Scenario projections of South Asian migration patterns amidst environmental and socioeconomic change

de Bruin, S., Hoch, J., de Bruijn, J. ORCID: https://orcid.org/0000-0003-3961-6382, Hermans, K., Maharjan, A., Kummu, M., & van Vliet, J. (2024). Scenario projections of South Asian migration patterns amidst environmental and socioeconomic change. Global Environmental Change 88 e102920. 10.1016/j.gloenvcha.2024.102920.

[thumbnail of 1-s2.0-S0959378024001249-main.pdf]
Preview
Text
1-s2.0-S0959378024001249-main.pdf - Published Version
Available under License Creative Commons Attribution.

Download (9MB) | Preview

Abstract

Projecting migration is challenging, due to the context-specific and discontinuous relations between migration and the socioeconomic and environmental conditions that drive this process. Here, we investigate the usefulness of Machine Learning (ML) Random Forest (RF) models to develop three net migration scenarios in South Asia by 2050 based on historical patterns (2001–2019). The model for the direction of net migration reaches an accuracy of 75%, while the model for the magnitude of migration in percentage reaches an R2 value of 0.44. The variable importance is similar for both models: temperature and built-up land are of primary importance for explaining net migration, aligning with previous research. In all scenarios we find hotspots of in-migration North-western India and hotspots of out-migration in eastern and northern India, parts of Nepal and Sri Lanka, but with disparities across scenarios in other areas. These disparities underscore the challenge of obtaining consistent results from different approaches, which complicates drawing firm conclusions about future migration trajectories. We argue that the application of multi-model approaches is a useful avenue to project future migration dynamics, and to gain insights into the uncertainty and range of plausible outcomes of these processes.

Item Type: Article
Uncontrolled Keywords: Climate change; Environmental change; Machine-learning; Migration; Scenario projections; South Asia
Research Programs: Biodiversity and Natural Resources (BNR)
Biodiversity and Natural Resources (BNR) > Water Security (WAT)
Depositing User: Luke Kirwan
Date Deposited: 09 Sep 2024 08:08
Last Modified: 09 Sep 2024 08:08
URI: https://pure.iiasa.ac.at/19978

Actions (login required)

View Item View Item