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Abstract: Monitoring and estimating spatially resolved changes in soil organic carbon (SOC) stocks
are necessary for supporting national and international policies aimed at assisting land degradation
neutrality and climate change mitigation, improving soil fertility and food production, maintaining
water quality, and enhancing renewable energy and ecosystem services. In this work, we report
on the development and application of a data-driven, quantile regression machine learning model
to estimate and predict annual SOC stocks at plow depth under the variability of climate. The
model enables the analysis of SOC content levels and respective probabilities of their occurrence as a
function of exogenous parameters such as monthly temperature and precipitation and endogenous,
decision-dependent parameters, which can be altered by land use practices. The estimated quantiles
and their trends indicate the uncertainty ranges and the respective likelihoods of plausible SOC
content. The model can be used as a reduced-form scenario generator of stochastic SOC scenarios. It
can be integrated as a submodel in Integrated Assessment models with detailed land use sectors such
as GLOBIOM to analyze costs and find optimal land management practices to sequester SOC and
fulfill food–water–energy—environmental NEXUS security goals.

Keywords: food–water–energy–environmental NEXUS; soil health; climate variability; SOC dynam-
ics; uncertainty ranges; robust estimation; machine learning; quantile regression

1. Introduction

The monitoring, modeling, and mapping of soil organic carbon (SOC) is important
for many reasons. SOC is an indicator of soil organic matter (SOM) content, which is a
major determinant of soil quality and fertility for food production. Soils with higher SOC
can better filter, degrade organic molecules, and purify water. SOC accumulation can
substantially contribute to climate change mitigation [1–3]. Soils have recently become part
of the global carbon agenda for climate change mitigation and adaptation. The “4p1000
initiative” was launched at COP21 by UNFCC under the framework of the Lima–Paris
Action Plan (LPAP) in Paris on 1 December 2015. The name of the initiative reflects that
a comparatively small proportional increase (4%) of the global SOC stocks in the topsoil
of all non-permafrost soils would be similar in magnitude to the annual global net carbon
dioxide (CO2) growth [4]. SOC stock is a land degradation neutrality indicator used by the
United Nations Convention to Combat Desertification (UNCCD) [5]. The EU Soil Strategy
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for 2030 contributes to the objectives of the EU Green Deal and is a part of the Biodiversity
Strategy. The new strategy updates the 2006 EU Soil Thematic Strategy [6,7] and intends to
address land degradation trends. The EU Mission Board for Soil Health and Food proposed
a series of quantitative targets to make the soils of Europe healthier. Among them, the aim
is to reverse the current SOC concentration losses in croplands (0.5%/yr on average at a
20 cm depth) to an increase of 0.1–0.4%/yr by 2030.

There is substantial complexity and spatial variability in potential SOC changes espe-
cially due to the effects of land use changes, management practices, and in the presence
of climate changes [8], which exhibit highly variable and uncertain patterns of monthly
and seasonal temperature and precipitation (i.e., the two important climate-related SOC
modifiers). Some studies show that an increase of 1 ◦C in the air temperature could cause
a 10–28% greater C release (11–34 Pg C/yr) [9]. The function and structure of terrestrial
ecosystems can be affected by the precipitation patterns. Increased precipitation can raise
soil respiration on average by 30%, whereas decreased precipitation reduces soil respiration
by 12% [10], thus affecting soil carbon stock and the overall global carbon cycle. Hence,
soil’s role as a source or sink depends on the temperature and precipitation [11].

There is a strong relationship between SOC and N content, i.e., the higher SOC content
indicates a higher N content. In many case studies, the ratio of carbon to nitrogen in SOM
(about 58% of SOM is made up of SOC) is about 10:1 [12,13], which can vary. In general,
microbes can require more nitrogen than is found in organic matter, namely at about an 8:1
ratio. For effective microbial life and the increase in carbon storage in soils, the addition of
synthetic fertilizers plays a major role. Nitrogen fertilizers increase the microbial biomass,
increase both the readily decomposable and less readily decomposable pools of soil carbon
(the latter of which form from the dead microbes), and increase the “new” carbon inputs
(from residues) while also slowing the loss of “old” soil carbon [14,15]. The higher share of
carbon in soil is more beneficial for soil microbes to make available essential nutrients like
N, phosphorus, and zinc to crops, thus enhancing soil health and productivity. The optimal
ratio is estimated to be about 24:1 [12,13].

SOC represents the dynamic balance of carbon inflows and outflows in time. The
primary source of SOC is SOM, derived from various plant materials including leaves,
stems, and roots. These materials are decomposed by microbial processes, leading to
respiration back into the atmosphere and recycling by microbes (measured as Carbon
Use Efficiency), mineralization, or leaching from the soil [16,17]. In agriculture, typical
contributors to SOM are manure, crop residues, and compost. These materials, if not
properly humified, are more readily processed by microbes, leading to faster turnover rates.
Microbial activity can be further enhanced by adequate precipitation and temperature.

Land use practices can alter SOC content. Such agricultural activities as optimized
recycling of residues, balanced nutrient inputs, and reduced tillage can slow down SOC
losses [18,19]. Although crop residues are a feedstock for renewable bioenergy production,
it is frequently advised to harvest only a portion of the residues to ensure the preservation
of SOC stocks. Also, crop residues that remain in the field after crops are harvested are
beneficial for soil health as they decrease the risk of soil erosion by wind and water.

Amelung et al. [4] argue for the rapid and sustainable scaling up of soil carbon
sequestration practices in order to contribute to climate change mitigation. Cropland
soils offer the major potential for carbon sequestration [4]. The implementation of soil
carbon sequestration measures requires a diverse set of options fitted for soil conditions
and management opportunities and accounting for site-specific trade-offs. The costs and
benefits of these options are yet to be estimated with comprehensive land use planning
models such as the Global Biosphere Management Model, GLOBIOM [20].

Models are crucial to understand past and future SOC dynamics in the presence of
natural and anthropogenic drivers and uncertainty. The two main approaches widely used
to assess the impacts of climate change, soil parameters, and land management practices
on soil nutrient content and productivity are the following:
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a. Process-based simulation models, e.g., such as MIcrobial-MIneral Carbon Stabiliza-
tion model (MIMICS, [21]), DeNitrification-DeComposition model (DNDC, [22]), and
Environmental Policy Integrated Climate model (EPIC [23–29]), which represent key
dynamic processes affecting soil nutrients, land emissions, and productivity (yields);

b. Statistical and machine learning models, which estimate functional relationships
between historical observations of climate, soil characteristics, nutrient composition,
and land productivity [30–34].

The Agricultural Model Intercomparison and Improvement Project (AgMIP) and the
Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) provide important conclu-
sions regarding the two approaches [35]. Process-based models’ computation can be an
extremely time-consuming procedure. These models include soil C and N pools and fluxes,
which require long spin-up to reach equilibrium states. Because of simplifications and
normalizations, the process-based models can fail to capture the impacts of extreme cli-
mate events. Reparameterization and recalibration can be demanded for each new set of
data, e.g., climate projections, and this tedious task calls for proper parametrization and
calibration optimization procedures.

