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A B S T R A C T

Water pollution incidents pose a significant threat to the safety of drinking water supplies and directly impact the 
quality of life of the residents when multiple pollutants contaminate drinking water sources. The majority of 
drinking water sources in China are derived from rivers and lakes that are often significantly impacted by water 
pollution incidents. To tackle the internal mechanisms between water quality and quantity, in this study, a 
Copula-based spatiotemporal probabilistic model for drinking water sources at the watershed scale is proposed. A 
spatiotemporal distribution simulation model was constructed to predict the spatiotemporal variations for water 
discharge and pollution to each drinking water source. This method was then applied to the joint probabilistic 
assessment for the entire Yangtze River downstream watershed in Nanjing City. The results demonstrated a 
significant negative correlation between water discharge and pollutant concentration following a water emer
gency. The water quantity-quality joint probability distribution reached the highest value (0.8523) after 14 hours 
of exposure during the flood season, much higher than it was (0.4460) during the dry season. As for the Yangtze 
River downstream watershed, five key risk sources (N1–N5) and two high-exposure drinking water sources 
(W3–W4; AEI=1) should be paid more attention. Overall, this research highlights a comprehensive mode be
tween water quantity and quality for drinking water sources to cope with accidental water pollution.

1. Introduction

Water pollution accidents, are considerably unpredictable, have high 
toxicity and enduring consequences, pose severe threats to water safety 
and the overall health of aquatic ecosystems. Ultimately, such incidents 
can disrupt social and economic stability (Issakhov et al., 2021; Liu 
et al., 2024). When these contaminants infiltrate drinking water sources, 
they pose an immense danger to the safety of the drinking water supply, 
and directly affect public health and livelihoods (Liu et al., 2021a; 
Manyepa et al., 2024). Drinking water sources in China primarily orig
inate from rivers or lakes (Zhai et al., 2021) that are vulnerable to un
foreseen events (Wang et al., 2023). The frequency of emergencies that 

affect drinking water source protection areas has notably elevated (Xu 
et al., 2021; Meng et al., 2024). Upon the occurrence of accidents, 
spatiotemporal variations in water discharge are strongly disturbed, 
resulting in water quality fluctuation, that exacerbate the difficulty of 
accurately simulating pollutant concentration variations in real time 
compared with a typical water environment. Therefore, the accurate 
characterization of the internal mechanism linking water discharge and 
pollutant concentration in aquatic environments (Paredes-Arquiola 
et al., 2010; Liu et al., 2018; Wang et al., 2024) during accidental water 
pollution remains a crucial challenge.

Due to the bioaccumulation, poisonousness, and non-biodegradation 
of heavy metals (Ali et al., 2022), there are inadvertent adverse effects 
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on the proper functioning of groundwater systems that pose significant 
health risks (Dippong et al., 2022). Pollution indices, such as the heavy 
metal pollution index (Dippong and Resz, 2024 a), cluster analysis 
(Varol and Tokatli, 2023), and multivariate statistical approaches (Varol 
and Tokatli, 2022), have been used to assess heavy metal contamination 
in water bodies. These mathematical models primarily rely on extensive 
temporal and spatial datasets of water samples, that incorporate specific 
parameters and standard values. Subsequently, these data undergo a 
transformation process that assigns scores to classify fluids into separate 
categories that accurately represent the specific degree of contamination 
(Dippong and Resz, 2022). However, heavy metal ions (i.e., water 
quality) would inevitably be impacted by discharge (i.e., water quantity) 
in a waterbody. Therefore, it is imperative to study the relationship 
between these two variables.

Water quantity (i.e., discharge) and quality (i.e., pollutant concen
tration) are the two essential characteristics of waterbodies. A meticu
lous understanding of their underlying mechanisms is fundamental for 
the effective management of aquatic environments (Campanho et al., 
2021; Li et al., 2023). Typically, these two variables have a significant 
negative correlation, suggesting that optimizing water quality via 
rational water scheduling represents a primary approach for water 
pollution mitigation strategies (Shokri et al., 2014; Yu et al., 2016; Zhao 
et al., 2024). For several decades, numerical models and multi-objective 
index methods have been the predominant approaches to investigate 
integrated assessments of water discharge and pollutant concentrations 
(Liu et al., 2022; Dippong et al., 2023). Numerical simulation depends 
on mature hydrological models, such as the Quality Model (QUAL; Hur 
et al., 2018; Shi et al., 2024), Water Quality Analysis Simulation Pro
gram (WASP; Mbuh et al., 2019; Huang et al., 2024), Distributed hy
drodynamic and water quality model (HydroPol2D; Gomes et al., 2023), 
MIKE 21 model (Yang et al., 2021), Soil and Water Assessment Tool 
(SWAT; Xue et al., 2021; Shin et al., 2023) and so on, that provide 
frameworks for the analysis of complex water systems to predict the 
outcomes of various environmental scenarios. While these models excel 
at accurately forecasting the spatial and temporal dynamics of water 
quality, they fall short in elucidating the intricate interplay between 
water quantity and quality. This limitation stems from their narrow 
focus on the spatiotemporal distribution of specific contaminants, rather 
than considering the broader systemic interactions that govern water 
quality (Yu and Zhang, 2021; Liu et al., 2022). Multi-objective index 
methods encompass a variety of techniques, such as the composite index 
(He et al., 2023; Zavareh et al., 2023), the fuzzy index (Wang et al., 
2014; Manzar et al., 2022), machine learning (Jiang et al., 2021; 
Najafzadeh et al., 2024), and linear additivity (Cao et al., 2021). It is 
important to acknowledge that while sophisticated models integrate a 
diverse array of natural, hydrological, and anthropogenic factors, these 
studies treat water discharge and pollutant concentration as isolated 
elements without accounting for their potential interactions.

