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A B S T R A C T

Capturing ecological data variability in food web models is an important step for improving model representation
of empirical systems. One approach is to use linear inverse modelling and Markov Chain Monte Carlo (LIM-
MCMC) techniques to set up an inverse LIM problem using empirical data constraints, and then sample multiple
plausible food webs from the inverse problem using an MCMC algorithm. We describe the set of plausible food
webs as an ‘ensemble’ of solutions to the inverse problem sampled with the LIM-MCMC algorithm. The extent of
data variability eventually integrated into an ensemble depends on how well the LIM-MCMC algorithm samples
the solution space. Algorithm quality can be adjusted via user-defined parameters describing starting points,
jump sizes, and number of iterations or food webs produced. However, little information exists on how each LIM-
MCMC algorithm parameter affects the degree of empirical data variability introduced into the ensemble.
Further, post hoc algorithm quality diagnostics with commonly used trace plots and the coefficient of variation
(CoV) rarely address critical aspects of algorithm quality, such as (1) if the returned ensemble successfully
targeted the solution space distribution (stationarity), (2) correlation between ensemble solutions (mixing), and
(3) if the ensemble contains enough solutions to adequately capture input data variability (sampling efficiency).
Therefore, we used several established MCMC convergence diagnostics to (1) quantify how algorithm parameters
affect ensemble flow values and if these differences propagate to ecological indicators and (2) evaluate algorithm
quality and compare to current evaluation and ecosystem modelling methods. We applied 30 LIM-MCMC al-
gorithm combinations of varying starting points, jump sizes, and number of iterations to solve food web en-
sembles from a single food web model. We analysed ensembles with Ecological Network Analysis (ENA) to
calculate indicators describing system function. Results show that LIM-MCMC algorithm parameters, in partic-
ular the jump size, affect ensemble flow values, which propagate to ecological indicators describing different
ecosystem function of the same model. Thereafter, comparisons of post hoc diagnostics show that MCMC
convergence diagnostics provided more robust estimates of algorithm quality than trace plots and CoV. Together,
these findings underpin several novel recommendations to enhance LIM-MCMC algorithm parameter selection
and quality assessments applicable to any ecological ensemble network study.

1. Introduction

Ecosystems are incredibly variable due to dynamic environmental
parameters and ecological interactions (Scharler and Borrett, 2021). As
such, recent efforts have focussed on incorporating ecological data
variability into food webmodels, thereby estimating ecosystem flow and
function uncertainty (Hines et al., 2018; Kones et al., 2009a). Food web
models mathematically describe spatial and temporal ‘snapshots’ of

exchanges of energy or material (as ‘flows’ or ‘links’) between ecosystem
components (Scharler and Borrett, 2021). Empirical data variability is
commonly incorporated into model outputs by calculating multiple
plausible food webs via linear inverse modelling and Markov Chain
Monte Carlo (LIM-MCMC) techniques (Niquil et al., 2011; van Oevelen
et al., 2010).

This approach uses ecological input data packed into linear equa-
tions defining the boundaries of a multi-dimensional Euclidean solution
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space, within which exist infinite plausible food webs (Niquil et al.,
2011). The popular ‘mirror’ MCMC algorithm (van den Meersche et al.,
2009) samples the solution space by first solving a parsimonious solu-
tion (‘starting solution’). From there, a second solution is drawn from a
normal distribution centred on the first point with a fixed standard de-
viation called the jump length (for details see Niquil et al., 2011; van den
Meersche et al., 2009). This process is repeated for n number of itera-
tions, solving a chain of solutions (or an ‘ensemble’ of solutions) through
the solution space. Within the ensemble, each solution is one unique
plausible food web with one solved value per flow, all valid within the
input data constraints (Soetaert and van Oevelen, 2009; van Oevelen
et al., 2010). The ensemble is subsequently analysed with Ecological
Network Analysis (ENA) (e.g., Borrett and Lau, 2014; Butts, 2008; Kones
et al., 2009b) to calculate ecological indicators describing ecosystem
function. Taking the uncertainty arising from an ensemble into account
as opposed to focussing only on a single solution improves in-
terpretations of empirical ecosystem function (Hines et al., 2018) and
allows statistical comparison between models (e.g., Nogues et al., 2021;
Tecchio et al., 2016; Zhang et al., 2022).