The statistical and machine learning models are gaining popularity for their analysis
of vegetation responses, crop yields, and soil nutrient content to climatic conditions, land
management practices, and soil properties [32,36]. However, the statistical models can
lack the necessary data for estimating SOC content in response to new land, soil, and
water management practices, which are optimal or feasible in different administrative and
climatic regions. In this situation, the available historical data can be enriched by the results
derived using biophysical models.

Thus, the two approaches have different strengths and weaknesses. Our goal is to
combine the two approaches by using multisource data, which are larger than the historical
data, i.e., by incorporating both historical and model-simulated data and results. Therefore,
in this paper, we develop a hybrid meta-model for generating stochastic and dynamic SOC
scenarios based on historical data and on the inputs–outputs of a dynamic process-based
simulation model Environment Policy Integrated Climate (EPIC) [23,24,37,38].

We train the meta-model using EPIC results on SOC content for feasible scenario com-
binations of residue retention and fertilization rates. Although the meta-model replicates
EPIC results (therefore, it is called a meta-model, i.e., a model of a model), it can also be
used relying purely on the available historical data and observations. The combinations of
scenarios form the so-called EPIC hypercube, which has been designed based on studies by
Balkovic et al. [23].

The meta-model is represented by a quantile regression machine learning model for
predicting SOC content quantiles (percentiles) [39,40]. The estimated quantiles and their
trends identify the ranges and the respective probabilities of plausible SOC content levels
reflecting the variability and the uncertainty of the explanatory variables (also referred to as
independent variables or covariates) [41]. Parameters such as temperature and precipitation
can be regarded as exogenous, whereas soil properties depend on land use, water, and soil
management practices and, therefore, these can be considered as “endogenous” decision-
driven parameters. By including residue retention as an explanatory variable, it is possible
to estimate the pros and cons of policies on using crop residues as feedstocks for biofuel
production. Optimizing the recycling and removal rates of crop residues is essential for soil
health preservation and for sustainable biofuel production.

The developed meta-model can be used as a reduced-form scenario generator of
stochastic SOC content scenarios, i.e., value and respective probability. It can also be
incorporated as a submodel in more complex Integrated Assessment (IAM) land use models,
e.g., the Global Biosphere Management model, GLOBIOM [20,42,43]. The meta-model
operates at different spatial scales and provides an effective means for scaling biophysical
and land use model results to the required resolutions. By introducing SOC constraints (e.g.,
equal to the 50th or 75th quantile as estimated from the meta-model), the GLOBIOM model
can derive an optimal combination of land use practices increasing SOC to the desired level.
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SOC and other food–energy–water–environmental security constraints identify the overall
costs of achieving the food–water–energy–environmental NEXUS security.

The paper is organized as follows. Section 2 discusses SOC as an important soil
health indicator. Improving SOC content is an essential motivation for developing a robust
quantile-based meta-model and linking it with the land use model GLOBIOM. Section 2.2
presents a short overview of the two main approaches, process-based simulation models
and statistical models, to analyze the impacts of weather variability, climate change, land
practices on SOC content, possible ranges, and respective probabilities in the presence
of inherent uncertainties. Section 2.2.3 explains the choice of covariates included in the
meta-model. The proper choice of the explanatory variables guarantees the fitness of
the statistical model. Section 3 outlines statistical and machine learning approaches to
estimate and predict SOC content levels and their probability distributions. The data
and selected results of the studies are presented in Section 4. Quantile-based SOC meta-
models have been developed for all NUTS2 regions of the EU. The probability distribution
functions of SOC content in different years are analyzed according to critical quantiles
(25th, 50th, and 75th) as well as mean values. The results identify the interannual variability
and non-normality of SOC content changes, which can be explained by the precipitation
and temperature variability affecting components of SOC differently for different soil
characteristics under alternative land use practices as discussed in this section. The critical
quantiles or levels can be identified by experts, e.g., by the EU Mission Board for Soil Health
and Food. Section 5 summarizes the main conclusions and directions for further studies.

2. Modeling SOC Dynamics: Process-Based vs. Statistical Models
2.1. SOC Analysis and Modeling

The Intergovernmental Technical Panel on Soils (ITPS) defines soil health as “the
ability of the soil to sustain the productivity, diversity, and environmental services of
terrestrial ecosystems”. SOC is an essential ingredient allowing soils to provide these
services, making it a key indicator of soil health. SOC improves the biological, chemical,
and physical properties of soil, which in turn, increase soil productivity, water-holding
capacity, and structural stability [44].

The measurements of soil health are usually performed at the level of about 30 cm
soil depth [45]. FAO [44] estimates that the top 30 cm of soil contains more carbon than
the atmosphere and vegetation combined. This is relevant to addressing the land degrada-
tion neutrality (LDN) target of the United Nations Convention to Combat Desertification
(UNCCD) (UN) and the recently adopted the European Green New Deal, which aims to
bring the EU countries to climate neutrality by 2050 [46].

It is reported [47–50] that in many European countries, the topsoil organic carbon (OC)
stocks are decreasing. As SOC constitutes the largest terrestrial carbon pool, any changes in
this pool may have profound implications for both land productivity and carbon emissions.

Cover cropping, decreased tillage, improved crop portfolios and crop rotations,
converting cropland to grassland, and optimized fertilization application and organic
amendments to the soil are mentioned as essential practices that potentially increase SOC
stocks [47]. Adding External Organic Matter (EOM) can improve soil quality through im-
proved soil fertility, increased water retention capacity, reduced soil erosion, and increased
crop productivity. By increasing crop productivity, e.g., through balanced fertilization,
plants’ CO2 fixation is improved, and higher amounts of crop residue might be left on the
soil, increasing the C input and, hence, the SOC stocks.

The process of SOC accumulation is largely uncertain and is subject to variable factors
such as climate change, altering patterns of temperature and precipitation, and responses
of microbial communities to climate changes. Tracking SOC dynamics in an inherently
uncertain environment calls for stochastic SOC models.
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2.2. Modeling SOC Dynamics: Processed-Based vs. Statistical Models
2.2.1. Process-Based EPIC Model

There are a variety of process-based models incorporating SOC quantification method-
ologies. Among others, the gridded agricultural models (GAMs) CENTURY (JRC.D.3
model framework, http://www.nrel.colostate.edu/projects/century/, accessed on 6 April
2024), Rothamsted carbon model (RothC, [51,52]), DeNitrification-DeComposition (DNDC)
model [53–55], and EPIC-IIASA model [23,24] have been evaluated as tools for agricultural
sector analysis at various scales. These models are increasingly used in EU-scale assess-
ments to support land use policies, such as carbon emissions and removals from land use
and land use change [35]. In this work, we make use of EPIC model inputs and results.
EPIC is equipped with mechanisms to model the dynamics and the turnover of SOC, in
particular, on agricultural lands.

