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Abstract: The objective of this paper is to assess the distribution of the Partial Autocorrelation
Function (PACF), both theoretically and empirically, emphasizing its crucial role in modeling and
forecasting time series data. Additionally, it evaluates the deviation of the sum of sample PACF
from normality: identifying the lag at which departure occurs. Our investigation reveals that the
sum of the sample PACF, and consequently its components, diverges from the expected normal
distribution beyond a certain lag. This observation challenges conventional assumptions in time
series modeling and forecasting, indicating a necessity for reassessment of existing methodologies.
Through our analysis, we illustrate the practical implications of our findings using real-world
scenarios, highlighting their significance in unraveling complex data patterns. This study delves
into 185 years of monthly Bank of England Rate data, utilizing this extensive dataset to conduct an
empirical analysis. Furthermore, our research paves the way for future exploration, offering insights
into the complexities and potential revisions in time series analysis, modeling, and forecasting.

Keywords: autocorrelation function (ACF); partial autocorrelation function (PACF); time series
analysis; normality; PACF distribution; Hassani’s − 1

2 theorem; Bank of England rate

1. Introduction

Time series data, characterized by its sequential nature, underpins a vast array of
applications, from economics [1] and finance [2] to climate modeling [3] and signal pro-
cessing [4]. Thus, understanding and extracting meaningful insights from the data hinges
on our ability to grapple with its inherent temporal dependencies. The Autocorrelation
Function (ACF) and the Partial Autocorrelation Function (PACF) emerge as central pillars
in this endeavor [5–7].

The power of ACF and PACF do not rest solely in their application; their theoretical and
empirical distribution form the cornerstone of statistical inference in time series analysis.
Therefore, understanding the expected distribution of ACF and PACF values under varying
conditions serves as a compass guiding analysts through hypothesis testing, confidence
interval estimation, model diagnostics, and forecasting [8].

For the time series analysis, a fundamental principle has long been established: the
theoretical sum of ACF values is invariably zero for any white noise process characterized
by a mean of zero and an arbitrary value of variance, denoted as σ2. However, a compelling
and intriguing discovery emerges when we delve into empirical observations: the sum
of sample ACF consistently converges to a constant, specifically − 1

2 (Hassani’s − 1
2 Theo-

rem) [6,7]. This intriguing constancy persists regardless of diverse time series attributes,
such as length, mean, variance, dependencies, or any other unique characteristics they may
possess. Numerous research studies have underscored the significance of Hassani’s −1/2
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Theorem for practical applications and its integration into time series analysis and model
development (refer, for example, to [9–12]).

The implications of this remarkable consistency are profound, particularly for the fields
of time series model building and analysis [13–15]. For a selected recent work highlighting
the importance of considering the sample ACF in analysis, especially in the context of
Hassani’s −1/2 Theorem, see, for instance, [16–18].

However, the sum of sample PACF has received relatively little attention in comparison
to its counterpart, ACF. Therefore, this paper will primarily focus on exploring the PACF. It
is essential to note that there exists a robust relationship between ACF and PACF for time
series analysis and modeling.

This paper goes beyond theoretical conjectures, illustrating our findings with a rich
array of practical examples. We employ both simulated data and real-world time series
to validate and emphasize the practical relevance of the results obtained in our study.
Through this interdisciplinary journey, we aim to contribute valuable insights that enhance
the understanding and application of PACF in the field of time series analysis.

In Section 2, we provide a foundational understanding of PACF, its distribution,
and the sum of sample ACF as the backbone of this research. Within this section, the defi-
nitions and mathematical derivations of these concepts are elucidated, offering readers a
view into the mechanics of the PACF. The distribution of sample PACF subsection advances
the discourse by focusing on the distribution aspects of the sample PACF. This subsec-
tion paints a detailed portrait of the PACF’s behavior, showcasing its inherent properties
and tendencies.

In Section 3, the paper shifts its focus to assess the behavior of the sample PACF and the
normality of the sum of sample PACF. Through simulation studies, this section juxtaposes
theoretical PACF with sample PACF, highlighting potential disparities and deviations.
Building on prior findings, the section offers a fresh perspective on the distribution of
sample PACF, underscored by empirical evidence. Additionally, this section evaluates
the application of observations from the simulations using real data sets, specifically the
185 years of monthly Bank of England Rate data.