Ensemble quality, i.e. how well it represents the empirical system, is
subject to some uncertainty depending on several factors, including the
accuracy of the ecological data assumptions (see Scharler and Borrett,
2021 for details) and the sampling algorithm quality. The latter can be
defined as how ‘well’ the algorithm samples the solution space, i.e., to
return an ensemble that approximates the range of the underlying
ecological input data. A ‘good quality’ algorithm adequately samples the
solution space, returning an ensemble reflective of the flow variability as
specified in the input data (i.e., a good quality ensemble). In contrast, a
‘poor quality’ algorithm samples a fraction of the solution space, thus
returning an ensemble that only partially reflects the input data flow
range (i.e., a poor-quality ensemble). Network analysis of a good quality
ensemble results in ecological indicators describing a more complete
range of potential ecosystem status, which is partially lost with poor
quality ensembles. Given the calls for incorporating ecosystem models
and ecological indicators into ecosystem management and policy (de
Jonge and Schückel, 2021; Fath et al., 2019), ensuring algorithm quality
that adequately captures flow variability in empirical ecosystems is
important for more confident inferences of ecosystem status.

In this manuscript, we focus on two aspects of algorithm quality. The
first is: what makes a good quality algorithm? Algorithm quality de-
pends on user-defined parameters of starting points, jump size, and
number of iterations (Niquil et al., 2011; van den Meersche et al., 2009;
van Oevelen et al., 2010). Current broad parameter recommendations
include (1) solving the starting solution in a ‘central’ region of the so-
lution space (Soetaert et al., 2009), (2) choosing jump sizes based on the
input flow range magnitudes (van den Meersche et al., 2009), and (3)
returning numerous samples, where 3000 iterations are considered
adequate (Soetaert et al., 2009), but commonly ≥10,000 iterations are
used (e.g., Bentley et al., 2019; Olli et al., 2019; Zhang et al., 2022).
However, as each food web has a unique model structure and parame-
ters, case study specific algorithm parameters may be required for
adequate solution space sampling. While the general goal is for the al-
gorithm to adequately sample the solution space (e.g., Meddeb et al.,
2019; Saint-Béat et al., 2013; Tecchio et al., 2016), there is little infor-
mation on how algorithm parameter combinations of starting solution,
jump size and number of iterations influences the resulting food web
ensemble quality.

The second question we address is how to confidently assess algo-
rithm quality. There are no existing a priori methods to determine which
algorithm parameters result in a good quality algorithm. In practice,
modellers apply post hoc diagnostics on the ensemble flows. Such as-
sessments include trace plots, which visualise flow values over a number
of iterations to assess MCMC stationarity and mixing (Raj et al., 2016;
van den Meersche et al., 2009; van der Heijden et al., 2020). Another
approach using the coefficient of variation (CoV) determines the
‘convergence’ of each flow mean and standard deviation (Bell et al.,

2017; van Oevelen et al., 2011; Zhang et al., 2022), and is interpreted as
a degree of ‘stationarity‘towards a stable value (e.g., Saint-Béat et al.,
2013, 2020). However, trace plots and CoV can neglect critical aspects
of algorithm quality from an MCMC convergence perspective.

MCMC convergence is the convergence of the posterior probability
density function (PDF) of the solution chain P(x) to the ‘target’ PDF of
the solution space Q(x) (Roy, 2020; van Ravenzwaaij et al., 2018). The
solution space is considered well-sampled, indicating good algorithm
quality, where P(x) approaches Q(x). While true convergence cannot be
achieved, it can be inferred via several MCMC convergence diagnostics
(Hogg and Foreman-Mackey, 2018; Plummer et al., 2020; Roy, 2020)
applied to each ensemble flow. Together, the diagnostics assess three
main MCMC convergence aspects: stationarity (how well P(x) ap-
proaches Q(x)), mixing (correlation between samples), and sampling
efficiency whether enough solutions have been returned to adequately
describe Q(x)) (Roy, 2020). While trace plots can infer stationarity and
mixing, they can be subjectively interpreted. Additionally, the ‘conver-
gence’ described by the CoV indicates the residual uncertainty in the
flow solutions, where large uncertainties have larger CoV (e.g., van
Oevelen et al., 2011), which is different to the definition of MCMC
convergence. Therefore, situations may arise where trace plots and CoV
diagnostics report a ‘good’ quality algorithm, whereas a more rigorous
assessment with multiple MCMC convergence diagnostics may lead to
different interpretations (Du et al., 2022; Mengersen et al., 1999).

In summary, the aims of this study were three-fold. First, we exam-
ined how different LIM-MCMC ‘mirror’ algorithm parameters (starting
points, jump size, number of iterations) affect the sampling of the so-
lution space of a single case-study food web using 30 LIM-MCMC
‘mirror’ algorithm combinations of the three parameters. Secondly, we
investigated whether existing algorithm quality assessments in ecolog-
ical models using trace plots and CoV can be improved with MCMC
convergence diagnostics by comparing the proportion of flows that
‘pass’ or ‘fail’ each diagnostic. Thirdly, we investigated whether the
differences in flow values from each LIM-MCMC scenario propagates to
ecological indicators describing ecosystem status.