Environment Policy Integrated Climate (EPIC, [23,24]) is a widely used and tested
model for simulating many agroecosystem processes including plant growth, crop yield,
tillage, wind and water erosion, runoff, soil density, and leaching. C and N modules
incorporated in EPIC built on concepts from the Century model [56–58] to connect the
simulation of soil C dynamics to crop management, tillage methods, and erosion processes.
The added C and N routines interact directly with soil moisture, temperature, erosion,
tillage, soil density, leaching, and translocation functions in EPIC. Equations were also
added to describe the effects of soil texture on soil C stabilization.

A major benefit of using GAMs like EPIC-IIASA for the estimation of SOC changes is
the ability of EPIC to simulate and derive results for both existing and potential agricultural
practices across large areas. These practices can change as long as the effects of climate
change continue to affect farmers and new policies regarding climate mitigation and carbon
emissions are implemented to fulfill environmental goals [23,24].

2.2.2. Statistical and Machine Learning Models

We expand the existing SOC modeling approaches by developing a data-driven
quantile regression robust meta-model based on statistical and machine learning ap-
proaches [39,40]. The meta-model simulates the dependencies of the response variable SOC
from such covariates as soil properties, (daily or monthly) temperature and precipitation
patterns, and land management practices. The quantile regression approach allows for the
derivation of spatio-temporal plausible SOC content ranges and respective probabilities in
the presence of uncertain covariates.

SOC models are estimated for all NUTS2 regions of the EU. The models are trained
from multisource data including historical observations and EPIC results. They represent a
simplified framework that captures complex interactions among the dependent variable
and the covariates. Seasonal changes in temperature, precipitation, plant phenology, tillage,
fertilization, crop residue recycling, climate change, and the interactions among these and
multiple other factors all have the potential to change the SOC content. It is important
to understand the interplays between all the SOC drivers, SOC stocks, and changes. The
models can be used to identify relationships of interest and the characteristics that drive
these relationships. Reduced forms of meta-models demand less computing resources and
save computational time. For this, the meta-models can be used as reduced-form scenario
generators and as submodels of more complex IAM models.

2.2.3. Statistical and Machine Learning Models

The data used in this work cover the period from 1980 to 2020. The selected covariates
are the following: monthly temperature and precipitation, nitrogen fertilization rates,
harvested residues and residue recycling levels, the carbon content in crop residues, and
relevant soil characteristics such as available water-holding capacity, the concentration
of SOC in the topsoil layer, clay content, bulk density, effective soil profile depth, and
elevation. The proper choice of covariates guarantees the fitness of models. Varying the
values of covariates enables an understanding of how a single independent variable can

http://www.nrel.colostate.edu/projects/century/
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influence the outcome. Some of the arguments for choosing the covariates as SOC drivers
are presented below.

Temperature and precipitation are mentioned among the main SOC determinants [9–11,59].
The increase in air temperature and, as a consequence, the increase in soil temperature and
microbial activity, speeds up SOC decomposition rates by increasing soil C mineralization
and respiration. Warmer temperatures expected with climate change and the potential for
more extreme temperature events will impact plant productivity, its nutritional content,
and soil quality.

Temperature effects are further stipulated by deficits and excesses in soil water [60,61]. Soil
water content has been shown to be positively correlated with microbial C use efficiency
(CUE) [62,63]. High soil water contents can, however, lead to reductions in microbial activi-
ties due to oxygen limitation, and drought has been shown to severely reduce microbial
respiration, growth, and CUE [64]. The research in [65,66] emphasizes that rainfall and its
intensity have a strong correlation with the rate of carbon stock accumulation. Therefore, a
better understanding of the interactions among variable temperature and soil moisture and
SOC can help develop more effective adaptation strategies to offset the impacts of climate
extremes on soil health.

SOC in agroecosystems is influenced by physical and chemical soil properties. Soil
texture (proportions of clay, sand, silt) represents one of the key soil parameters affecting
root growth and soil thermal and hydraulic conductivity [67], which in turn affect SOC
levels. Soil clay content can serve as a proxy for soil pH level as clay soils are usually more
alkaline with pH values ranging from 7.5 to 10. The pH influences SOC by regulating
such soil activities as, e.g., the soil–plant system’s capacity to supply and absorb nutrients
(termed as soil nutrient bioavailability) and SOM turnover [68]. The level of initial SOC
can also have an effect on SOC.

The addition of N over time presents an essential trade-off and uncertainty for SOC
accumulation. On the one hand, sufficient N removes limitations for plant productivity
and microbial activity and stimulates SOC increase. On the other hand, the oversupply
of N can raise the microbe’s demand for carbon. The demand for carbon may exceed the
available labile carbon, which may cause microbes to reach for more stable carbon [69,70].
Soil N loss due to precipitation increase can alter the C:N ratio and, therefore, affect SOC
accumulation processes. The increased precipitation, however, does not directly lead to
higher N losses as the N dynamics are also influenced by soil texture and management.

The vegetation parameters and the microbial activity can show strong spatio-temporal
seasonal variability and uncertainty because of uncertainty in drivers, i.e., temperature,
moisture, C and N availability and inputs, and soil properties. Therefore, SOM decay
and SOC content levels depend on the uncertain and random explanatory drivers. Thus,
the ability of soil to store OC depends on climate–soil–land use/management stochastic
interactions [45]. This calls for using a quantile-based approach to identify plausible ranges
in SOC content and respective probabilities in the presence of uncertain drivers.

3. Estimating SOC Level Dependencies on Land Practices and Climate Changes

The quantile-based SOC meta-models have been developed for all NUTS2 regions
in the EU. The choice of spatial resolution is due to the policy-relevant heterogeneity of
NUTS2. Each NUTS2 can be characterized by its individual set of prevailing land use
practices, agronomic and non-agronomic drivers affecting land management and soil
properties, and therefore, the level of SOC. These drivers are sectoral policies, market
prices, climate change, and natural resources. The Common Agricultural Policy (CAP) is
one of the main EU policies influencing agricultural management practices. Regionally
or nationally, energy and climate policies can have even more influence on cropping
patterns than the CAP. CAP consists of different policy instruments with different impacts
on the cropping patterns, green farming, crop diversification instead of mono-cropping,
environment-friendly farming, maintenance of permanent grassland, and preservation of
“ecological focus areas”. Rural development programs, in particular, rural development
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funding, substantially determine agricultural practices at the level of NUTS2 [71]. To
investigate SOC dependencies purely on landform, soil, and climatic characteristics, the
analysis can be performed at the level of agroecological zones (AEZs), i.e., geographical
areas exhibiting similar climate, landform, soils, and/or land cover, and having a specific
range of potentials and constraints for land use.

