing a hybrid 
model (or statistical emulation) that combines the advantages of 
both approaches, providing a more efficient and flexible method for 
estimating N2O emissions.

In this study, we use the Random Forest (RF) model to reproduce 
the multimodel median of NMIP2 EF based on the NMIP2 input data 
(Tian et  al.,  2024). The climate data include seasonal temperature 
and precipitation and yearly aridity index (AI). The soil data consisted 
of pH, initial soil organic carbon content (DOM_SOC), soil bulk den-
sity (BULK_DEN), percentage of sandy content (PCT_SAND), and 
clay content (PCT_CLAY). Management data included synthetic ni-
trogen fertilizer (NFer) and irrigation (Irr). We excluded grids where 
both cropland and pasture cover are less than 10%. In addition, we 
find the EF from the NMIP2 ensemble is highly sensitive to nitrogen 
inputs when the N input was less than 0.1 kg N/ha/year. To ensure 
the accuracy of the Dym-EF model, we exclude data grids with ex-
tremely high EF caused by a lower N input, as well as those grids 
where the N input was less than 0.1 kg N/ha/year, noting that atmo-
spheric deposition alone often exceeds this level in many regions. 
Such extremely high EFs for low fertilizer inputs are likely artifacts 
from the NMIP2 models. Notably, to encompass a wider range of en-
vironmental conditions, our Random Forest (RF) model was trained 
on yearly data spanning 60 years (1961–2020) from NMIP2. This 
training allows us to dynamically generate annual EFs at a high spa-
tial resolution of 0.5° × 0.5°.

We performed the RF model using the “ranger” package in R 
4.1.1, optimizing the two hyperparameters (ntree and mtry) with the 
“caret” package. The ntree parameter is the number of decision trees 

(1)NFerS_NMIP = NFerH_NMIP + RN × NFerH_NMIP,

(2)RN =
(S_ INMS − His_ INMS)

His_ INMS
,

(3)GCMb = GCMraw + Delta,
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in the RF model, and the mtry parameter determines the number of 
features to consider at each split. The extensive size of our data-
set, which was comprised of over one million datasets made tuning 
hyperparameters with the entire dataset challenging. Therefore, we 
used data from the most recent 10 years (2011–2020) as a represen-
tative subset to calibrate the hyperparameters. We set the range for 
“mtry” from 1 to 9 in steps of 2, and for “ntree” from 100 to 900 in steps 
of 200 (refer to Figure S4). We find that when mtry was set as 7 and 
ntree at 700 or “mtry” at 5 and “ntree” at 900, the model can achieve 
optimal performance with RMSE is 0.32 and the R2 is .775. However, 
there is a trade-off between model performance and computational 
demand. Although such hyperparameters can provide better perfor-
mance, they require significant computational resources. A setting 
of “ntree” at 500 and “mtry” at 7 offered a similar performance (RMSE 
of 0.32% and R2 of .774) but with a significantly reduced compu-
tational load. Consequently, we selected these values (mtry = 7 and 
ntree = 500) as the final hyperparameters for our model. To evalu-
ate our model's performance at each grid. Then, we aggregated 
the results from these periods to assess the overall performance 
through R2 and RMSE across the 60 years (1961–2020). Our ap-
proach showed reliable model performance with an R2 higher than  .9 
and an RMSE lower than 0.1 in most regions (Figures  S5 and S6). 
Although N fertilizer is known to significantly influence EF (Akiyama 
et al., 2006; Wang et al., 2011), it casts doubt on the models' efficacy 
when solely using N fertilizer for EF estimation. Therefore, we com-
pared the model performance of estimating EF using only N rates 
with using multiple environmental variables. The results showed 
that the predictions based solely on N fertilizer were not as reliable 
as those using multi-source environmental data (Figures S5 and S6). 
This indicates that EF is affected not only by N management but also 
significantly by different environmental conditions. Generally, our 
modeling framework demonstrates reliable performance both at the 
grid level and in the combined overall assessment.