2. Materials and methods

2.1. Model construction

As a case study, we constructed an empirical food web model of
uMdloti Estuary (June 2015) following network construction guidelines
(see Fath et al., 2007; Scharler and Borrett, 2021). uMdloti Estuary is a
large temporarily closed estuary on the east coast of South Africa (van
Niekerk et al., 2020) (Fig. 1 A). The rationale for using this case study
site is (1) applying this methodology on an empirical system, rather than
a ‘toy’ or theoretical model, provides more insight for future empirical
research applications and implications, and (2) we had an available
dataset from a recent study of invertebrate responses to prolonged
mouth closure (Scharler et al., 2020), providing a unique opportunity to
construct a detailed invertebrate food web model.

As this manuscript is not focussed on the case study site itself, but
rather if and how flow and ecological indicator uncertainty is introduced
by varying LIM-MCMC algorithm parameters, we do not give a full
description of the food web model construction here. Rather, we provide
a brief description, and detail the model construction process, data
sources, and parameterisation process in Appendix A.

We used empirical datasets and published literature (Tables A1–5) to
define the a priori food web model, i.e., the compartments, directed
flows between them, and flows across the system boundary (boundary
gains/losses). Next, we parameterised compartment biomasses and flow
inequalities using empirical data (Scharler et al., 2020), taxon-specific
estimates (e.g., Nozais et al., 2005; Ortega-Cisneros et al., 2016;
Tagliarolo et al., 2019), allometry (e.g., Brey, 2010, 2012; Huntley and
Lopez, 1992), and open-source databases (e.g., Parr et al., 2014). We
standardised all parameters to a common model currency, expressing
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biomass as storage dimensions (mgC m− 2) and flows as rates of carbon
transfer per day (mgCm− 2 d− 1) (e.g., Le Guen et al., 2019; Meddeb et al.,
2019).

In total, the food web model consisted of two non-living detrital
compartments (suspended (susPOC) and sedimented (sedPOC) particu-
late organic matter), two primary-producer compartments (phyto-
plankton and microphytobenthos), and 19 consumer compartments
(Fig. 1 B). A total of 215 flows consisted of 167 internal flows (diet,
egestion, mortality) and 48 boundary flows described imports, exports,
gross primary production, and respiration flows for living compart-
ments. Twenty-three mass-balance equalities and 127 inequalities con-
strained the flows. Lastly, we coded the model into the required ‘LIM
declaration file’ input format (Appendix A) using function autoGen from
R package autoLIMR v.3.0.1 (Gerber et al., 2023).

2.2. Flow & ecological indicator uncertainty analysis with LIM-MCMC
algorithm scenarios

2.2.1. Algorithm scenario development
We developed 30 LIM-MCMC mirror algorithm scenarios, consisting

of different starting points, jump sizes, and number of iterations (Fig. 2).
By default, the mirror algorithm calculates the starting point for

underdetermined LIM problems using the LSEI algorithm (Haskell and
Hanson, 1981; van den Meersche et al., 2009). The starting solution can
be changed to the ‘Central’ solution, for which the mean of each flow
minimisation and maximisation values are calculated by LIM::Xranges
(van Oevelen et al., 2010). The difference between the LSEI and the
Central starting solutions is that they solve the starting solution in
different regions of the solution space. We selected jump sizes based on
the recommendation that they should be within the same order of
magnitude as the input data flow inequalities (van den Meersche et al.,
2009). As the case study food web model flows varied by orders of
magnitude, we selected jump sizes based on the approximate orders of
flow magnitudes, ranging from 0.01 mgC m− 2 d− 1 to 100 mgC m− 2 d− 1.
We selected the number of iterations based on the commonly used
10,000 iterations (e.g., Bentley et al., 2019; Olli et al., 2019; Zhang et al.,
2022), along with half (5000) and double (20,000) the number of
iterations.

2.2.2. Calculating multiple plausible food webs
Ensembles of multiple plausible food webs, consisting of 215 flows

per food web, were calculated for each algorithm scenario (Fig. 2) using
function multi_net in R package autoLIMR v3.0.1 (Gerber et al., 2023).
To ensure reproducibility, we applied the base R function set.seed before

Fig. 1. uMdloti Estuary (29◦39′2.1348” S, 31◦7.’44.9328″ E) and associated rivers on the east coast of South Africa near Durban (eThekwini Municipality), KwaZulu-
Natal (A) and uMdloti Estuary June 2015 food web, showing internal compartments and the flows between them (B). Boundary flows of gross primary production,
respiration, imports, and exports are omitted for clarity.