3.1. Experimental Design

The meta-models were estimated based on multisource data combining historical
observations and EPIC model inputs and results (similar to [39,40]). The time span covers
years from 1980 to 2020. The EPIC results were derived for various combinations of
crops, residue retentions, and chemical nutrient fertilization intensities [23,24]. Nitrogen
fertilization intensities distinguish four alternative levels (scenarios): BAU (scenario with
NUTS2- and crop-specific N applications), 50 kg N/ha, 100 kg N/ha, and 250 kg N/ha. The
nitrogen fertilization scenarios are combined with four crop residue retention alternatives:
0% retention (100% residues harvested), 30% retention (70% residues harvested), 60%
retention (40% residues harvested), and 90% retention (10% residues harvested).

3.2. Data

We use the inputs and the results of the Pan-European version of the EPIC-IIASA model
calibrated and validated for EU countries [23,24], [72]. The daily meteorological data were
obtained from the Joint Research Centre’s (JRC) Crop Growth Monitoring System (CGMS)
meteorological database [34] at a 50 km grid resolution. Weather variables include daily and
monthly averages of precipitation (Prcp, mm) and temperature (Tr), maximum temperature
(Tmax, C), minimum temperature (Tmin, C), and solar radiation (Srad, MJ m−2).

Land cover information was taken from a combined CORINE 2000 and PELCOM map
at a 1 km resolution provided by JRC. Digital terrain information was derived from SRTM
(Shuttle Radar Topographic Mission; [73]) and GTOPO sources (Global 30 Arc Second
Elevation Data; http://eros.usgs.gov, accessed on 5 May 2019).

Soil data were acquired from the European Soil Bureau Database (ESBD v. 2.0),
including the Soil Geographic Database of Europe, the Soil Profile Analytical Database
of Europe, the Pedo-Transfer Rules Database, the Database of Hydraulic Properties of
European Soils [74], and the Map of Organic Carbon Content in topsoils in Europe [75]. Soil
variables include dry bulk density (BDdry, g/cm3), clay percentage (clay, %), soil pH (pH),
drained upper limit (dul, mm/mm), soil saturated hydraulic conductivity (ksat, mm/day),
wilting point (ll, mm/mm), soil organic matter (om, %), sand percentage (sand, %), and
saturated volumetric water content (sat, mm/mm) at nine different depths of soil: 0–5, 5–10,
10–15, 15–30, 30–45, 45–60, 60–80, 80–100, and 100–120 cm. Soil data can be considered
time-invariant factors; however, they are affected by various land use and soil practices.
For these, the SOC content and changes in response to weather parameters under certain
practices (and, thus, soil properties) are derived from EPIC simulations. In the same way,
the effects of other location-specific practices can be included.

Administrative regions were obtained from the Geographic Information System of
the European Commission (GISCO) and watersheds from the European River Catchment
Database, version 2 (ERC; provided by European Environment Agency, http://www.eea.
europa.eu, accessed on 5 May 2019). Agricultural statistics on crop yields and fertilizer
consumption were retrieved from the Statistical Office of the European Communities
(EUROSTAT) and IFA/FAO datasets [76]. Information on rainfed and irrigated crop areas
was taken from the European Irrigation Map (EIM) presented in [77].

The data were harmonized at a resolution of about 120,000 EPIC simulation units
(SimUs). The SimUs are represented, as a rule, by one area with “representative” character-
istics for soil, topography, and present weather. If sufficient time series data are available,
the meta-model can be estimated at the level of SimUs.

http://eros.usgs.gov
http://www.eea.europa.eu
http://www.eea.europa.eu
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3.3. Machine Learning Quantile Regression Meta-Model

Statistical and machine learning models provide quantitative ways to deal with such
questions as estimating the contribution of each independent variable (also called predictor
or covariate) and their combinations to the target variable (dependent or response variable).
Statistical approaches used to spatially predict SOC differ substantially, with multiple
linear regression, ordinary kriging, co-kriging, regression-kriging, and geographically
weighted regression being the most commonly used techniques [74]. Models often used
for soil nutrient content and crop yield prediction include random forest, neural networks,
convolutional neural networks, recurrent neural networks, etc. However, due to the often
“black-box” nature of these models, the tractability of the results is not straightforward. The
prediction accuracy is sensitive to model structure and parameter calibration, and it can
be difficult to explain the accuracy or inaccuracy of the derived results. The complex and
non-linear “black-box” structure hinders the explicit integration of these models with IAMs.

3.3.1. Linear Regression Model

A linear regression (LR) can be considered one of the machine learning algorithms,
which is one of the most popular models in machine learning. It is widely used because it
is simple and tractable. The simplicity means it is easy to understand the responses of the
dependent variables to each explanatory, i.e., the regression coefficient of an independent
variable reflects the change in the dependent variable as a result of a unit change in
the respective independent variables. The LR assumes that the residuals are normally
distributed, which means that LR fails to capture extreme values of the independent
variables. It uses the method of least squares to calculate the conditional mean of the
dependent variable across different values of the explanatory variables. The LR model for
calculating the mean takes the form

yi = β0 + β1xi1 + β2xi2 + β3xi3 + · · ·+ βmxim + ϵi, (1)

where i = 1, . . . n is the number of observations and m is the number of independent
variables. The random variables ϵi are typically assumed to be mutually independent and
to follow a normal distribution with zero mean and variance σ2

i > 0.
Coefficients of the LR are found by minimizing the Mean Square Error “goodness-of-

fit” function (Ordinary Least Squares (OLS))

MSE = (yi − (β0 + β1xi1 + β2xi2 + β3xi3 + · · ·+ βmxim))
2,

which gives the “best regression line”. Thus, the best estimates of βi provide the estimate
of the conditional mean of the variables yi in (1). The predictions focus on a single feature,
i.e., the mean of the distribution of the response variables yi.

The level of SOC can vary depending on seasonal patterns of temperature and pre-
cipitation, in different soils, and for various combinations of crop residue recycling and
nutrient fertilization rates. The quantiles of SOC content and SOC content changes provide
ranges of possible SOC levels in different conditions. The SOC dynamics can show the
non-normally distributed patterns, e.g., if the SOC 50th percentile is different from the
SOC mean value. For statistical estimation and machine learning problems in the presence
of non-normal probability distributions, it is more natural to use the median or other
quantile-based criteria instead of the mathematical expectation. It is also important that
the quantile-based regression allows for the estimation of the likelihood of possible SOC
levels to occur in different environmental conditions, which is useful for working our SOC
norms, e.g., by “The EU Mission Board for Soil Health and Food” [46].