As a powerful probabilistic technique for investigating relationships 
of random variables (Cai et al., 2023; Li et al., 2023), Copula functions 
(Sklar, 1959) enable the construction of multivariate joint probability 
distributions, facilitating a precise quantification of the dependency 
structures among these variables (Frees and Valdez, 1998). Copula 
functions allow for the creation of a joint probability distribution model 
that accurately captures any underlying nonlinear or asymmetric re
lationships between variables, ensuring that the model remains undis
torted (Zentner, 2017; Cai et al., 2019). With fewer data parameters 
(McManamay, 2014), the Copula model is more flexible and has been 
widely applied in water environment management, including water 
resource allocations (Chen et al., 2022; Yue et al., 2022), water–energy 
nexus (Cai et al., 2019; Zhang et al., 2023) and water pollution assess
ments (Zang et al., 2022; Seo et al., 2024). Increased research attention 
has been directed toward understanding the relationship between water 
quantity–quality (Wang et al., 2017; Park et al., 2019) and water 

quality–quality for contaminants such as NH3–N and CODMn (Liu et al., 
2018, 2022), Polycyclic Aromatic Hydrocarbons (PAHs; Liu et al., 
2020), and water quality forecasting (Zhang et al., 2024) in rivers or 
reservoirs under steady states. While several studies have investigated 
accidental heavy metal joint pollution, such as Cr6+–Hg2+ (Liu et al., 
2021b), there is a notable lack of research that has examined the internal 
relationships between water quality and quantity during periods of 
instability. Therefore, Copula techniques also have the potential to 
provide flexible simulations and accurate estimations of joint probabil
ity distributions for these two variables and can decrease bias in expo
sure assessments.

To fill this knowledge gap, in this study, a Copula-based probabilistic 
model is proposed to explore the internal mechanism between water 
quantity (i.e., discharge) and quality (i.e., pollutant concentration) 
during emergency water pollution incidents that affect drinking water 
sources. The innovations are as follows: (1) Copula functions are first 
introduced to explore the internal correlation between quantity and 
quality during water pollution emergencies, and then to estimate their 
joint probability distributions for each risk source across varying water 
sources. This provides a comprehensive understanding of the combined 
impact on water quality. (2) By integrating the sudden heavy metal 
transport model with hydrological simulations, it is possible to deter
mine the real-time water discharge and pollutant concentration of 
drinking water sources across baseline and accident scenarios during the 
dry/flood season. (3) A kernel density analysis was preferentially 
adopted to fit the marginal probability of these two variables (i.e., water 
quantity and quality) within each unique scenario for different water 
sources. This model was applied to the Yangtze River downstream 
watershed in Nanjing, China, to identify the key risk sources, quantify 
the joint relationships between water quantity and quality, and ulti
mately clarify the spatiotemporal exposure distribution map of each 
drinking water source. This is essential for preventing risk sources, 
optimizing water dispatching strategies, and safeguarding sensitive 
ecological receptors to ensure the protection of drinking water sources.

2. Methods and materials

2.1. Study area and data sources

2.1.1. Study area
The Yangtze River has a length of 6380 km and a drainage area of 1.8 

× 106 km2 and is the longest river in China. It originates east of the 
Qinghai Tibetan Plateau and then flows into the East China Sea (Müller 
et al., 2008; Dong et al., 2023). The Yangtze River not only is the home 
of more than 4300 species of aquatic life but also contains approxi
mately 400 million people, spanning 19 provinces from Western China 
to Eastern China (Chen et al., 2020). Its downstream (27′02″–35′08″N, 
114′54″–123′10″E, see Fig. 1(a)) reaches extend from Hukou to the sea 
and include the Anhui, Jiangsu, Zhejiang Provinces and Shanghai City, 
with an area of 359,100 km2 (He et al., 2023). This study focused on the 
Yangtze River downstream in Nanjing City of Jiangsu Province (see 
Fig. 1(b)). The Yangtze River is the most important drinking sources of 
Nanjing City and comprises seven designated intakes: three on the left 
bank (labeled W1, W2, and W4) and four on the right bank (labeled W3, 
W5–W7). These sources collectively provide water for an estimated 
population of 8.5 million residents in the city. As a golden waterway, the 
Yangtze River has fostered the growth of extensive water-based trans
port networks and numerous industrial operations along its banks. 
However, this development has also led to increased vulnerability to 
sudden pollution incidents, posing a significant environmental risk. 
Numerous industrial parks are situated within 5 km along the down
stream of the Yangtze River that may pose a threat to drinking water 
sources. In our study, we selected 29 electroplating enterprises (labeled 
N1–N29) as representative risk sources for simulating accidental water 
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pollution scenarios in the lower reach of the Yangtze River based on a 
checklist of typical heavy-metal enterprises in Nanjing City.

2.1.2. Data sources and parameter establishments
For each identified risk source, we meticulously gathered critical 

information such as its geographic coordinates, yearly wastewater 
discharge figures, peak concentrations of heavy metal ions, contingency 
plans for spill responses, associated costs, and details of the receiving 
water bodies. These data were sourced from their respective environ
mental risk management plans and detailed reports. In addition, field 
investigations were conducted in March 2023, in partnership with the 
Nanjing Eco-environment Bureau. As for the drinking water source, its 
spatial location, and daily water supply and intake, water intake loca
tion, and division of protection areas were obtained from the Jiangsu 
Province Water Resources Bulletin (Jiangsu, 2021) and local investiga
tion reports on the basic situation of centralized drinking water source 
areas. Topographic data for the lower Yangtze River downstream of 
Nanjing were derived from a 30 m resolution Digital Elevation Model 
(DEM) sourced from the China Center for Resources Satellite Data and 
Application (CRESDA). We utilized digitally rendered topography data 
of the river, extracted from the 1:40,000 scale electronic navigational 
channel chart created by the Nanjing Navigation Bureau in 2009. Daily 
tide data (i.e., two high tide levels and two low tide levels) from the 
Ma’anshan Station, the Nanjing Station, and the Zhenjiang (II) Stations 
were selected from the annual hydrological report of the Yangtze River 
Basin (Ministry of Water Resources, 2019). The baseline concentrations 
of heavy metals in the sediment and surface water of the Yangtze River’s 
lower reach were sourced from published studies (Zhang et al., 2017; Jin 
et al., 2023).