Section 4 summarizes the main themes and findings of the paper, bringing the discus-
sion to a close. By synthesizing the concepts and reiterating the key discoveries, this section
provides a cohesive wrap-up of the paper’s central arguments and insights. Additionally,
it offers several ideas for further research based on the findings of this paper.

2. Partial Autocorrelation Function

In order to establish the definition of the PACF, it is necessary to initially examine
the notion of a linear regression, wherein a random variable Yt is predicted using its own
previous values up to a certain lag h [5].

The partial autocorrelation coefficient, denoted as ϕhh, represents the correlation
between the time series variable Yt and its lagged value Yt−h, while controlling for the
influence of all other preceding lags. The aforementioned number is derived by the
resolution of the Yule–Walker equations pertaining to an autoregressive process with a
lag of h. By utilizing empirical data, it is possible to derive an estimation for the PACF,
conventionally represented as ϕ̂hh. The formula for estimating the PACF, ϕ̂hh, for a given
realization of length T, YT = (y1, · · · , yT), is expressed as the estimation of coefficients in
the linear regression of YT on Yt−1, Yt−2, · · · , Yt−h.

The estimation of these coefficients can be achieved by several ways, one of which is
the Durbin–Levinson algorithm [19]. This algorithm is a recursive technique employed to
solve the Yule–Walker equations specifically for autoregressive (AR) models. It is important
to acknowledge that in order to obtain a precise estimation of the PACF, it is necessary
to estimate the ACF for the given data. The utilization of PACF estimates, generated
from sample PACF, is commonly employed to ascertain the appropriate number of lags to
include in an autoregressive (AR) model [5,20].
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2.1. Distribution of PACF

Let us now start this subsection by evaluating the distribution of PACF. Understand-
ing the distribution of PACF is vital for any time series modeling and forecasting, as it
provides crucial insights into the underlying dependencies within the data. By examining
the distribution, we can better assess the behavior of the time series, identify patterns,
and improve the accuracy of our models. This foundational knowledge is essential for
developing robust forecasting techniques and ensuring the reliability of predictions. Let us
first concentrate on the AR(p) process.

Remark 1. For a causal AR(p) process, asymptotically (n → ∞),
√
(n)ϕ̂hh → N(0, 1) for

h > p [19].

The above remark implies that, for large sample sizes, the estimated partial autocorre-
lation coefficients beyond the order p follow a standard normal distribution, providing a
basis for statistical inference in time series analysis. Consequently, the asymptotic normality
of the sample PACF suggests that the sum of the sample PACF would also be asymptoti-
cally normal. This result is derived by applying the delta method to the sample PACF at
different lags (see [19] for details on the delta method). Please note that the AR(p) process,
when p = 0, is a white noise series. Thus, this remark also applies to a white noise series.
Furthermore, under the null hypothesis for statistical tests, we assume that we have a noise
time series. Thus, the normality assumption plays a vital role.

The above remark indicates that, for an AR(p) process, ∑ ϕ̂hh for h > p follow a
normal distribution. Our aim here is to study this sum for various lags, even for h < p.
While there is not enough research on ∑ ϕ̂hh, recent studies on the sum of sample ACF
reveal several important observations for time series analysis and forecasting [6,7,21–25].

As mentioned in Remark 1, the sample PACF of any white noise process (as AR(0) pro-
cess) is asymptotically normal in all lags. In testing the null hypothesis
H0 : ϕhh = 0, h = 1, · · · , T − 1, this characteristic of sample PACF of white noise comes in
handy, since under this null hypothesis, the time series will be a white noise process.

As mentioned above, in practical applications, the accurate values of the PACF, ϕhh, are
often unknown and are approximated using their sample equivalents, ϕ̂hh. Thus, in practical
terms, our main interest lies with the sample data at hand. It is critical to underscore that the
theoretical notions, inclusive of all peripheral theory and approximations, should ideally be
observable in the application of these methods to real-world data. This practical application
is pivotal, as it allows us to validate the theoretical models and ensure their relevance and
utility in empirical analysis.