3.3.2. Quantile Regression (QR) Model

Unlike regular LR, which uses the method of least squares to estimate the conditional
mean of the dependent variables, quantile regression estimates the quantiles of the response
variable conditional on observations of independent variables. The quantile regression esti-
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mates are more robust against outliers. For these studies, the conditional quantile functions
are of major interest also for investigating and predicting the ranges and the probability
distribution of the SOC content based on key factors such as highly variable temperature
and precipitation, uncertain soil characteristics, and land management practices.

In the present work, SOC levels are analyzed and distinguished according to their
values, i.e., mean and critical quantiles. SOC quantiles are approximated by fitting separate
quantile-based regression models. In classical LR approaches, the regression coefficients
(β-coefficients) represent the mean increase in the response variable produced by one unit
increase in the associated explanatory variables. Conversely, the β-coefficients obtained
from QR represent the change in a specific quantile of the response variable produced
by a one-unit increase in the associated driver. In this way, QR allows one to study how
certain drivers affect median (quantile τ = 0.5), extremely low (e.g., τ = 0.05), or high (e.g.,
τ = 0.95) SOC stock values. Therefore, it gives a more comprehensive description of the
effect of predictors on the whole SOC stock probability distribution (i.e., not just the mean)
and may be used to analyze differential SOC stock responses to environmental factors.

Let us first introduce the notion of a quantile (percentile) function of a random variable.
Quantiles are values that divide the probability distribution of a random variable into a
specific number of intervals (continuous) with equal probabilities. It is assumed that
a random variable X has a continuous and strictly monotonic cumulative distribution
function FX : R → [0, 1] , FX(x) = P(X ≤ x). The p-quantile function of X, QX(p), returns
the value x such that FX(x) = Pr(X ≤ x) = p, which can be rewritten as the inverse of the
cumulative distribution function Q(p) = F−1

X (x) = inf{x : FX(x) ≥ p}.
For a random sample X1, X2, . . . , Xn, . . . with empirical distribution function F̂X(x),

the pth empirical quantile function can be defined as Q̂(p) = F̂−1
X (x) = inf

{
x : F̂X(x) ≥ p

}
.

The pth empirical quantile can be determined by solving the minimization problem

Q̂(p) = argminx

 ∑
i|Xi≥x

p|Xi − x|+ (1 − p) ∑
i|Xi<x

|Xi − x|


Quantile regression is an extension of linear regression that is used when the con-

ditions of linear regression are not met (i.e., linearity, homoscedasticity, independence,
or normality).

For the quantile regression, we make an assumption that the pth quantile is given
as a linear function of the explanatory variables. In the case of the empirical regres-
sion and random observations of dependent and independent variables Y1, Y2, . . . , Yn and
X1, X2, . . . , Xn, . . ., the coefficients β(τ) of the τth empirical quantile regression can be
determined by solving the minimization problem

∑
i

τmax
(
0, Yi − β′(τ)Xi

)
+ (1 − τ)max

(
0, β′(τ)Xi − Yi

)
(2)

or problem

∑
i

max
(

τ
(
Yi − β′(τ)Xi

)
, (1 − τ)(β ′(τ)Xi − Yi

)
), (3)

which is similar to the problem in [39,40]. The minimization problem can be reduced to a
linear programming problem [39].

For quantile regression, it is possible to calculate any quantile (percentage) for particu-
lar values of the dependent variables. Solving the problem for all τ ∈ [0, 1], it is possible to
recover the entire conditional quantile function, i.e., the conditional distribution function,
of Y. If τ = 0.5,the minimization problem derives the median. Taking a similar structure
to the linear regression model, the “best” quantile regression model equation for the τth
quantile is

Qτ(y i) = β0(τ) + β1(τ)xi1 + β2(τ)xi2 + β3(τ)xi3 + · · ·+ βm(τ)xim,
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where i = 1, . . . n is the number of observations and m is the number of explanatory vari-
ables or drivers (independent variables). Coefficients βm(τ) are functions of the required
quantile τ. They are defined as

β(τ) = argminβ∈Rm

 ∑
i|Yi≥β′(τ)Xi

τ
∣∣Yi − β′(τ)Xi

∣∣+ (1 − τ) ∑
i|Yi<β′(τ)Xi

∣∣Yi − β′(τ)Xi
∣∣, (4)

where Yi are observations of dependent variables, Xi is the vector of independent variables
Xi = (xi1, . . . , xim), β(τ) is the vector of coefficients β(τ) = (β1(τ), . . . , βm(τ)), and m is
the number of observations.

The QR models give much deeper insights into the complete conditional distribution
of SOC stock values as a function of spatial and temporal predictors. By focusing on low
(or high) quantiles, regression coefficients inform us about predictors that mainly influence
the absence (or presence) of high/low SOC stock over space. By considering independent
QR models for different values of τ, this allows for the possibility that the importance of
certain predictors may change according to SOC level.

4. Selected Results

At first, we derived the best linear regression (LR) relation between the response
variable (SOC) and the set of covariate variables. This was carried out to establish the
“benchmark” for comparing the SOC quantiles with the mean value predictions. In the
LR, in a sequential and variable-by-variable manner, we included the explanatory features
in the regression model and measured the importance of these variables by observing the
changes in the R2 value. The increase in the R2 due to the inclusion of a variable indicated
the importance of the feature for the accuracy of the model. Trained on EPIC model inputs
and results, the estimated NUTS2-specific LR meta-models have an R2 of about 0.9 to
0.98 for all NUTS2 regions, meaning that about 10 to 2% of the variation in the response
variable (SOC) cannot be accounted for by the independent variables. Figure 1 presents the
historical SOC content values and Figure 2 indicates the percentage difference between the
SOC content level as estimated by LR and compared to the historical values. The legend
on the right-hand side panel provides the maximal and minimal percentage difference
between the historical and the LR estimates of the SOC content values by NUTS2 region.
The SOC percentage difference varies in the range of [−5, 10] percent.

The estimated QR trends identify the ranges and the respective probabilities of possible
SOC content in different years. The goodness of fit of the QR meta-models is based on
the definition of the QR. Depending on the quantile, a percentage of the data used for
the estimation should be below each of the QR lines. For example, the 0.25th quantile (or
25th percentile) trend has a quarter of the data values less than the 0.25th quantile and
three-quarters of the data values larger than the quantile. The values below the quantile
line can be considered extreme ones, and their probability of occurrence is smaller than
0.25 (can also be interpreted as 25 times in 100 years). The 0.5th quantile (50th percentile or
median) line cuts the data in two equal portions, i.e., half of the data have values smaller
than the median and half have values larger than the median. The difference between
the median and the average trend indicates that the values are non-normally distributed.
Three-quarters of the data lie below the 75th quantile values (also called the third quartile
or 75th percentile), and only one-quarter of the values are larger than the 0.75 quantile. The
values smaller than the quantile can occur with a probability larger than 0.75.