2.5  |  Attribution analysis

To identify the dominant factors influencing the EF, the Shapley addi-
tive explanations (SHAP) value was used to quantify the contribution 
of each predictor. We explain the overall impact of different predic-
tors of estimating the EF using the mean absolute SHAP value. For 
a more granular and detailed explanation at the grid level, the SHAP 
values are more efficient to explain the dominant factors influencing 
the EF across different time intervals. The SHAP can isolate the im-
pact of different variables on the EF. This approach, based on work 
in game theory (Lundberg & Lee, 2017), is used to determine how 
each individual factor affects a team's overall performance. It has 
been extensively applied in quantifying the marginal contributions 
of each predictor to the target variable (Chen et  al.,  2022; Chen, 
Cheng, et al., 2023; Li et al., 2022; Wang et al., 2023). The manage-
ment and climate change significantly between different periods, 
especially for N input. Thus, in our study, to effectively capture how 
different environmental conditions influence the EF, we divide the 

study period into three time intervals: 1961–1990, 1991–2020, and 
2021–2050. The period of 2021–2050 was analyzed using multi-
GCM model ensembles under various future scenarios (INMS1–S7). 
Since INMS5 (best-case scenario) and INMS6 (best-case “plus”) ex-
hibit similar characteristics, we chose INMS6 to represent both in 
our analysis. We use the absolute value of SHAP values and select 
the highest values as the dominant factor.

2.6  |  Partial dependence

We use the partial dependence plots (PDPs) to analyze the marginal 
effects of predictors, including soil, climate, and management vari-
ables, on the EF. The PDP plots can effectively capture the nonlinear 
relationship between different environmental variables and EF. In 
this study, we use the “pdp” package of R 4.1.1 to analyze their non-
linear impact on EF (Greenwell, 2017).

3  |  RESULTS AND DISCUSSION

3.1  |  Dominant drivers in influencing EF

We developed a Dym-EF model by learning the relationship between 
the median ensemble estimates of eight process-based models from 
NMIP2 and a time-series gridded database of key environmental 
factors such as climate, soil properties, and agricultural management 
at a spatial resolution of 0.5° during 1961–2020. The grid-based RF 
model is proven to have a great performance in reproducing NMIP2 
EF estimates over space and time (see Section 2 and Figures S4 and 
S5). For temporal variation, we assessed the R2 and RMSE for each 
grid with a great performance for most regions (Figure S6). We found 
that temperature in June, July, and August (T_JJA); nitrogen fertilizer 
(NFer); precipitation in June, July, and August (Pr_JJA); and precipita-
tion in September, October, and November (Pr_SON), are the most 
important factors influencing EF (Figure S7). Summer temperature 
and summer/fall precipitations have a higher importance in deter-
mining EF dynamics than climate variables in other seasons, possi-
bly because the NMIP2 model ensembles do not have information 
on fertilizer application timing in the input data and models assume 
one application without side-dressing or equal daily distribution of 
fertilizer input during crop-growing season. NFer directly influences 
soil nitrogen content, significantly impacting EF. However, the com-
bined effects of various seasonal climate variables are higher than 
the influence of N fertilizer alone in determining EF. The climate 
conditions in the northern summer months (JJA) are crucial for the 
growth of summer crops like corn and soybean, which frequently 
undergo nitrogen management (Lu et al., 2022; Maier et al., 2022). 
In addition, the warmer temperature and high soil moisture in sum-
mer can also create a suitable environment condition for nitrification 
and denitrification processes in the soil and thus increase the EF. In 
autumn (SON), cumulative precipitation often leads to soil saturation 
throughout the year, creating anaerobic conditions, especially when 
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    |  7 of 18LI et al.

combined with residual nitrogen from fertilizers applied during the 
growing season, thus, increasing the denitrification and N2O emis-
sions (Glenn et al., 2021; Perego et al., 2016; Vinzent et al., 2018). 
Our results showed that climate factors and N fertilizer are more im-
portant in altering EF than the initial soil properties. This is probably 
because soil conditions and processes are cumulatively impacted 
by long-term climate variables (e.g., temperature and precipitation) 
and management, which might overshadow the effects of initial soil 
properties. More importantly, changes in climate and management 
practices could further enhance their dominance in influencing the 
long-term trends of EFs (Baral et al., 2022).