2.2. Sum of the Sample ACF

Let us now examine the sum of the Sample ACF (SACF). We will explore various prop-
erties of the SACF, largely building upon previous research, as exemplified in [6,7,21–25].

Hassani −1/2 Theorem [6]

The sum of the sample ACF, SACF, with lag h ≥ 1 is always −1
2 for any stationary time

series with arbitrary length T ≥ 2:

SACF =
T−1

∑
h=1

ρ̂h =
−1
2

. (1)

The SACF has the following properties:

1. It remains independent of the time series length, denoted as T; specifically, SACF

equals −1
2 for T ≥ 2.

This property is intriguing, because it implies that the total level of autocorrelation in
a stationary time series, quantified by the sum of the ACF values, remains unaffected
by the time series’ length.
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2. The value of SACF remains constant at −1
2 for any stationary time series. Consequently,

for instance, the SACF for any order (p, q) of an ARMA(p, q) process is equivalent to
that of a Gaussian white noise process, with both being equal to −1

2 .
The second property of the theorem asserts that, for any stationary time series,
the value of SACF is consistently −1

2 . In practical terms, this signifies that the sum
of sample ACF at each lag remains constant, irrespective of the time series’ length.
For instance, whether it is the sample ACF of an ARMA(p, q) process of any order
(p, q) or a Gaussian white noise process, both exhibit an unchanging value of −1

2
for SACF.
This result holds significant implications for the process of constructing ARMA models
and conducting forecasting. Consequently, improper order detection may occur,
leading to potential modeling inaccuracies.

3. The values of ρ̂(h) are linearly dependent:

ρ̂(i) =
−1
2

−
T−1

∑
j ̸=i=1

ρ̂(j) i = 1, · · · , T − 1. (2)

This equation demonstrates that the value of ρ̂(i) can be expressed as a linear com-
bination of the other sample ACF values, with a constant term of −1

2 . In essence, it
reveals that the sample ACF values are not independent of one another; instead, they
are systematically interconnected.

4. There is at least one negative ρ̂(h) for any stationary time series, even for AR(p) with
a positive ACF [6].
This property asserts that, in the context of any stationary time series, there is guaran-
teed to be at least one negative sample ACF value, even when dealing with autore-
gressive (AR) models characterized by positive ACF values.

The property of SACF being constant and equal to −1
2 for any stationary time series has

important implications for time series analysis and modeling (see, for example, [24,25]).
In conclusion, while the theoretical sum of ACF is always zero for any white noise

process with a mean of zero and variance σ2 (for example), it is important to note that the
sum of sample ACF consistently remains at −1

2 . This holds true regardless of the time series
length, mean, variance values, dependencies, or any other time series characteristics.

Although the patterns of the sum of the sample ACF vary across models, the sum al-
ways converges to −1

2 as the sample size expands. This indicates that the sum of the sample
ACF may not be a reliable metric for discerning long memory, especially when compared
to the theoretical definition rooted in the ACF [25]. This insight is crucial, highlighting that
exclusive reliance on the sample ACF for identifying long-memory processes might lead to
erroneous conclusions.

3. Assessing Normality of Sum of Sample PACF

Let us now consider the behavior of the sample PACF, examining it both through
simulation studies and by using real data sets. By leveraging simulations, we can explore
the theoretical properties and potential anomalies of the sample PACF in a controlled
environment. Additionally, applying our findings to real-world data, such as the 185 years
of monthly Bank of England Rate, allows us to validate our theoretical insights and assess
their practical implications. This dual approach not only enhances our understanding of
the sample PACF but also strengthens the robustness of our conclusions in the context of
time series modeling and forecasting.