After training the LR and QR models, it is possible to derive projections of the SOC for
different combinations of the covariates, in particular, alternative nitrogen fertilization and
residue recycling rates. Thereby, it is possible to analyze the trade-offs and the dependencies
of the SOC on the covariates. The covariate data comprise the monthly temperature
and precipitation values, soil characteristics (topsoil clay content, water-holding capacity,
bulk density, etc.), nitrogen fertilization, and residue retention intensities, representing
alternative dimensions of the EPIC hypercube. The business-as-usual data correspond
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to the historical SOC and covariates scenario. In what follows, we discuss only the BAU
scenario, which allows us to compare the results of the estimated models to the actual
historical data.
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Results Discussion

Figures 3–6 display the SOC content change between the consequent years for NUTS2
regions in the period from 1980 to 2020 in mean change, the percentage difference between
the 50th quantile and the mean value, the 75th quantile change, and the 25th quantile
change, respectively, in t/ha. In Figure 3, more brownish colors indicate the decrease in
SOC between the years, and the greenish point to the NUTS2 regions with positive changes
between the consequent years. In the upper-left panel of Figure 3, the mean changes in
SOC are positive in Central Europe, i.e., the SOC stocks increased. However, the decreasing
accumulation of SOC stocks can be observed already in the period from 1985 to 1995;
the upper-right panel has less green color when compared to the upper-left one. More
of a rapid decumulation of SOC stocks is observed in the southern countries of Europe
such as Spain and Portugal. The SOC loss slows down in the north, especially in Sweden,
perhaps because of increasing ley farming and subsidies introduced in the early 1990s. This
reveals the strong impact of rather local socio-economic policies on soil carbon storage [75],
which can be captured by the QR meta-model at the resolution of the NUTS2 regions
characterized by region- and country-specific characteristics. The policy-driven context
needs to be considered in the models’ design and applications. The slowing down of SOC
decumulation in Sweden and Finland persists as time goes on, as it is shown in the panels
of Figure 3.
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Figure 4 visualizes the percentage difference between the 50th quantile and the mean
value of the SOC content change for NUTS2 regions from 1980 to 2020.

Figure 4 shows that the mean value of the SOC content change, as estimated by
the LR model, can differ from the most likely one, i.e., the 50th quantile. The brownish
colors in Figure 4 correspond to the locations (NUTS2 regions), where the mean value
is lower than the 50th quantile and the greenish colors correspond to where it is higher.
Thus, the brownish colors identify the NUTS2 with underestimated and the greenish
with overestimated SOC changes by the traditional LR (using symmetrical or least square
goodness-of-fit criteria) models as they cannot properly address the non-normality and the
variability of the covariates [33,34].

The discrepancies between the 50th percentile and the mean value of the SOC con-
tent changes indicate that the interannual changes in the SOC content are non-normally
distributed. The non-normality can be explained by the variability of the monthly precipi-
tation and temperature patterns affecting components of SOC differently for different soil
characteristics [78–80]. SOC meta-models have been estimated at the NUTS2 level, and,
therefore, the discrepancies between the LR and the quantile estimates point to hetero-
geneities across SimUs within respective NUTS2 regions. Extending quantile estimates to
the range τ ∈ [0, 1] would allow for the recovery of the whole distribution of possible SOC
content changes in different environmental conditions.

The 50th quantile of the SOC content changes identifies the dominating response of the
SOC labile fraction to the interannual variability of temperature and precipitation including
the response to possible extreme weather conditions. Experimental studies show the unalike
interannual SOC changes on different soils. For example, Chen et al. [80] investigate and
compare precipitation effects on forest soil carbon dynamics driven by differences in soil
characteristics for dry and wet areas. Silt and clay soil can hold more water than sandy
soils and, therefore, have a higher water-holding capacity. The effects of precipitation on
different SOC fractions can be opposite at wet and dry sites. Both the soil DOC (Dissolved
Organic Carbon) and MBC (Microbial Organic Carbon) concentrations can decrease at the
wet sites but increase at the dry sites under increased precipitation conditions [80]. The
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responses of the soil MBC concentrations can be influenced by precipitation intensity. DOC
is a potential source and a stability indicator of SOC, and it plays an essential role in global C
cycling and sequestration. SOC accumulation is also influenced by interannual N response
to changing climatic conditions in different soils under alternative land use practices. This
determines the C:N ratio and, therefore, can significantly influence DOC degradability
and leaching and, thus, affect SOC content [44]. The combined effects of precipitation and
temperature patterns and their variability on SOC content changes indicate the differing
response mechanisms in different soils under alternative land use practices, which can be
addressed by the quantile-based SOC meta-models.

Figures 5 and 6 show the 75th and the 25th quantiles of the SOC content changes, thus
estimating the ranges and the respective probabilities of how slow and how fast the SOC
can change under varying exogenous drivers and local economic and policy conditions [81].
Figure 4, displaying the 75th quantile value, tells that the SOC changes can be “better” than
the 75th quantile value exhibited in the figure, only with a probability of 0.25, however.
Correspondingly, the 25th quantile value in Figure 5 tells that the SOC changes with the
probability of 0.25 can drop below the 25th quantile value exhibited in Figure 5, i.e., below
0.5 t/ha.

Figures 7–12 illustrate the results of estimating the “best” quantile regression fit line
aggregated to the level of a country-specific NUTS2 region. As an example, we take Sweden,
Finland, France, Germany, Spain, and Italy, which represent the North, Middle, and South
of Europe. Visualized quantiles are 25th (green), 50th (blue), and 75th (yellow). In addition,
the figures display the mean value of the SOC content change (in red) for the years from
1980 to 2020. The estimates of the SOC quantile level Qτ(y i) in each SimUs within all
NUTS2 regions and EU countries have a probability of

Prob{Qτ(y i) ≤ β0(τ) + β1(τ)xi1 + β2(τ)xi2 + β3(τ)xi3 + · · ·+ βm(τ)xim} = τ. (5)
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They are calculated with coefficients βm(τ) (5) for each quantile τ (percentile 100τ),
where i = 1, . . . n is the number of observations and m is the number of covariates (inde-
pendent variables). Coefficients βm(τ) are functions of quantile τ. Equation (5) means that
100τ percent of the data are less than the value of the τ—quantile. Equation (5) provides
the basis for the validation of the quantile regression model.

5. Conclusions

This paper develops quantile regression meta-models for the analysis and prediction
of soil organic carbon (SOC) content and SOC changes for all NUTS2 regions of the EU.
There exist multiple statistical and machine learning approaches to estimate and predict
soil nutrients, in particular, SOC content. However, the complex and non-linear “black-box”
structure of these models hinders the interpretation and the explicit integration of these
models with IAMs.