For the Yangtze River downstream watershed, we collected data on 
the boundary tide level and discharge from two stations (Ma’anshan and 
Zhenjiang (II)) during two time periods, i.e., the dry season (from 00:00 
on February 1, 2018, to 00:00 on May 1, 2018) and the flood season 
(from 00:00 on June 1, 2018–00:00 on September 1, 2018). The cali
bration data were derived from the Nanjing Station. Regarding the 

accidental heavy metal pollution situation, the information was based 
on the prioritized list of heavy metal ions that require control in the 
lower reach of the Yangtze River, as well as the list of key enterprises 
responsible for monitoring heavy metal levels in 2018. The simulation 
parameters were determined using data from previous water pollution 
incidents in the Yangtze River downstream watershed (Wang et al., 
2023; Xie et al., 2023), as well as insights gained from previous studies 
on heavy metal pollution (Liu et al., 2021a, 2021b). In this research, it 
was assumed that wastewater would be directly exposed to the Yangtze 
River water body once the emergency incident occurred.

Based on the list of priority control pollutants in the lower Yangtze 
River downstream of Nanjing City and the list of key monitoring and 
basic emission information of heavy metal enterprises in Jiangsu Prov
ince in 2018, four heavy metals (i.e., Cr6+, Hg2+, Pb2+, and Cd2+) were 
selected as the typical priority pollutants. According to the maximum 
credit accident theory (Khan, 2001), the maximum concentration of 
acute Cr6+ exposure was selected to simulate for each enterprise based 
on the Environmental Statistics for Nanjing City of Jiangsu Province in 
2018. The onset of leakage occurred precisely at 00:00 on the 11th of 
February during the dry season simulation and the 11th of June during 
the flood season simulation. The leakage persisted for two hours.

2.2. Model framework

A Copula-based spatiotemporal probabilistic model (Fig. 2) was 
proposed to accurately forecast the interdependencies between water 
quantity, as measured by discharge, and water quality, characterized by 
pollutant concentrations, within drinking water source environments. 
This is, to our knowledge, the first systematic attempt to probabilisti
cally predict the joint causal connections between water discharge and 
acute heavy metal ion exposure following an emergency that transpired 
at the watershed scale. This method comprised three main steps. First, a 
simulation model was developed to predict the temporal and spatial 
changes in water quantity and quality in the event of an accidental 
heavy metal emergency at the downstream watershed of the Yangtze 

Fig. 1. Yangtze River (a) and its downstream watershed in Nanjing City (b).
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River in Nanjing City. Second, marginal probability distributions of the 
water discharge and heavy metal ions were calculated based on a Kernel 
density analysis. Third, the joint probability distribution of these two 
variables was determined using a Copula analysis for each drinking 
water source in Nanjing City along the Yangtze River. Finally, a 
spatiotemporal distribution map of the entire watershed was con
structed based on the acute exposure matrix of each identified risk 
source.

2.3. Spatiotemporal distribution simulation model

A spatiotemporal distribution simulation model was constructed to 
predict the time variation in water discharge and heavy metal concen
tration in the Nanjing section of the Yangtze River in response to po
tential accidental heavy metal pollution events. This integrated model 
comprised two components: a hydrological model for simulating vary
ing river flows, discharge, and water levels, and a sudden heavy metal 

transport model for predicting the dispersion and fate of heavy metals in 
the event of contamination (Warren and Bach, 1992; Liao et al., 2020). 
Moreover, the sudden heavy metal transport model, proposed by Di Toro 
et al. (1986), was utilized to trace the spatiotemporal distribution of the 
dissolved and adsorbed heavy metal ions between the water and sedi
ment phases.

Hydrological model: As the width of the Yangtze River in Nanjing 
City is much greater than its depth, and there is no obvious layering 
phenomenon, a two-dimensional hydrodynamic model was chosen to 
simulate the water levels and flows using MIKE 21 software, as shown in 
Eqs. 1–3. The water level variations were described by integrating the 
conservation of mass and momentum equations over the vertical, based 
on the Navier–Stokes equation with three incompressible and uniformly 
distributed Reynolds values (DHI, 2017a). 

∂Q
∂t

+
∂Ψ
∂x

+
∂Ω
∂y

= S (1) 

Fig. 2. Copula-based spatiotemporal probabilistic model framework.

J. Liu et al.                                                                                                                                                                                                                                       Ecotoxicology and Environmental Safety 286 (2024) 117110 

4 



Q =

⎡

⎣
H
Qx
Qy

⎤

⎦,Ψ =

⎡

⎣
Qx

UQx + gH2/2
UQy

⎤

⎦Ω =

⎡

⎣
Qy

UQx
UQy + gH2/2

⎤

⎦ (2) 

S =

⎡

⎢
⎢
⎢
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⎢
⎣

i

−
gH∂zB

∂x
− Cf U
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−
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√

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(3) 

where x, y and t represent the horizontal coordinate, vertical coordinate, 
and time, respectively; the vector Q consists of the water depth and the 
flow rates Qx and Qy; the variables U and V denote the velocity of flow in 
the x and y directions, respectively; the variables Ψ and Ω stand for the 
flux vectors in the x and y directions, respectively; the source term, 
vector S, consists of three components i.e., the rainfall of the infiltration 
term i, the bottom slope source term, and the frictional force term; zB 
represents of the elevation of the riverbed bottom; and Cf is the 
roughness of the riverbed, Cf = gn2/h1/3, where n stands for the 
Manning coefficient.