In this study, we found the dominant factors influencing EF 
are not constant but change with different environmental con-
ditions (e.g., climate and management) (Figure 2a), particularly in 
high EF and N input regions. For instance, in Southeast Asia, the 
dominant drivers have shifted from spring temperature (T_MAM) 
and N fertilizer to summer temperature possibly due to increased 
heatwaves. The increasing temperature combined with wet con-
ditions enhances nitrification and denitrification rates, leads to 
an increase in both the abundance and activity of ammonia oxi-
dizers and denitrifiers, and thereby amplifies N2O emissions (Dai 
et al., 2020; Griffis et al., 2017). Similarly, Central Europe, the US 
Corn-Belt and Rice-Belt areas, Southeast Asia, and Southwest 
China exhibited a shift in dominant EF drivers from NFer to sum-
mer precipitation (T_JJA) and temperature. This change suggests 
that in areas with high nitrogen input levels, EF is likely more 
sensitive to environmental change due to the increased inter-
action of increased nitrogen input and climate change (Xu, Tian, 
et al., 2020). By contrast, in South America and Africa, where N 
input has been historically low, we found a significant shift from 
temperature being the dominant driver during 1961–1990 to the N 
fertilizer use rate during 1991–2020 This indicated that enhanced 
N input may be more important in explaining the EF dynamics. 
Moreover, increased nitrogen leads to faster soil organic matter 
decomposition (Li et al., 2017) and changes in agriculture manage-
ment practices with different nitrogen uptake efficiencies (Sainju 
et al., 2020; Thapa et al., 2016). In several regions (e.g., BRA and 
SAS), climate variables tend to become the predominant factors 
influencing EF when nitrogen inputs are increased. We found that 
T_SON is the dominant factor influencing EFs across most regions 
during 1961–1990, while summer temperatures (T_JJA) emerged 
as the primary influence in most regions during the period 1991–
2020 (Figure 2b). This transition is likely due to global warming's 
intensified effects during the summer months in recent decades 
(Butterbach-Bahl et al., 2013; Xu, Chen, et al., 2020), making sum-
mer conditions, along with heightened nitrogen inputs, more im-
pactful on EFs compared to the relatively cooler autumn. Similarly, 
the summer precipitation also increased the dominance of EF in 
many regions (Figure  2b), likely because the recent increase in 
precipitation has raised soil moisture levels, thereby enhancing 
microbial activities such as nitrification and denitrification, which 
in turn, elevate N2O emissions (Yue et  al.,  2024). This finding is 
crucial in understanding the combined effects of climate change 

and nitrogen management on EF, which is key to developing effec-
tive strategies for reducing N2O emissions.

3.2  |  Relationships between EF and multiple 
environmental factors

The nonlinear relationships reveal the effects of various environ-
mental variables on EF (Figure 3), which may increase and decrease 
by up to 10% or even more due to a single variable. Although the 
EF has a positive relationship with temperature, they have different 
response curves in different seasons. In JJA and SON, EF largely in-
creases when temperatures exceed 2–6°C, whereas in spring month 
(MAM), EF increases consistently with temperature (Figure  3). In 
early spring, soil freeze–thaw cycles, particularly in the Northern 
Hemisphere, significantly drive N2O emissions through different 
mechanisms such as enhanced biological denitrification, changes 
in microbial composition and enzyme activity, and the release of 
trapped N2O (Del Grosso et al., 2022; Wagner-Riddle et al., 2017). 
Therefore, EF can still increase with temperature even in a cold con-
dition. However, it is important to note that these dynamics may not 
be fully captured by NMIP2 models, unlike those that have improved 
processes such as Del Grosso et al. (2022). EF's response to seasonal 
precipitation shows an increase up to a specific threshold, beyond 
which additional precipitation has little impact on EF. This threshold 
varies by season, likely influenced by the soil's water-holding capac-
ity, different plant growth stages and their water uptake, and the 
seasonally varying rates of evaporation due to temperature changes 
(Bell et al., 2016; Cayuela et al., 2017). The EF also increases with 
NFer use level, albeit at a slower rate when annual fertilizer input 
is higher. Compared with different soil properties, soil pH is the 
most critical factor influencing EF (Figure S7). It is possibly because 
the soil PH mainly impacts EF the denitrifier community composi-
tion (Qiu et  al.,  2024). EF shows a negative relationship with pH, 
particularly when pH is above 5–5.3 (Figure 3), similar to previous 
studies (Russenes et al., 2016; Shang et al., 2024; Wang et al., 2018). 
In moderately acidic soils, alterations in soil microbial communities 
and chemical reactions favor N2O-producing microorganisms, po-
tentially increasing N2O emissions (Qiu et  al.,  2024). Additionally, 
these conditions enhance processes such as denitrification, lead-
ing to higher N2O emissions even at lower nitrate levels (Tierling & 
Kuhlmann,  2018; Zhang et  al.,  2021). The higher presence of am-
monium (NH4

+) coupled with conditions conducive to denitrification 
can lead to elevated emissions of nitrous oxide (N2O). Consequently, 
soil acidification in the future may significantly increase the risk of 
N2O emissions (Chen, Xiao, & Chen, 2023).