LR models are the simplest and most popular among other approaches because of their
simplicity and tractability. However, LR can fail to capture extreme values as they assume
normally distributed residuals. They calculate a single parameter—the conditional mean
of the dependent (response) variable across different values of the explanatory variables.
The QR models are nonparametric as they assume no distribution of residuals. They give
much deeper insights into the complete conditional distribution of SOC stock values as
a function of spatial and temporal predictors. SOC content in different years is analyzed
according to critical quantiles (25th, 50th, and 75th) as well as mean values. For example,
the dynamics of the 25th and 75th quantiles show how uncertainty ranges can change in
time, i.e., if low/high quantile increases or decreases. The NUTS2-level QR models allow



Sustainability 2024, 16, 6849 19 of 23

for the investigation of the dynamics of specific SOC content levels that are of interest to
experts, e.g., by the EU Mission Board for Soil Health and Food.

By focusing on low (or high) quantiles, regression coefficients β inform us about
predictors that mainly influence the absence (or presence) of high/low SOC stock values
in space and time. Considering independent QR models for different values of quantile τ

allows for the possibility that the importance of certain predictors may change according to
SOC level.

The models are trained using multisource data, i.e., the available historical measure-
ments and the results of the EPIC model. The results of the EPIC model are derived for
feasible scenario combinations of different residue retention and chemical fertilization rates.
The combinations of scenarios form the so-called EPIC hypercube, which has been designed
based on studies by Balkovic et al. [23].

We found discrepancies between the 50th percentile and the mean value of the SOC
content changes, which indicates that the interannual changes in the SOC content are
non-normally distributed. The non-normality can be explained by the variability of the
monthly precipitation and temperature patterns affecting components of SOC differently
for different soil characteristics and management practices. By developing meta-models for
a broader range of quantiles, e.g., τ ∈ [0, 1], it is possible to recover the whole distribution
of SOC content responses to altering weather, soil, and management conditions in SimUs
within respective NUTS2.

The NUTS2-level meta-models can be used to find out an optimal combination of
residue retention and fertilization rates for improving soil health, crop productivity, and
sustainable biofuel production. Compared to a biophysical model (e.g., EPIC), the compu-
tations with the meta-models are less memory-, time-, and data-demanding. The models
can be easily explicitly integrated into a larger IAM such as GLOBIOM. In this way, the two
models (the biophysical and the economic land use planning models) are linked to derive
the costs of optimal and robust land use decisions and food–water–energy–environment
NEXUS security management options under constraints on SOC as discussed in Section 2.
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C.; et al. A Novel Robust Meta-Model Framework for Predicting Crop Yield Probability Distributions Using Multisource Data.
Cybern. Syst. Anal. 2023, 59, 844–858. [CrossRef]

41. Liu, T.; Wang, L.; Feng, X.; Zhang, J.; Ma, T.; Wang, X.; Liu, Z. Comparing soil carbon loss through respiration and leaching under
extreme precipitation events in arid and semiarid grasslands. Biogeosciences 2018, 15, 1627–1641. [CrossRef]

42. Ermolieva, T.; Havlík, P.; Ermoliev, Y.; Mosnier, A.; Obersteiner, M.; Leclere, D.; Khabarov, N.; Valin, H.; Reuter, W. Integrated
management of land use systems under systemic risks and security targets: A Stochastic Global Biosphere Management Model. J.
Agric. Econ. 2016, 67, 584–601. [CrossRef]

43. Ermolieva, T.; Havlik, P.; Frank, S.; Kahil, T.; Balkovic, J.; Skalsky, R.; Ermoliev, Y.; Knopov, P.S.; Borodina, O.M.; Gorbachuk,
V.M. A Risk-Informed Decision-Making Framework for Climate Change Adaptation through Robust Land Use and Irrigation
Planning. Sustainability 2022, 14, 1430. [CrossRef]

44. FAO. Global Soil Partnership: RECSOIL, Recarbonization of Global Agricultural Soils; FAO: Rome, Italy, 2023; Available online:
https://www.fao.org/global-soil-partnership/areas-of-work/recsoil/what-is-soc/en/ (accessed on 20 December 2023).

45. Liptzin, D.; Norris, C.E.; Cappellazzi, C.B.; Bean, G.M.; Cope, M.; Greub, K.L.H.; Rieke, E.L.; Tracy, R.W.; Aberle, E.; Ashworth, A.;
et al. An evaluation of carbon indicators of soil health in long-term agricultural experiments. Soil Biol. Biochem. 2022, 172, 108708.
[CrossRef]

46. European Commission. A Soil Deal for Europe; European Commission: Brussels, Belgium, 2021; Available online:
https://research-and-innovation.ec.europa.eu/document/download/1517488e-767a-4f47-94a0-bd22197d18fa_en?filename=
soil_mission_implementation_plan_final.pdf (accessed on 20 December 2023).

47. Oldfield, E.E.; Bradford, M.A.; Wood, S.A. Global meta-analysis of the relationship between soil organic matter and crop yields.
SOIL 2019, 5, 15–32. [CrossRef]

48. Bruni, E.; Guenet, B.; Clivot, H.; Kaetterer, T.; Martin, M.; Virto, I.; Chenu, C. Defining quantitative targets for topsoil organic
carbon stock increase in European croplands: Case studies with exogenous organic matter inputs. Front. Environ. Sci. 2020, 10,
824724. [CrossRef]

49. Goidts, E.; van Wesemael, B. Regional Assessment of Soil Organic Carbon Changes under Agriculture in Southern Belgium
(1955–2005). Geoderma 2007, 141, 341–354. [CrossRef]

50. Meersmans, J.; Van Wesemael, B.; Goidts, E.; Van Molle, M.; De Baets, S.; De Ridder, F. Spatial Analysis of Soil Organic Carbon
Evolution in Belgian Croplands and Grasslands, 1960-2006. Spat. Anal. Soil Org. Carbon Evol. 2011, 17, 466–479. [CrossRef]

51. Smith, P.; Smith, J.U.; Powlson, D.S.; McGill, W.B.; Arah, J.R.M.; Chertov, O.G.; Coleman, K.; Franko, U.; Frolking, S.; Jenkinson,
D.S.; et al. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments.
Geoderma 1997, 81, 153–225. [CrossRef]

https://doi.org/10.1016/j.agsy.2016.09.021
https://www.ncbi.nlm.nih.gov/pubmed/28701818
https://doi.org/10.13031/2013.32748
https://doi.org/10.13031/2013.12541
https://doi.org/10.1016/j.compag.2020.105709
https://doi.org/10.1016/j.agrformet.2010.07.008
https://doi.org/10.3390/rs15174264
https://doi.org/10.1016/j.agrformet.2012.09.011
https://doi.org/10.1111/j.1467-9353.2006.00304.x
https://doi.org/10.1016/j.ecolmodel.2005.07.010
https://digitalcommons.unl.edu/usdaarsfacpub/1363
https://digitalcommons.unl.edu/usdaarsfacpub/1363
https://doi.org/10.1007/s10559-023-00573-3
https://doi.org/10.1007/s10559-023-00620-z
https://doi.org/10.5194/bg-15-1627-2018
https://doi.org/10.1111/1477-9552.12173
https://doi.org/10.3390/su14031430
https://www.fao.org/global-soil-partnership/areas-of-work/recsoil/what-is-soc/en/
https://doi.org/10.1016/j.soilbio.2022.108708
https://research-and-innovation.ec.europa.eu/document/download/1517488e-767a-4f47-94a0-bd22197d18fa_en?filename=soil_mission_implementation_plan_final.pdf
https://research-and-innovation.ec.europa.eu/document/download/1517488e-767a-4f47-94a0-bd22197d18fa_en?filename=soil_mission_implementation_plan_final.pdf
https://doi.org/10.5194/soil-5-15-2019
https://doi.org/10.3389/fenvs.2022.824724
https://doi.org/10.1016/j.geoderma.2007.06.013
https://doi.org/10.1111/j.1365-2486.2010.02183.x
https://doi.org/10.1016/S0016-7061(97)00087-6