The MIKE 21 HD flow model uses an Alternating Direction Implicit 
(ADI) method to numerically integrate the equations that govern the 
conservation of mass and momentum across both space and time di
mensions, thereby providing a robust framework for simulating fluid 
dynamics. A Double Sweep (DS) was used to perform the resolution of 
the equation matrices that were produced for each individual grid line 
and each direction independently.

Sudden heavy metal transport model: Heavy metals in an aquatic 
environment can either be dissolved in water or attached to suspended 
particulate matter (Nyjfeler et al., 1986; Liu et al., 2021b). The behavior 
of heavy metal ions in aquatic environments typically includes the 
following processes Honeyman and Santschi, (1988): metal adsorption 
and desorption; particulate metal sedimentation and resuspension; dis
solved metal diffusive transport at the sediment/water interface; and 
dissolved and particulate metal’s advection and dispersion in the water 
column, as shown in the Eqs. 4–9. 

dSHM

dt
= − adsorption + desorption + diffusion

[
gMe

m3bulk⋅d

]

(4) 

dSHMS

dt
= − adsorption + desorption − diffusion

[
gMe
m2⋅d

]

(5) 

dXHM

dt
=adsorption − desorption − sedimentation

+ resuspension
[

gMe
m3bulk⋅d

] (6) 

dXss

dt
= production − sedimentation + resuspension

[
gDW

m3bulk⋅d

]

(7) 

dXHMS

dt
=adsorption − desorption + sedimentation

− resuspension
[

gMe
m2⋅d

] (8) 

dXSED

dt
= sedimentation − resuspension

[
gDW
m2⋅d

]

(9) 

where SHM and XHM are the concentrations of heavy metals that have 
been dissolved and adsorbed in the water; SHMS and XHMS are the con
centrations of heavy metals that have been dissolved and adsorbed in the 
sediment; XHMS is the concentration of heavy metals that attached to 
sediment; and XSS is the concentration of suspended solids in the water. 
More detailed equations can be found in the reference (DHI, 2017b).

2.4. Copula-based joint probability analysis

2.4.1. Dependence of water quantity and quality
The Spearman (ρn), Pearson (rn), and Kendall (τn) correlation co

efficients (Cai et al., 2019; Liu et al., 2021b) were calculated to clarify 
the relevance between random variables (i.e., water discharge and 
heavy metal ion concentration in short term), shown in Eqs. 10–12. 

ρn =

∑n
i=1(Ri − R)(Si − S)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Ri − R)2
(Si − S)2

√ =
12

n(n + 1)(n − 1)
∑n

i=1
RiSi −

3(n + 1)
n − 1

(10) 

rn =
∑n

i=1
(Xi − X)(Yi − Y)

/

((n − 1)
̅̅̅̅̅̅̅̅̅̅̅̅̅

Sx
2Sy

2
√

(11) 

τn =
2

n(n − 1)
∑n− 1

i=1

∑n

j=i+1
sgn((Xi − Xj)(Yi − Yj)) (12) 

where X, Y, R, and S are the average values of Xi, Yi, Ri and Si, respec
tively; Sx

2 and Sy
2 are the variance values of Xi and Yi, respectively; Si is 

the order of Yi in the sequence of Y1, Y2,…, Yn; Ri is the order of Xi in the 
sequence of X1, X2, …, Xn; n is the sample length; sgn = − 1 when 
(
Xi − Xj

)(
Yi − Yj

)
> 0; sgn = 0 when 

(
Xi − Xj

)(
Yi − Yj

)
= 0; and sgn = 1 

when 
(
Xi − Xj

)(
Yi − Yj

)
< 0.

2.4.2. Marginal probabilistic distributions establishment
The probability density functions (PDF) for water discharge and 

contaminant pollution were subsequently estimated using kernel density 
analysis (KDA) that provides a non-parametric way to estimate the un
derlying density of a random variable. A KDA aims to generate inno
vative samples from the original dataset’s components, carefully crafted 
to mirror the original distribution’s dispersion and key attributes, 
including its standard deviation, mean, and other statistical measures. 
The KDA, as defined by Tai and Uhlen (2015); Schleich and Wartzack 
(2018); and Goka et al. (2019), can be described as follows:

The sequence A1, A2, …An is selected from a continuous set of a 
single-dimensional examples whose KDE of the general density function, 
F(a), for any given point can be expressed using the Eq. 13. 

F̂(a) =
1
nh

∑n

i=1
K(

Ai − a
h

) (13) 

where the kernel function is denoted as K(⋅), and the bandwidth is 
characterized as h. The kernel estimation function utilizes the Gaussian 
kernel function. Therefore, the Gaussian kernel was selected for this 
research, as shown in the Eq. 14. 

K(û) =
1̅̅
̅̅̅̅

2π
√ exp

(

−
1
2

û2
)

(14) 

whereû = (x − Xi)/h.

2.4.3. Joint probability distribution constructions
The internal mechanism between water quantity (discharge) and 

quality (contaminant pollution) was explored using the effective Copula 
functions after constructing the marginal probability density function 
(PDF). Copula functions allow for the connection of various marginal 
distributions, resulting in the derivation of the corresponding joint 
probabilistic distribution functions; as proposed by (Sklar, 1959). The 
Copula model, known for its flexibility and variability, has been widely 
utilized in finance and is also extensively applied within the fields of 
water resources and energy. The fundamental principle of the Copula 
function (Eq. 15) is that it serves to link the marginal distributions with 
the overall joint distribution. 