3.3  |  Projecting EF under different scenarios

Our projections up to 2050, including for the SSP585, generally 
fall within the historical data range, indicating the reliability of our 
near-future projections based on our Dym-EF model. For historical 
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8 of 18  |     LI et al.

periods, we found that the multimodel ensemble estimates of EFs 
in 2010 had exceeded the IPCC's default average value of 1% in 
most regions. Compared to the generalized IPCC Tier-1 EF of 1%, 
spatially detailed EFs enable the identification of regional hotspots 
with significant N2O mitigation potential. Areas with higher EFs 
often correspond to higher nitrogen inputs, potentially leading to 
an underestimation of N2O emissions when using the uniform IPCC 
Tier-1 EF. Furthermore, in humid areas, EFs are consistent with or 
exceed the IPCC suggested average of 1.6% (IPCC default at humid 
regions) (Hergoualc'h et al., 2019), and in tropical regions like south-
ern Asia, eastern Asia, and Central America, EFs often surpass 2%–
2.5% (Figure 4). The relatively higher EF in humid and warm areas is 
attributable to the climate acceleration of microbial processes like 
nitrification and denitrification (Griffis et al., 2017). Higher soil mois-
ture and temperature create conditions conducive to denitrifying 
microbes. Moreover, in humid regions where anaerobic conditions 
are more prevalent, denitrification becomes a dominant process and 
subsequently elevates EFs (Griffis et al., 2017; Rowlings et al., 2015; 
Veldkamp et al., 1998).

The EFs under various scenarios over the future periods are pro-
jected to change significantly, compared with 2010. This is mainly 

attributed to the changes in alternative N regulation practices and 
future climatic scenarios (Figure 4; Figure S8). Detailed information 
about these different scenarios is provided in Table  1. Under the 
INMS scenarios 1–3 (i.e., business-as-usual, low, and mediate ambi-
tion N regulation), the global average EFs by 2030 are projected to 
increase to 1.22%–1.29% among different GCMs (relative increase 
of 0.5%–8.0% from 2010 levels of 1.18%–1.22%), 1.22%–1.28% (rel-
ative increase of 0.03%–6.3%), and 1.18%–1.24% (relative increase 
of 0.01%–2.5%), respectively, compared with 2010. By 2050, the 
EF is expected to increase to 1.27%–1.34% (4.4%–11.4%), 1.24%–
1.31% (2.8%–9.9%), and around 1.18%–1.25% (0.01%–3.2%). Under 
the INMS4 (high ambition N regulation) scenario, EF is projected to 
decrease to 1.15–1.21 (0%–5%) by 2030, aligning with INMS3's pro-
jection by 2050 (Figure S9). The EF changes under INMS5–S7 (Best-
case, Best-case “plus,” and Bioenergy) would be similar to INMS4, 
yet slightly lower than INMS4 due to further reduction in N input. 
This raises the question here: why do high-ambition strategies with 
reduced N input only slightly decrease or sometimes even increase 
EFs? It is likely caused by the high sensitivity of EFs to climate (Griffis 
et al., 2017); as climate change intensifies (Figures S2 and S3), the in-
creases in EFs might offset the benefits of high-ambition strategies. 

F I G U R E  2 The dominant driver of N2O emission factor (EF) at each pixel and the partial dependence of EF on different variables. (a) 
Spatial map showing the primary factors influencing EF, with pie charts depicting the percentage area of dominant factors across different 
time intervals and scenarios. (b), Chord diagram to demonstrate the shift of the dominant factor in influencing EF from T1 (1961–1990, 
upper half of circle) to T2 (1991–2020, lower half of circle). Numbers represent the percentage of the area influenced by each variable, with 
different colors indicating different variables. Linked variables (such as T_SON_T1 to NFer_T2) illustrate the shift in dominant factors from 
T1 to T2. Variables consist of Irr (irrigation rate), NFer (nitrogen fertilizer), Pr_MAM (total precipitation in March, April, and May), Pr_JJA 
(total precipitation in June, July, and August), Pr_SON (total precipitation in September, October, and November), Pr_DJF (total precipitation 
in December, January, and February), T_MAM (mean temperature in March, April, and May), T_JJA (mean temperature in June, July, and 
August), T_SON (mean temperature in September, October, and November), T_DJF (mean temperature in December, January, and February), 
and AI (aridity index); DOM_SOC, soil organic carbon; BULD_DEN, soil bulk density. Map lines delineate study areas and do not necessarily 
depict accepted national boundaries.
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    |  9 of 18LI et al.