Sustainability 2024, 16, 6849 22 of 23

52. Guo, L.; Falloon, P.; Coleman, K.; Zhou, B.; Li, Y.; Lin, E.; Zhang, F. Application of the RothC model to the results of long-term
experiments on typical upland soils in northern China. Soil Use Manag. 2007, 23, 63–70. [CrossRef]

53. Gilhespy, S.L.; Anthony, S.; Cardenas, L.; Chadwick, D.; del Prado, A.; Li, C.; Misselbrook, T.; Rees, R.M.; Salas, W.; Sanz-Cobena,
A.; et al. First 20 years of DNDC (DeNitrification DeComposition): Model evolution. Ecol. Model. 2014, 292, 51–62. [CrossRef]

54. Li, C. Biogeochemical concepts and methodologies: Development of the DNDC model. Quat. Sci. 2001, 2, 89–99.
55. Li, C.; Frolking, S.; Harriss, R. Modeling carbon biogeochemistry in agricultural soils. Glob. Biogeochem. Cycles 1994, 8, 237–254.

[CrossRef]
56. Parton, W.J.; Schimel, D.S.; Cole, C.V.; Ojima, D.S. Analysis of factors controlling soil organic matter levels in Great Plains

grasslands. Soil Sci. Soc. Am. J. 1987, 51, 1173–1179. [CrossRef]
57. Parton, W.J.; Scurlock, J.M.O.; Ojima, D.S.; Gilmanov, T.G.; Scholes, R.J.; Schimel, D.S.; Kirchner, T.; Menaut, J.-C.; Seastedt,

T.; Garcia Moya, E.; et al. Observations and modelling of biomass and soil organic matter dynamics for the grassland biome
worldwide. Glob. Biogeochem. Cycles 1993, 7, 785–809. [CrossRef]

58. Müller, C.; Elliott, J.; Chryssanthacopoulos, J.; Arneth, A.; Balkovic, J.; Ciais, P.; Deryng, D.; Folberth, C.; Glotter, M.; Hoek, S.;
et al. Global Gridded Crop Model evaluation: Benchmarking, skills, deficiencies and implications. Geosci. Model Dev. Discuss.
(GMDD) 2016, 1–39. [CrossRef]

59. Lembaid, I.; Moussadek, R.; Mrabet, R.; Bouhaouss, A. Soil organic carbon changes under alternative climatic scenarios and soil
properties using DNDC model as a semi-arid Mediterranean environment. Climate 2022, 10, 23. [CrossRef]

60. Kahil, M.T.; Dinar, A.; Albiac, J. Modeling water scarcity and droughts for policy adaptation to climate change in arid and
semiarid regions. J. Hydrol. 2015, 522, 95–109. [CrossRef]

61. Kahil, M.T.; Connor, J.D.; Albiac, J. Efficient water management policies for irrigation adaptation to climate change in Southern
Europe. Ecol. Econ. 2015, 120, 226–233. [CrossRef]

62. Schnecker, J.; Baldaszti, L.; Gündler, P.; Pleitner, M.; Sandén, T.; Simon, E.; Spiegel, F.; Spiegel, H.; Malo, C.U.; Zechmeister-
Boltenstern, S.; et al. Seasonal dynamics of soil microbial growth, respiration, biomass, and carbon use efficiency in temperate
soils. Geoderma 2023, 440, 116693. [CrossRef]

63. Zheng, Q.; Hu, Y.; Zhang, S.; Noll, L.; Böckle, T.; Dietrich, M.; Herbold, C.W.; Eichorst, S.A.; Woebken, D.; Richter, A.; et al. Soil
multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil Biol. Biochem.
2019, 136, 07521. [CrossRef] [PubMed]

64. Pietikäinen, J.; Pettersson, M.; Bååth, E. Comparison of temperature effects on soil respiration and bacterial and fungal growth
rates. FEMS Microbiol. Ecol. 2005, 52, 49–58. [CrossRef] [PubMed]

65. Burke, I.C.; Yonker, C.M.; Parton, W.J.; Cole, C.V.; Schimel, D.S.; Flach, K. Texture, Climate, and Cultivation Effects on Soil Organic
Matter Content in U.S. Grassland Soils. Soil Sci. Soc. Am. J. 1989, 53, 800. [CrossRef]

66. Haddad, A.N. Evaluating the Relationship between Soil Texture and Soil Organic Carbon across California Grasslands. Soil Clay
Content Soil Carbon 2017. Available online: https://nature.berkeley.edu/classes/es196/projects/2017final/HaddadA_2017.pdf
(accessed on 4 January 2024).

67. Bengough, A.G.; Bransby, M.F.; Hans, J.; McKenna SJRoberts, T.J.; Valentine, T.A. Root responses to soil physical conditions;
growth dynamics from field to cell. J. Exp. Bot. 2006, 57, 437–447. [CrossRef]

68. Soldatova, E.; Krasilnikov, S.; Kuzyakov, Y. Soil organic matter turnover: Global implications from δ13C and δ15N signatures. Sci.
Total Environ. 2023, 912, 169423. [CrossRef]

69. Wang, C.; Kuzyakov, Y. Soil organic matter priming: The pH effects. Glob. Chang. Biol. 2023, 30, e17349. [CrossRef] [PubMed]
70. Mahal, N.K.; Osterholz, W.R.; Miguez, F.E.; Poffenbarger, H.J.; Sawyer, J.E.; Olk, D.C.; Archontoulis, S.V.; Castellano, M.J. Nitrogen

Fertilizer Suppresses Mineralization of Soil Organic Matter in Maize Agroecosystems. Front. Ecol. Evol. 2019, 7, 59. [CrossRef]
71. Smit, M.J.; van Leeuwen, E.S.; Florax, R.J.G.M.; de Groot, H.L.F. Rural development funding and agricultural labour productivity:

A spatial analysis of the European Union at the NUTS2 level. Ecol. Indic. 2015, 59, 6–18. [CrossRef]
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