F(α1,α2,……, αn) = C(FA1 (α1), FA2 (α2),……, FAn (αn)) (15) 
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where F(α1,α2,……, αn) is the joint distribution function; and FA1 (α1),

FA2 (α2),……, FAn (αn) are the marginal distribution functions of random 
variables A1,A2,……,An. In this study, we selected the Copula functions 
(Eq. 16) with one parameter, such as the binary Normal Copula, Gum
bel, Clayton and Frank Copulas, to facilitate generation (Cai et al., 2019; 
Zang et al., 2022). The fundamental structures of the Copula functions 
were introduced in the following manner, while the distinct variations of 
each Copula function are displayed in Table 1. 

C(M,N, θ) = Φθ(Φ− 1(M),Φ− 1(N)) (16) 

where θ presents the Copula function parameter; and C(X,Y) stands for 
the binary Copula functions of the parameter of the Copula function to M 
and N, i.e., M = FX1 (α1), N = FX2 (α2).

In addition, the square Euclidean distance (Eq. 17) was introduced to 
test the fitting degree (Cai et al., 2019). The smaller the value of D2, the 
better the fitting effect. 

D2 =
∑n

i=1
|C(M,N) − C0(M,N) |

2
, (17) 

where C0(M,N) = 1
n
∑n

i=1 I[Fn(Mi ≤ M)I[Fn(Ni ≤ N] ], M,N ∈ [0, 1] is 
the empirical Copula function.

2.5. Spatiotemporal distribution map at the watershed level

Following the prediction of joint probabilities for an individual risk 
source, the overlaying exposure influence for each drinking water source 
was quantitatively computed using an acute exposure index (AEI, 
Table 2). The natural interval classification method was used to assign 
natural breaks to the exposure distribution for every drinking water 
source as follows: 0–0.25 (Zero), 0.25–0.5 (Low), 0.5–0.75 (Medium), 
and 0.75–1 (High). Subsequently, a spatiotemporal distribution map 
was created using ArcGIS technology to achieve a spatial representation 
and comparative analysis of the risks.

3. Results

3.1. Spatiotemporal distribution simulation under different scenarios

A spatiotemporal distribution simulation was first conducted for 
each risk source (N1–N29) under both baseline and accident situations. 
The Pujiang electronic electroplating plant (N3) was selected as the 
typical case to exhibit the spatiotemporal distribution. As the Cr6+ ions 
in the leakage wastewater of N3 exceeded water quality criteria, this was 
chosen as the typical heavy metal for the simulation process. Under the 

accident scenario, we assumed the leakage concentration of the Cr6+ ion 
was 60 mg/L, with a daily discharge (0.7075 m3/s), extending over a 
duration of two hours. Therefore, the heavy metal emergency was set to 
occur at 00:00 on February 11th during the dry season simulation and on 
June 11th during the flood season simulation, separately. Measurement 
data from the Nanjing Station were selected to verify the spatiotemporal 
distribution model, as shown in Fig. 3. R2 indicates that the hydrody
namic model fits the observed data well during both the dry 
(R2=0.9274) and flood (R2=0.9749) seasons. Therefore, the model can 
be used to simulate water flow, water level, and discharge for the 
Yangtze River downstream watershed.

Once accidents happen, the heavy metal pollution would influence 
drinking water sources W4, W6, W1, W2, and W5, in sequence. Fig. 4
shows the spatiotemporal distribution of water discharge and acute Cr6+

pollution during the dry (February to March, 2018) and flood (July to 
September, 2018) seasons under the baseline and accident scenarios. For 
the variable of water quantity, discharges exhibited fluctuating states for 
each drinking water source during both the dry and flood seasons (see 
Table 3). The average value of Q during the flood season was approxi
mately twice as high as during the dry season. For the water quality 
variable, the average Cr6+ concentration was 1.75 times higher during 
the flood season than during the dry season under the baseline scenario. 
Under the accident scenario, exceedances in the standard process lasted 
four hours during the dry season while three hours in flood season at 
drinking water source W4. In addition, the highest concentration of 
acute Cr6+ pollution occurred at 0.018765 mg/L at W4 at 17:30 on 
February 11th, 2018, during the flood season. Furthermore, the 
maximum concentration of acute Cr6+ pollution was 0.01695524 mg/L 
at W4 at 14:00 on June 11th, 2018, and 0.011 mg/L at W2 at 23:00 on 
June 11th, 2018, during the dry season.

3.2. Joint probability distribution of a single risk source

After the spatiotemporal dynamic simulation, the hourly water 
discharge and Cr6+ concentration distributions in each drinking water 
source were obtained during the dry and flood seasons for risk sources 
(N1–N29). Based on the kernel density analysis, the marginal proba
bility distributions were then constructed, and the accident scenario of 

Table 1 
Copula functions and the Copula probability density functions.

Binary Copula Functions

Normal Copula
C(M,N;θ) =

∫ φ− 1 (M)

−

∫ φ− 1 (N)

−

1

2π
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − θ2

√ exp
[
− (s2 + t2 − 2θst)

2(1 − θ2)

]

dsdt，(θ ∈ [ − 1,1])

PDF
c(M,N;θ) =

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − θ2

√ exp( −
φ− 1(M)

2
+ φ− 1(N)

2
− 2αφ− 1(M)φ− 1(N)

2
(
1 − θ2) )exp( − φ− 1(M)

2φ− 1(N)
2

2
)

Frank Copula
C(M,N;θ) = −

1
θ

ln
[

1+

(
e− θM − 1

)(
e− θN − 1

)

e− θ − 1

]

, (θ ∕= 0)

PDF
c(M,N;θ) =

− θ(e− θ − 1)e− θ(M+N)

[(e− θ − 1) + (e− θM − 1)(e− θN − 1) ]2

Clayton Copula C(M,N;θ) = (M− θ + N− θ − 1)−
1
θ , (θ > 0)

PDF c(M,N;θ) = (1 + θ)(MN)
− θ− 1

(M− θ + N− θ − 1)− 2− 1
θ

Gumbel Copula
C(M,N;θ) = exp

⎧
⎨

⎩
−
[
(− lnM)

θ
+ (− lnN)

θ
]1

θ

⎫
⎬

⎭
, (θ > 1)

PDF
c(M,N;θ) =

C(M,N, θ)(lnM × lnN)
1
θ− 1

MN[(− lnM)
1
θ + (− lnN)

1
θ ]

2− θ

⎧
⎨

⎩

[
(− lnM)

θ
+ (− lnN)

θ
]1

θ
+

1
θ
− 1

⎫
⎬

⎭

Table 2 
Acute exposure index distribution.