The INMS1 and INMS2 scenarios are characterized by a lack of ded-
icated nitrogen management, which will not change nitrogen use 
efficiency (NUE) and, with increased production, greater nitrogen 
loss, thus increasing EFs (Baral et  al.,  2017). The EF under INMS1 
is slightly higher than INMS2 perhaps because more N input and 
higher temperature under SSP585 will further amplify the EF due 
to increased soil N mineralization and denitrification rates (Kanter 
et  al.,  2016; Revell et  al.,  2015). The moderate and high-ambition 
scenarios, aimed at minimizing N loss and increasing NUE, are pro-
jected to keep crop N surpluses within planetary boundaries until 
2050 (Kanter, Winiwarter, et  al.,  2020; Zhang et  al.,  2015), which 
potentially decreases EF. In addition, the high ambition scenarios 
(INMS4–S7) also consider dietary shifts, like reduced meat con-
sumption and waste (Geyik et al., 2023; Revell et al., 2015). These 
changes could lower the demand for N-intensive animal feed crops, 

reducing N use and consequently reducing N2O emissions and EFs 
(Figure 4; Figure S8).

Compared with the IPCC's default value (Hergoualc'h et al., 2019), 
our Dym-EF modeling characterizes EF variability over space and 
time by taking into account the effects of environmental factors, and 
various climate scenarios and ambition levels of N intervention over 
the coming decades. This improved methodology is crucial for mak-
ing informed management decisions in mitigation strategies. Relying 
on a stationary EF fails to capture the various impacts of climate 
change, soil properties, and management practices. For example, if 
the EF increased from 1% to 1.1% due to climate warming, keeping 
EF unchanged could lead to a 10% underestimation of N2O emis-
sions. The underestimation would be more pronounced when nitro-
gen inputs are increased. Our results showed that densely populated 
areas in developing countries typically exhibit large differences 

F I G U R E  3 Partial dependence plots for annual emission factor change across different predictors (ranked by feature importance see 
Figure S7). The smooth black lines depict the average model's response, alongside fitted values for the calibration data. Histograms display 
the probability distributions for the indices of SSP126, SSP245, and SSP585 scenarios in 2050. The blue shaded area denotes calibration 
data ranging between the 5th and 95th percentiles.
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10 of 18  |     LI et al.

across the three ambition level scenarios, likely due to their high 
food demand leading to increased N inputs (Ramírez-Melgarejo 
et al., 2019; Springmann et al., 2018). For instance, in 2030, under 
the INMS1 and INMS4 scenarios, we find the EFs could be approx-
imately 1.75%–1.86% and 1.45%–1.5% in Northern South America 
(NSA), 1.5%–1.56% and 1.42%–1.47% in Equatorial Africa (EQAF), 
1.22%–1.36% and 0.93%–1.07% in China (CHN), and 2.11%–2.24% 
and 1.93%–2.07% in Southeast Asia (SEAS). The large EF difference 
between BAU and high ambition N regulation scenarios indicates a 
large potential in reducing N2O emission. These areas, especially in 
tropical regions (e.g., NSA, EQAF, and SEAS), are expected to see EF 
increases of around 0.17%–0.28% under low ambition policies by 
2050, which is equivalent to 12%–17% of EF in 2010. Therefore, to 
meet the Goal 13 (climate action) of United Nations' sustainable de-
velopment goal (United Nation, 2015), intensified efforts are needed 
in such regions to reduce N2O emissions by improving NUE and re-
ducing N loss (van Vuuren et al., 2015; Zhang et al., 2015).