3.1. Simulation

In order to investigate the distribution of the sample PACF, a simulation study is
conducted. The simulation consists of 5000 sample paths for each of the time series lengths
T = 50, 100, 500, and 1000. Each sample path is generated from Gaussian white noise,
and the sample PACF is calculated for all possible lags (lags 1 to T − 1 for the generated
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sample path of length T). Once the sample PACFs are generated for simulated sample
paths, the Shapiro–Wilk test [26] is employed to test the normality of the cumulative sum
of sample PACF in each lag. The null hypothesis in the normality test is as follows:

H0(h) :
h

∑
i=1

ϕ̂ii ∼ N(µ0(h) , σ0(h)), h = 1, · · · , T − 1,

where µ0(h) and σ0(h) are the mean and standard deviation of ∑h
i=1 ϕ̂ii in the simulated data.

The p-values of each test and the first lag in which the normality assumption is rejected are
recorded. In order to account for the stochastic nature of the simulation study, the above-
described simulation is repeated 100 times, and the median, 2.5, and 97.5 percentiles for
p-values and the first lag in which the normality assumption is rejected are calculated.
Furthermore, the density of the sum of sample PACF is estimated using the kernel method,
and the median and 2.5 and 97.5 percentiles of the fitted densities are calculated as well.
Estimated percentiles for the first lags in which the sum of sample PACF’s normality is
rejected are presented in Table 1.

Table 1. First lag in which Shpiro–Wilk null hypothesis is rejected in simulated white noise sam-
ple paths.

Percentiles of the First, Lag Time Series Length
in Which Normality Is Rejected T = 50 T = 100 T = 500 T = 1000

2.5% 1 1 1 3
Median 9 18 36 70
97.5% 14 27 131 261

Figure 1 also shows the distribution of the first lags where the sum of the sample
PACF’s distribution significantly departs from a normal distribution. As can be seen, after a
certain number of lags, in all the simulations, the distribution of the sum of the sample
PACF departs from a normal distribution.

Figure 1. Histogram of first lag in which the normality of white noise’s cumulative sum of sample
PACF is rejected at α = 5% significance level.

Figure 2 represents the trend of Shapiro–Wilk’s p-value for testing the normality of
cumulative sum of sample PACFs in different lags. The solid line shows the median of
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p-values from different simulations and the bound shows the area between 2.5 and 97.5 per-
centiles of p-values from different simulations (representing 95% confidence interval).

Figure 2. Trend of Shapiro–Wilk’s p-values for testing the normality of cumulative sum of sample
PACFs in different lags. Solid line shows the median of p-values from different simulations and the
bound represents 95% confidence interval, calculated based on simulated white noise time series.

To better visualize the departure of the cumulative sum of sample PACF from a normal
distribution, the density of cumulative sum of sample PACF are estimated for the lags in
Table 1. Please note that the use of the keyword “cumulative” here indicates that the sum is
taken from lag 1 to lag h. Otherwise, the meaning remains the same without using the term
“cumulative”. This is just for a more precise representation of the results.

Since, in practical applications of the sample PACF (e.g., finding the order of AR
component in a model), it is common to use the sample PACF up to the lag that is T/4
(were T is the length of observed time series), the density is also estimated for lag T/4 (for
further discussion on this selection, see, for instance, [23]). The median and 95% confidence
intervals for estimated densities are presented in Figures 3–6.

As evident in Figures 3–6, as the number of lags in the sum of the sample PACF
increases, the distribution departs from normality. However, the rate of this departure
depends on the length of the time series.

As discussed by Fuller [27], when the coefficients of a stationary AR model are close to
the unit root boundaries, the asymptotic normality of the estimated parameters converges
at a slower rate, necessitating a very large number of observations for accurate inference.
Fuller’s argument is particularly relevant to the sample PACF distribution, especially in the
AR(1) case, since the first lag sample PACF, the first lag sample ACF, and the coefficient
estimate are equal.

As shown in Figures 3–6, the departure of the sample PACF distribution from normal-
ity continues at later lags, even in white noise. Figure 7 also illustrates the cumulative sum
of sample PACFs and their density across different lags, for 1000 simulated sample paths
from the following AR(1) time series:

yt = 0.9yt−1 + εt, εt ∼ N(0, 1), t = 1 · · · , 1000.
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Figure 3. Estimated densities of the cumulative sum of sample PACF lags in Table 1 and the lag
T/4. The solid line represents the median of estimated densities and the bound represents the 95%
confidence interval, calculated based on simulated white noise time series of length 50.