Acute Exposure Index Flood season

Zero Exposure

Dry Season Zero 0 0.5
Exposure 0.5 1
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N3 is shown in Fig. 5. Table 3 shows the marginal probabilities associ
ated with acute exposure to Cr6+ ions that exceeded the thresholds 
established under the accident scenario. For comparison, the corre
sponding marginal probabilities under the baseline scenario, captured at 
the same time points, are also included in the table. Regarding water 
discharge, it was evident that the marginal probability distributions 
were identical under both the baseline and accident scenarios. In gen
eral, there was a gradual decrease in water flow within four hours of 
acute exposure during the dry season, whereas there was a pattern of 

fluctuation within three hours during the flood season. Under the 
baseline scenario, the marginal probabilities associated with the acute 
Cr6+ concentration declined from 0.8645 to 0.7657 throughout the dry 
season. Conversely, during the same period under the accident scenario, 
these probabilities experienced fluctuations ranging from 0.8649 to 
0.9976. During the flood season, similar trends were observed, and the 
marginal probabilities related to the acute Cr6+ concentration decreased 
from 0.3691 to 0.3221 under the baseline scenario, while they fluctu
ated between 0.6349 and 0.8523 under the accident scenario.

Fig. 3. Hydro-dynamic variation at the Nanjing hydrologic stations during the dry and flood seasons: measured VS simulated curves.

Fig. 4. Water quality and quantity after accidents in the different water sources.
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Copula functions were then constructed for each scenario and the 
best-fit Copula functions were selected based on D2, shown in Fig. 5 and 
Table 4. D2 of the binary Frank Copula was the smallest, with 0.0272 
(baseline), 0.0267 (accident), 0.3610 (baseline), and 0.3801 (accident) 
during the dry and flood periods. Therefore, the Binary Frank Copula 
Function fit the simulation data best and was selected for the joint water 
quantity-quality probability function shown in Eqs. 18–21. 

Cb− d(Q, Cr(VI)) = −
1

1.448
ln
[

1+
(e-1.448Q − 1)(e-1.448Cr(VI) − 1)

e-1.448 − 1

]

(18) 

Cb− a(Q, Cr(VI)) = −
1

1.429
ln
[

1+
(e-1.429Q − 1)(e-1.429Cr(VI) − 1)

e-1.429 − 1

]

(19) 

Cf − d(Q, Cr(VI)) =
1

7.644
ln
[

1+
(e7.644Q − 1)(e7.644Cr(VI) − 1)

e7.644 − 1

]

(20) 

Cf − a(Q, Cr(VI)) =
1

7.472
ln
[

1+
(e7.472Q − 1)(e7.472Cr(VI) − 1)

e7.472 − 1

]

(21) 

Based on the Copula functions, the joint water quantity–quality 
probability distribution was calculated and is shown in Table 4. During 
the dry period, after 16.5 h of exposure, the joint probability distribu
tion reached its highest value of 0.4460 (higher than under the baseline 
scenario, i.e., 0.4327). Subsequently, the joint probability exhibited 
variability over the course of the 4-hour pollution scenario, fluctuating 
between 0.4460, 0.3947, 0.4041 and 0.3710. However, during the flood 
season, after 14 hours of exposure, the joint probability distribution 
attained its maximum value of 0.8523 (higher than under the baseline 
scenario, i.e., 0.4327). The joint probability then began to decrease from 
0.8523 to 0.8503. In general, the joint probability distributions were 
higher under the accident scenario and lower for the baseline scenario 
during the flood period compared with the dry period.

3.3. Spatiotemporal exposure distribution map

Fig. 6 shows the spatiotemporal distribution map of acute exposure 
to drinking water sources in Nanjing City within the Yangtze River 
downstream watershed in China. As for risk sources (29 in total), five 
(N1–N5) would have an effect on drinking water sources when acci
dental heavy metal pollution occurred. There were two water sources 
(W3–W4, i.e., the Jiajiang Drinking Water Source Protection Zone and 
the Jiangpu-Pukou Drinking Water Source Protection Zone) with high 
exposures (AEI=1). Thereinto, W3 was highly susceptible to accidental 
heavy metal pollution caused by N1–N2 while W4 was influenced by 
N3–N4 during both the dry and flood seasons. Water source W5 (the 
Longtan Drinking Water Source Protection Zone) with medium exposure 
(AEI=0.5) was influenced by N23 during both the dry and flood seasons. 

The low exposure (AEI=0.25) water sources were W2 and W6 (i.e., the 
Baguazhou-Left Drinking Water Source Protection Zone and the Yanziji 
Drinking Water Source Protection Zone), and they were affected by N3 
and N4 only during the flood season, respectively. Moreover, there 
remained two sources with zero exposure, including W1 and W7 (i.e., 
the Baguazhou-Main Drinking Water Source Protection Zone and the 
Zihuizhou Water Source Protection Zone).