It is important to note that there is a trade-off between accessi-
bility and accuracy in the EF estimation approaches such as the IPCC 
Tire-1 and our Dym-EF. The IPCC Tire-1 is designed to be generic 
and easily adopted without a need to provide any detailed local in-
formation, which is accessible for a wide range of applications. As 

for Dym-EF, although it provides more accurate EF projections and 
is easier to apply than process-based models, it still requires spe-
cific input data, limiting its scalability and accessibility. To enhance 
the accessibility of our model, we have used publicly available and 
commonly used datasets in global modeling, ensuring that input data 
are easily accessible to potential users. However, uncertainties re-
main due to potential variations in datasets. We suggest downscal-
ing and bias-correcting the data to better match local information. 
Generally, balancing accuracy with ease of use is crucial to enhance 
broader applicability.

3.4  |  Potential for N2O mitigation

The spatial maps of EF changes provide quantitative insights for 
pinpointing hotspots requiring mitigation efforts (Figure 5). In low 
ambition scenarios (INMS1 to INMS2), we predict significant EF in-
creases in regions such as Northeast and North China, the Midwest 
US, northern South America, northern Brazil, and parts of northern 
Africa, driven by the substantial increase in nitrogen (N) inputs from 
population growth and escalating food demands. Targeting reduc-
tion efforts in these high-emission hotspots is more effective than 

F I G U R E  4 Projected N2O emission factor (EF) across various subregions in 2030 (white area) and 2050 (blue-shaded area). The spatial 
map indicates the median EF estimated by NMIP ensembles in 2010. The black dashed line in each panel represents the Tier-1 EF (1%), and 
the blue dashed line indicates the 2010 EFs based on a multi-model median (extracted from the central map). INMS1–S4 represents four 
nitrogen management scenarios (Table 1). Box boundaries show the 25th and 75th percentiles of EF estimates, and whiskers below and 
above the box indicate the estimate range driven by climate data from 37 GCMs. The median is indicated by the black line within each box. 
BRA, Brazil; CAM, Central America; CAN, Canada; CAS, Central Asia; CHN, China; EQAF, Equatorial Africa; EU, Europe; KAJ, Korea and 
Japan; MIDE, Mideast; NAF, Northern Africa; NSA, Northern South America; OCE, Oceania; RUS, Russia; SAF, Southern Africa; SAS, South 
Asia; SEAS, Southeast Asia; SSA, Southwest South America; USA, The United States of America.
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    |  11 of 18LI et al.

solely focusing on the largest country emitters (West et al., 2014). 
The moderate ambition scenario (INMS3) demonstrates a slight de-
crease in EF in southeastern China, RUS, part of SEAS, and the EU 
by 2030, with notable reductions in these areas by 2050. These are 
hotspots characterized by high N input and high EF at the current 
stage (Figure  4), but they are projected to have huge potential in 
EF reduction under moderate and high ambition N regulation sce-
narios (INMS4 to INMS7). However, slight increases are noted in  
regions like Vietnam, EQAF, and SEAS, even under high-ambition 
scenarios, attributed to increased food demands. The “best-case” 
and “bioenergy” scenarios (INMS5 to INMS7) illustrate that further 
reductions in EF can be achieved through reduced N input by High 

N use efficiency, adoption of low meat diets, and food waste re-
duction efforts (Kanter, Winiwarter, et al., 2020). To meet the food 
gap and address N2O mitigation needs, various studies have ex-
plored potential optimal management practices (Gerber et al., 2016; 
Shang et al., 2024), while climate change potentially impacts the ef-
fectiveness of mitigations (Carlson et al., 2016). Our study quanti-
fies the potential of reducing global agricultural soil EF as one of 
nature-based climate solutions, underscoring the need to consider 
EF changes under future climate and N regulation scenarios. It is 
important to clarify that higher EF reduction does not necessarily 
yield higher N2O reduction and that lower EFs do not necessarily 
lead to lower N2O emissions, given that EF change direction may 

F I G U R E  5 The projected emission factor (EF) changes at global and regional scales. The maps illustrate the changes in EF in 2030 and 
2050, respectively, compared to 2010 under INMS1 to INMS4. Map lines delineate study areas and do not necessarily depict accepted 
national boundaries.
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not consistently align with nitrogen input changes in some cases. 
The actual N2O emissions are the product of EF and the amount of 
anthropogenic nitrogen inputs. For instance, regions identified as 
hotspots for high EF (e.g., RUS and EQAF) in our study (Figure 4) 
may often differ from the areas with the highest soil N2O emissions 
in the global N2O budget study (Tian et al., 2019, 2024).