Figure 4. Estimated densities of the cumulative sum of sample PACF lags in Table 1 and the lag
T/4. The solid line represents the median of estimated densities and the bound represents the 95%
confidence interval, calculated based on simulated white noise time series of length 100.
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Figure 5. Estimated densities of the cumulative sum of sample PACF lags in Table 1 and the lag
T/4. The solid line represents the median of estimated densities and the bound represents the 95%
confidence interval, calculated based on simulated white noise time series of length 500.

Figure 6. Estimated densities of the cumulative sum of sample PACF lags in Table 1 and the lag
T/4. The solid line represents the median of estimated densities and the bound represents the 95%
confidence interval, calculated based on simulated white noise time series of length 1000.
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Figure 7. Cumulative sample PACF for sample paths simulated from AR(1) model with 0.9 coefficient
and their estimated density.

As can be seen, the distribution is skewed from the first lag. Furthermore, it is evident
that the cumulative sum of sample PACF follows a stochastic decreasing pattern.

3.2. Monthly Bank of England Rate for 185 Years

In our investigation of time series analysis, particularly focusing on PACF, it was
imperative to apply our theoretical insights to a real-world context. For this purpose,
we selected a comprehensive and historically significant dataset: 185 years of monthly
Bank of England Rate (Figure 8, top). This dataset not only offered a vast span of data,
but also presented a unique opportunity to examine economic trends over a long period,
providing a practical ground for testing our theoretical propositions. Full description and
comprehensive analysis of the data are presented in [28].

Our approach involved decomposing the time series data to isolate the random
noise component, thereby enabling a clearer analysis of the PACF. This was essential
in understanding how theoretical models of PACF hold up against actual, observed data.
The residual series, after confirming that they are white noise, is then simulated 1000 times
in order to generate the distribution of the sample PACF. We applied the Shapiro–Wilk
test to evaluate the normality of the sum of sample PACF distribution. This analysis was
pivotal in confirming or challenging our earlier simulations and theoretical deductions
regarding the behavior of sample PACF in real-world data.
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The analysis of this dataset highlighted the deviations of empirical PACF from its
theoretical expectations, especially beyond certain lags (see Figure 8, bottom). Thus,
this real-world application of PACF not only validated our previous findings, but also
provided a deeper understanding of its practical implications. It underscored the necessity
for analysts and economists to consider these deviations in their models and forecasts.
Moreover, it opened up avenues for future research, particularly in refining PACF models
to better account for the complexities and idiosyncrasies of real-world economic data.

Figure 8. The top plot shows 185 years of monthly Bank of England rate data, while the bottom plot
displays the p-value of the Shapiro–Wilk test for the simulated residual series after modeling the
extracted signal.

4. Conclusions

Our analysis has demonstrated that while the PACF is a fundamental tool in uncov-
ering the intricacies of time series data, its behavior in empirical scenarios can deviate
significantly from theoretical expectations. Notably, we observed that the sum of the sample
PACF and, consequently, its components, diverges from the expected normal distribution
beyond a certain lag.

This deviation becomes more pronounced at larger lags, thus posing challenges to the
underlying assumptions of normality in time series modeling.

The implications of these findings are profound. They compel us to reconsider and
possibly revise standard practices in time series analysis, especially in the context of model
selection and forecasting. The recognition that sample PACF can deviate from theoretical
predictions underscores the need for a more nuanced approach in analyzing time series
data, one that accounts for potential deviations and adapts to the specific characteristics of
the dataset.

Furthermore, our study has highlighted the importance of a comprehensive approach
that integrates both theoretical understanding and empirical analysis. By applying our
findings to a real-world dataset of such historical significance, we have managed to bridge
the gap between theory and practice, providing insights that are not only academically
intriguing but also practically relevant.

In conclusion, our journey through the complex world of time series analysis, guided
by the lens of the PACF, has revealed new challenges and opportunities. It underscores
the need for continuous exploration and adaptation in the field, encouraging future re-
search to delve deeper into these findings and further refine our understanding of time
series analysis.
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