4. Discussion

This study introduced a novel Copula-based spatiotemporal proba
bilistic model designed to precisely evaluate the interlinkages between 
water quantity and quality parameters to produce a robust framework 
for comprehensive analysis of hydrological systems. Consequently, an 
exposure distribution map for drinking water sources was produced that 
enabled the explicit identification and targeted management of critical 
risk sources, as well as the optimization of the selection of drinking 
water sources.

The data presented in Table 4 and Fig. 5 clearly demonstrated a 
strong negative correlation between water quantity and quality. During 
the dry season, when water discharge diminishes compared with the 
flood season, the spread of contaminants slowed, leading to a compar
atively higher maximum concentration of the acute Cr6+ ion (i.e., 
0.01877 mg/L during the flood season while 0.01696 mg/L during the 
dry season). This observation highlights the significance of discharge 
rates in influencing the dispersion and concentration of pollutants in 
aquatic environments. From a watershed management perspective, 
Fig. 6 underscores the critical importance of prioritizing the principal 
sources of risk for effective mitigation strategies. These sources are 
labeled N1 through N5, and are located in the downstream area of the 
Yangtze River near Nanjing City. Local stakeholders must intensify their 
focus on the electroplating plants in question, recognizing the impera
tive to enact rigorous water management practices. This includes 
imposing stringent controls over both the volume and quality of water in 
regions where drinking water sources, specifically identified as W3 and 
W4 (AEI=1), face substantial risks of contamination post-incident. Such 
proactive measures are vital to safeguard these sensitive areas from 
potential pollution and uphold the integrity of local water resources. 
Therefore, the proposed Copula-based spatiotemporal probabilistic 
model is a valuable benchmark for managing accidental risks and pro
tecting drinking water sources effectively. In addition, it can establish a 
basis for judicious water allocation and management in the Yangtze 
River watershed of the future.

Integrating Copula functions into conventional simulation tech
niques enhances the exploration of the underlying mechanisms that 
govern both water discharge patterns and contaminant pollution in 
drinking water sources, and it provides several methodological advan
tages. To our knowledge, the foremost advantage lies in the ability to 

Table 3 
Water discharge, acute Cr6+ exposure and joint probability results for N3.

Period Scenario Time Q 
(m3/s)

Marginal Probability Acute Cr6þ Concentration 
(mg/L)

Marginal Probability Joint Probability

Dry Season Baseline 
Scenario

2018/2/11 16:30 3.21385 0.4770 0.004277 0.8645 0.4327
2018/2/11 17:30 3.09873 0.4339 0.004276 0.8333 0.3850
2018/2/11 18:30 3.08815 0.4310 0.004273 0.7975 0.3710
2018/2/11 19:30 2.78522 0.3578 0.004269 0.7657 0.3019

Accident 
Scenario

2018/2/11 16:30 3.21385 0.4770 0.010479 0.9966 0.4460
2018/2/11 17:30 3.09873 0.4339 0.018765 0.8649 0.3947
2018/2/11 18:30 3.08815 0.4310 0.018028 0.9044 0.4041
2018/2/11 19:30 2.78522 0.3578 0.01274 0.9976 0.3573

Flood Season Baseline 
Scenario

2018/6/11 13:00 7.04179 0.6376 0.00721808 0.3691 0.0895
2018/6/11 14:00 7.66503 0.8523 0.00721579 0.3638 0.2319
2018/6/11 15:00 7.02252 0.6282 0.00719816 0.3221 0.0632

Accident 
Scenario

2018/6/11 13:00 7.04179 0.6376 0.01109268 0.9973 0.6349
2018/6/11 14:00 7.66503 0.8523 0.01695524 0.9980 0.8523
2018/6/11 15:00 7.02252 0.6282 0.01231104 0.9987 0.8503
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meticulously construct a joint probability distribution model that 
accurately captures the relationships—be they nonlinear or asymme
tric—between two quintessential variables: water quantity and quality 
in drinking water sources. Simultaneously, the Copula function main
tains the integrity of all data related to water quantity and quality, 
ensuring no loss or distortion of information during the modeling pro
cess (Zentner, 2017; Zang et al., 2022). Hence, Copula analysis enables 
the generation of exact estimates and authentic simulations of the 
composite distribution that encompasses both water discharge and 
contaminant pollution across a full range of water pollution incidents, 

compared with impact risk methods (Zhou et al., 2021) or the hydro
damic and quality models (Wang et al., 2019) of the Yangtze River in 
Nanjing City. For example, when the highest heavy metal emergency 
occurred in the simulation during the flood season at a certain drinking 
water source (see Table 3 and Fig. 5), the joint probability was found to 
be 0.8523 based on the marginal probability of water quantity (0.8523) 
and quality (0.9980). This result was different from those of hydrody
namic models (Mbuh et al., 2019; Gomes et al., 2023) or multi-index 
methods (Dippong et al., 2018; Dippong and Resz, 2024 b), which 
treat water quantity and quality as two distinct causal factors, and 

Fig. 5. Marginal probability distributions (a–b; e–f) and joint probability distributions (c–d; g–h) under the accident scenario during the dry and flood seasons.
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multi-index methods that view them as isolated independent elements, 
Copula functions uniquely trace the intricate relationships between 
these variables, offering a comprehensive approach to water environ
ment assessments. Another advantage is that uncertainty can be con
tained in the Copula models in the form of a probability distribution due 
to high uncertainty during water pollution emergencies 
(Paredes-Arquiola et al., 2010; Tscheikner-Gratl et al., 2019; Liu et al., 
2021). The probability distribution is relatively more credible compared 
to the traditional numerical simulation (Hur et al., 2018; Shin, 2023). In 
addition, the construction of Copula functions requires a smaller number 
of data parameters, rendering them more versatile than hydrodynamic 
approaches (Cai et al., 2019; Yue et al., 2022).