The temporal and spatially varying EFs are important in deter-
mining the effectiveness of mitigation efforts. We found the EFs 
were expected to increase under future climate change even with-
out increasing N fertilizer input (Figure  6a). This is because the 
EFs are positively correlated with temperature and precipitation 
(Figure S8), which are projected to increase (Figures S2 and S3), re-
sulting in increased EFs. Although the temperature under SSP126 
does not show a substantial rise, the increased precipitation under 
this scenario significantly amplifies the EFs. Consequently, the rela-
tionship between N input and EFs is asymmetric due to the impacts 
of climate change. This asymmetry leads to substantial EF increases 
when higher N input (INMS1–S2) is combined with climate change 
effects (Figure 6b). Conversely, reductions in N input alone may not 
fully buffer the EF increase caused by warmer climates and changed 
precipitation patterns, especially in some climate-sensitive regions. 
Among the four high-ambition policy scenarios, our findings indi-
cate that, despite INMS7 containing a best-case climate scenario 
(SSP126), EFs are not always projected to be the lowest among the 
“best-case” climate scenarios by 2030 even with similar N input to 
current management? (Figure S1). This discrepancy may arise from 
varying temperature and precipitation patterns (Figure  3), which 
could elevate EFs by 2030 (Figures S2 and S3). However, by 2050, 
rising temperatures in INMS5–S6 could lead to higher EFs even in 
the “best-case” climate scenarios (Figure 6b).

Our study highlights the urgency to take relatively stringent N 
regulation practices as early as possible, as delays could exacerbate 
the challenges of mitigating N2O emissions due to climate-induced 
increases in EFs. In addition, it is important to account for the impact 
of future climate changes on effective evaluations and to harness 
the potential for identifying easily achievable targets (e.g., priori-
tized mitigation goals, specific regions, and feasible practices) across 
the globe. More comprehensive strategies need to be considered, 
including cost-effective mitigation measures, which are essential 
to reduce greenhouse gas (GHG) emissions while ensuring the sta-
bility of food production (Gu et al., 2023; Peng & Guan, 2021; Ren 
et al., 2023). Furthermore, crop switching is proposed to be an ef-
fective strategy for sustainable agriculture (Rising & Devineni, 2020; 
Xie et  al.,  2023). This approach holds the potential for reducing 
N2O emissions and enhancing crop productivity in the context of 
future climate change (Jägermeyr et al., 2021; Peng & Guan, 2021). 
However, the impact of crop switching on dietary diversity and nu-
tritional intake remains a critical question (Carlson et al., 2016; West 
et al., 2014). Consequently, international food trade becomes crucial 
in striking a balance between maintaining food diversity and adapt-
ing to climate change (Janssens et al., 2020, 2022). Generally, collec-
tive action by different organizations is critical for us to achieve the 
climate mitigation goal in a race against time.

3.5  |  Limitations and future framework

Our study comprehensively explores N2O emission under dif-
ferent policy interventions and climate scenarios, identifying 
the direction toward achieving sustainable development goals. 

F I G U R E  6 Global cropland and pasture emission factor (EF) changes under different scenarios. This figure displays smoothed lines 
reflecting changes in EF. (a) The change in EF compared to the average EF during 1990–2010, excluding nitrogen fertilizer impacts under 
scenarios SSP126, SSP245, and SSP585. (b) The change in EF compared to the average EF during 1990–2010 including nitrogen fertilizer 
effects under scenarios INMS1 to INMS7.
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However, we understand that there are several uncertainties in 
this study. Different process-based models have different struc-
tures and algorithms to represent nonlinear N2O responses to key 
environmental drivers. Although the cross-model divergence can 
be minimized by using the model ensemble median estimates of 
EF as the learned variable, the uncertainties in projections derived 
from model inputs and structure still persist (Tian et  al.,  2024). 
Extensive measurements of soil N2O emissions could help improve 
the parameterization of individual NMIP2 models and better con-
strain their estimates of EF in various climate and soil conditions. 
The method of emergent constraint can be effective in reducing 
uncertainties in process-based models (Wang, Zhao, et al., 2020), 
as applied in studies on crop yield changes (Li et  al.,  2023), soil 
carbon (Varney et  al.,  2020), and land evapotranspiration based 
on field observed data (Lian et al., 2018). However, no such work 
is available for EF.

