

Simulating ecosystem response to climate change by capturing plant functional adaptation and trait evolution

Florian Hofhansl

Research Scholar

Biodiversity, Ecology, and Conservation Research Biodiversity and Natural Resources

Contact

Intro: functional ecology and trait-based applications (TBA)

Plant functional traits defined as *morphological*, *physiological* and *phenological* attributes of living organisms that modulate their overall fitness (Violle *et al.*, 2007).

Plant life history strategies defined by combinations of functional traits that are filtered by the biotic and abiotic environment (Díaz *et al.,* 1998).

Trait-based approach (TBA) allows a functional perspective, on ecosystem response to the environment (Aguirre–Gutiérrez *et al.,* 2022; Chacón-Labella *et al.,* 2022).

<u>Intro</u>: representation of plant functional ecology (DGVMs)

Blanco, et al., (in prep.). Trait-based vegetation modeling and data integration to advance our knowledge on the functional ecology of ecosystems.

<u>Method</u>: simulate ecosystem response by accounting for plant functional adaptation to climate (drought, etc.)

Method: annly model to a hyperdiverse Amazonian forest

Sharing is encourage Joshi, Hofhansl et al., (2023). Competition for light can drive adverse species-composition shifts in the Amazon Forest under elevated CO2. *bioRxiv*. https://doi.org/10.1101/2023.07.03

<u>Method</u>: community responds on three timescales (eCO₂)

1. Physiological response in increased leaf-level photosynthesis 1 year

6

2. Demographic change due to changing light environment 500 years 3. Evolutionary change due to changing species composition 2000 years

<u>Method</u>: eCO₂ increases GPP, decreases transpiration (g_s)

Joshi, Hofhansl et al., (2023). Competition for light can drive adverse species-composition shifts in the Amazon Forest under elevated CO2. *bioRxiv*. https://doi.org/10.1101/2023.07.03.547575

<u>Results</u>: predictions vs. observations (except for biomass)

<u>Results</u>: eCO₂ affects plant characteristics (acquisitive traits)

<u>Results: eCO₂ enhances aboveground biomass and turnover</u>

- → increase in productivity GPP (a), NPP (b), and respiration (e)
- → decrease in stomatal conductance (c) and photosynthetic capacity (d)
- → Leaf area and aboveground biomass increase (g-h), but also mortality rate (f)
- → Heights of canopy layers increase (i), making the understory darker.
- → Traits evolve towards <u>higher wood density</u> (j), <u>higher maximum height</u> (k), and less negative <u>xylem hydraulic vulnerability</u> (l).

<u>Results</u>: reverse trends with progressively increasing eCO₂

Each point represents the respective steady state with CO_2 level indicated by point color (400 ppm – 1200 ppm)

with increasing CO2 concentrations:

productivity increases monotonically (a,b),

wood density and aboveground biomass initially increase but then peak and decrease beyond 600 ppm (d,e).

canopy layer heights increase, causing intensifying competition for light and thus <u>increasing understory mortality</u> (j).

<u>Results</u>: eCO₂ affects wood density, but feedbacks!

Fitness of individual trees growing in a specified environment, (aC+aI+aT/eC+aI+aT/eC+eI+aT) as a function of wood density:

→ For all scenarios, <u>fitness peaks at intermediate values of wood</u> <u>density</u> (marked by vertical lines), reflecting the **trade-off between growth and survival**.

Optimal wood density (corresponding to the fitness maxima):

- Junder elevated CO₂ but in the absence of environmental feedbacks, trees with higher wood density are fitter.
- → However, when environmental feedbacks are accounted for optimal wood density decreases as compared to baseline.

<u>Results</u>: increased respiration and belowground allocation reduce the CO_2 -fertilization effect on aboveground biomass

- Elevated CO₂ (614.2 ppm)
- eCO_2 + 50% increase in feedback
- sapwood respiration (+Rs)

increase in sapwood respiration rate, (due to increasing temperature)

• belowground allocation $(+\zeta)$

increased belowground allocation (response to nutrient limitation)

Outlook: trait variability / belowground allocation

Rius, B.F., et al., (2023). Higher functional diversity improves modeling of Amazon forest carbon storage. Ecological Modelling. 481, e110323.

Outlook: belowground trade-offs (investment)

Thank you – questions?

For further questions and a link to the references please contact me via the QR code shown above!

Joshi, J., Stocker, B.D., Hofhansl, et al., (2022). Nature Plants 10.1038/s41477-022-01244-5.

eCO2 triggers increased mortality rates (understory)

Plant-FATE successional dynamics

Trop architecture in Plant-FATE ---- Eucalyptus pilularis $A_{\rm p}(z) = \pi r(z)^2$ 20. $A_{g}(z) = White area$ $A_{\rm CD}(z) =$ Green area 15-10 5. -6 B 0.1 -6 .2 \cap AC AC WS Ws D

Joshi, Hofhansl et al., (2023). Competition for light can drive adverse species-composition shifts in the Amazon Forest under elevated CO2. *bioRxiv*. https://doi.org/10.1101/2023.07.(