However, further enhancements can be implemented to this spatio
temporal probabilistic model based on Copula analysis. First, the 
acquisition of real-time data for water pollution emergencies presents 
significant challenges, and this subsequently complicates the processes 
of calibration and validation of the collected data. Future investigations 
should explore indoor simulation experiments to provide additional 
support for the predictive reliability. Second, in this study, our analysis 
focused solely on two variables: the discharge rate and acute chromium 
(Cr6+) exposure, for calculating the impact of accidental water pollu
tion. In practice, it would be prudent to incorporate a broader range of 
indicators into the modeling process, including ecological, meteoro
logical, and various environmental contaminant factors, to reflect more 
accurately the complexity of real-world aquatic environments. In addi
tion, the integration of additional potential Copula functions within 
multivariable joint probability distribution models is worth exploration 
to produce an optimized analytical framework (Zang et al., 2022).

5. Conclusions

This research presented a Copula-based spatiotemporal probabilistic 
model to quantitatively address the internal correlation between water 
quantity and quality for drinking water sources. Copula functions are 
especially suitable to explore relationships between variables as they 
can separate the dependence structures from the variables’ marginal 
distributions. Compared with hydrodynamic models or multi-index 
methods, Copula theory can better characterize joint probability dis
tributions with a high degree of accuracy. In the case study of the 
Yangtze River downstream watershed in Nanjing, 29 electroplating 
plants were chosen to quantitatively estimate the joint effects between 
water discharge and contaminant pollution on seven drinking water 
sources. The results indicated a strong negative correlation between 
water quantity and quality. The spatiotemporal exposure distribution 
map showed that five risk sources (N1–N5) were key sources, while two 
drinking water sources (W3–W4; AEI=1) would be easily affected and 
require more attention. Although this study successfully demonstrated 
the feasibility of quantifying the complex interrelationships between 
water quality and quantity, the next step is the incorporation of more 
environmental contaminant factors and more contaminant pollutants 
into the model. In summary, this research enhances our understanding 
of the joint behavior of multiple variables affecting drinking water 
sources in the event of accidents.
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Table 4 
The best-fit Copula function expressions and D2 for N3.

Period Scenario Copula Functions D2

Dry Season Baseline 
Scenario C(Q, Cr(VI)) =

∫ φ− 1 (Q)

−

∫ φ− 1 (Cr(VI))
−

1

2π
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (0.2139)2
√ exp

[
− (s2 + t2-2∗(0.2139)st)

2(1 − (0.2139)2
)

]

dsdt C(Q, Cr(VI)) =

(Q− 0.0028 + Cr(VI)− 0.0028
− 1)−

1
0.0028

0.0342
0.0297

C(Q, Cr(VI)) = exp

⎧
⎨

⎩
−
[
(− lnQ)

1.169
+ (− lnCr(VI))1.169

] 1
1.169

⎫
⎬

⎭

0.0807

C(Q, Cr(VI)) = −
1

1.448
ln
[

1+

(
e− 1.448Q − 1

)(
e− 1.448Cr(VI) − 1

)

e− 1.448 − 1

] 0.0272

Accident 
Scenario C(Q, Cr(VI)) =

∫ φ− 1 (Q)

−

∫ φ− 1 (Cr(VI))
−

1

2π
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (0.2073)2
√ exp

[
− (s2 + t2-2∗(-0.2073)st)

2 ∗ (1 − (-0.2073)2)

]

dsdt
0.0369

C(Q, Cr(VI)) = (Q− 0.003 + Cr(VI)− 0.003
− 1)−

1
0.003 0.0786

C(Q, Cr(VI)) = exp

⎧
⎨

⎩
−
[
(− lnQ)

1.1562
+ (− lnCr(VI))1.1562

] 1
1.1562

⎫
⎬

⎭

0.0368

C(Q, Cr(VI)) = −
1

1.429
ln
[

1+

(
e-1.429Q − 1

)(
e-1.429Cr(VI) − 1

)

e-1.429 − 1

] 0.0267

Flood 
Season

Baseline 
Scenario C(Q, Cr(VI)) =

∫ φ− 1 (Q)

−

∫ φ− 1 (Cr(VI))
−

1

2π
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (-0.7534)2
√ exp

[
− (s2 + t2 − 2 ∗ (− 0.7534)st)

2(1 − (-0.7534)2
)

]

dsdt
0.3719

C(Q, Cr(VI)) = (Q− 0.0017 + Cr(VI)− 0.0017
− 1)−

1
0.0017 0.6324

C(Q, Cr(VI)) = exp

⎧
⎨

⎩
−
[
(− lnQ)

1.03
+ (− lnCr(VI))1.03

] 1
1.03

⎫
⎬

⎭

0.8435

C(Q, Cr(VI)) =
1

7.644
ln
[

1+

(
e7.644Q − 1

)(
e7.644Cr(VI) − 1

)

e7.644 − 1

] 0.3610

Accident 
Scenario C(Q, Cr(VI)) =

∫ φ− 1 (Q)

−

∫ φ− 1 (Cr(VI))
−

1

2π
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (-0.7281)2
√ exp

[
− (s2 + t2-2∗(-0.7281)st)

2(1 − (-0.7281)2
)

]

dsdt
0.4128

C(Q, Cr(VI)) = (Q− 0.0014 + Cr(VI)− 0.0014
− 1)−

1
0.0014 0.8167

C(Q, Cr(VI)) = exp

⎧
⎨

⎩
−
[
(− lnQ)

1.13
+ (− lnCr(VI))1.13

] 1
1.13

⎫
⎬

⎭

0.9435

C(Q, Cr(VI)) =
1

7.472
ln
[

1+

(
e7.472Q − 1

)(
e7.472Cr(VI) − 1

)

e7.472 − 1

] 0.3801
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