Sarofim, M.C., Smith, C. ORCID: https://orcid.org/0000-0003-0599-4633, Malek, P., McDuffie, E.E., Hartin, C.A., Lay, C.R., & McGrath, S. (2024). High radiative forcing climate scenario relevance analyzed with a ten-million-member ensemble. Nature Communications 15 (1) 10.1038/s41467-024-52437-9.
Preview |
Text
s41467-024-52437-9.pdf - Published Version Available under License Creative Commons Attribution. Download (954kB) | Preview |
Abstract
Developing future climate projections begins with choosing future emissions scenarios. While scenarios are often based on storylines, here instead we produce a probabilistic multi-million-member ensemble of radiative forcing trajectories to assess the relevance of future forcing thresholds. We coupled a probabilistic database of future greenhouse gas emission scenarios with a probabilistically calibrated reduced complexity climate model. In 2100, we project median forcings of 5.1 watt per square meters (5th to 95th percentiles of 3.3 to 7.1), with roughly 0.5% probability of exceeding 8.5 watt per square meters, and a 1% probability of being lower than 2.6 watt per square meters. Although the probability of 8.5 watt per square meters scenarios is low, our results support their continued utility for calibrating damage functions, characterizing climate in the 22nd century (the probability of exceeding 8.5 watt per square meters increases to about 7% by 2150), and assessing low-probability/high-impact futures.
Item Type: | Article |
---|---|
Additional Information: | Unmapped bibliographic data: JO - Nature Communications [Field not mapped to EPrints] |
Research Programs: | Energy, Climate, and Environment (ECE) Energy, Climate, and Environment (ECE) > Integrated Assessment and Climate Change (IACC) |
Depositing User: | Luke Kirwan |
Date Deposited: | 19 Sep 2024 12:25 |
Last Modified: | 19 Sep 2024 12:25 |
URI: | https://pure.iiasa.ac.at/19993 |
Actions (login required)
View Item |