The machine learning-based approaches have a common chal-
lenge in extrapolating, especially beyond the training dataset. In this 
study, to cover the range of potential future conditions, we trained 
our model on a large dataset spanning a wide range of time periods 
(1961–2020), covering the period with rapid changes in climate and 
human activities, such as enhanced anthropogenic N input in partic-
ular. However, the learning effort is still limited by the availability of 
input data and how process-based modeling has handled them. For 
example, some detailed information on nitrogen management prac-
tices, such as the seasonal application of nitrogen, the use of organic 
amendments, or slow-release forms of nitrogen, are either missing at 
the global level or over-simplified in the N2O modeling assessment. 
Incorporating a broader range of data and management practices 
will enhance the robustness of this hybrid model and make it more 
practical for future users who have more detailed information.

For N fertilizer input, the EFs associated with manure depo-
sition and application were not considered despite their sig-
nificant role in N2O emissions (Charles et  al.,  2017; Walling & 
Vaneeckhaute,  2020). The changes in synthetic fertilizer and 
manure application rates vary substantially across different pol-
icy scenarios, influenced by dietary shifts, and changed NUE. 
Synthetic fertilizers are widely used in crop production, enhanc-
ing crop yield efficiently but increasing the risk of N pollution. 
Although changes in synthetic fertilizer composition (e.g., ammo-
nium vs. nitrate) might affect outcomes, this aspect was not ex-
plored in our study. Manure, while beneficial for soil health and 
providing a more sustainable N source, adds challenges in man-
aging N2O emissions and N leaching. Selection between them 
should balance efficiency, environmental impact, and soil health 
considerations. Since data on N2O emissions induced by manure 
were not available for all the eight participant models in NMIP2, 
we did not include manure-induced N2O emissions and the po-
tential change in EFs for manure. Incorporating manure EFs into 
future studies could further optimize nitrogen inputs by balancing 
the trade-offs between synthetic fertilizers and manure. In addi-
tion, we mainly focus on annual EFs, derived from NMIP2 model 
ensembles that handle annual fertilizer input in various ways and 

assumptions without knowing how fertilizer application timings 
vary across the globe and over time. This may not fully capture 
the interactive effects of seasonal climate variations and nitrogen 
application on EFs.

Considering crop-specific variations in using N and releasing 
N2O from soils (e.g., wheat, maize, and rice) could provide more 
nuanced guidance (Cui et al., 2021; Shang et al., 2024), an aspect 
not covered in our current study. Future work ought to explore 
how different policy ambition levels influence N2O emissions for 
different crops under future climate scenarios. This will offer tar-
geted recommendations, helping to bridge these knowledge gaps 
and enhance our comprehension and management of N2O mitiga-
tion strategies.

4  |  CONCLUSIONS

In this study, we have developed a novel hybrid modeling frame-
work that incorporates machine learning with process-based 
modeling to predict the nonlinear dynamics of EF under various 
climate, soil, and management conditions across global agricultural 
lands. This approach provides new insights into global EF changes 
that can improve our understanding of N2O mitigation potential 
under different climate and policy scenarios. Our results provide 
a strong indication of a future increase in N2O EF due to climate 
change, independent of N management. The increase of EFs when 
coupled with increased N input and climate change impacts is 
largely higher than the EF reductions through decreased N input. 
This asymmetry between nitrogen input and EFs poses additional 
challenges for N2O mitigation in the future, highlighting the ur-
gency of nitrogen reductions as delayed actions could increase 
mitigation costs. Such information might not be fully captured by 
studies using country-specific EFs, which are considered appropri-
ate for “tier 2” approaches in national inventories. Furthermore, 
although the EFs are impacted by different environmental fac-
tors, optimizing N inputs to crop needs remains the most effective 
mitigation option. Our finding is a critical step toward achieving 
sustainable development goals, by improving the current static EF 
(IPCC tiers 1–2) approach with a more precise N2O emissions es-
timation under global change scenarios. Future efforts in enhanc-
ing measurement and data analysis with a uniform protocol would 
be helpful to reduce the EF estimation uncertainty from process-
based modeling, and to improve the database used for dynamic EF 
learning and mitigation potential assessment under various man-
agement options.
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