Fig. 2. Nested design of the LIM-MCMC mirror algorithm scenarios, consisting of two different starting solutions, five jump sizes per starting point, and three
different numbers of iterations per jump size.
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each simulation to initialise a pseudorandom number generator,
ensuring that for each algorithm scenario, the random processes start
and end in the same point and return the same results when the function
is rerun with the same algorithm scenario.

2.2.3. Ecological network analysis
For each ensemble returned by the 30 LIM-MCMC algorithm sce-

narios, we applied Ecological Network Analysis (ENA) on all ensemble
flows (215) with R package enaR v3.0.0 (Lau et al., 2017). We calcu-
lated six flow-based ecological indicators (Table 1). We first calculated
three ecological indicators that are often strongly linked to trophic level
I (via primary production or detritivory) to describe ecosystem function.
Total System Throughflow (TSTflow) is the sum of all compartmental
inputs or outputs and is interpreted as a measure of system size or ac-
tivity (Patten, 1995). More productive systems have a larger TSTflow,
indicating positive ‘health’ (Patten, 1995), or could result from system
stress or eutrophication (Luong et al., 2014). Finn Cycling Index (FCI) is
the sum of all nodal cycling as a fraction of the TSTflow (Finn, 1976,
1980), quantifying howmuch energy is reused by the system (de la Vega
et al., 2018; Safi et al., 2019). A larger FCI indicates increased recycling,
interpreted as an indicator of a stressed system (Pezy et al., 2018;
Scharler and Baird, 2005; Tecchio et al., 2015) or resilience to pertur-
bations (Saint-Béat et al., 2015). The Detritivory: Herbivory ratio (D:H)
is the ratio of total detritivory (consumption of detritus) to total her-
bivory (consumption of primary producers) by trophic level II con-
sumers (Kay et al., 1989). In this study, D:H was calculated as the total
detritus consumption divided by the total microalgae consumption.
Ecosystems with a high D:H indicate that detritus is important for me-
dium cycling, such as carbon cycling (Chrystal and Scharler, 2014; de
Jonge and Schückel, 2019), and can be interpreted as more resilient to
external perturbations (Lassalle et al., 2011).

Additionally, we calculated flow-based information indices to
describe system organisation and development. Average Mutual Infor-
mation (AMI) represents the degree of flow specialisation or efficiency
by estimating the constraint exerted on a unit of energy to flow from one
compartment to the next (Ulanowicz, 1986). A higher AMI indicates
greater efficiency or more constrained organisation of the flows,

whereas excessive efficiency indicates a ‘brittle’ system prone to
disturbance (Ulanowicz et al., 2009). A lower AMI indicates less flow
efficiency (i.e., more redundant flows), but too little efficiency can mean
stagnation (Ulanowicz et al., 2009). Flow diversity (H) applies the
Shannon Diversity equation (MacArthur, 1955) to individual flows to
describe the diversity of interactions between ecosystem components
(Ulanowicz, 1986). A higher system H indicates a high degree of flow
complexity and diversity (Ulanowicz, 1986), whereas a low H indicates
greater flow specialisation. AMI and H are related, such that H is the
upper boundary of AMI (Ulanowicz, 1986). A single metric, called
robustness, incorporates both AMI and H, capturing the opposing nature
of efficiency (AMI) and diversity (H) (Ulanowicz et al., 2009). Robust-
ness can measure system sustainability, where a system with a propor-
tion of AMI/H just below 0.5 is considered optimal for system resilience
(Ulanowicz et al., 2009).

2.2.4. Statistical analyses
We compared flows, and ecological indicators, between algorithm

scenarios using Cliff’s Delta (δ) (Cliff, 1993; Macbeth et al., 2011), a
non-parametric effect size measure often used to statistically compare
multiple plausible food webs (e.g. Niquil et al., 2020) with function cliff.
delta from R package effsize v0.8.1 (Torchiano, 2020). Cliff’s δ is
interpreted as a measure of dominance or overlap between two group
distributions (Macbeth et al., 2011). It is not associated with a proba-
bility of null hypothesis rejection but instead uses threshold values to
indicate the magnitude of difference between two groups. We consid-
ered groups as significantly different where Cliff’s δ magnitudes were
‘medium’ (|δ| < 0.474), and ‘large’ (|δ| ≥ 0.474), but not for ‘small’ (|δ|
< 0.33) or ‘negligible’ (|δ| < 0.147) magnitudes (e.g., Nogues et al.,
2021; Tecchio et al., 2016). As Cliff’s δ does not compare mean and
standard deviations, we display results with box plots to aid
interpretation.

2.3. Algorithm quality assessments

We tested algorithm quality by analysing ensemble flows from each
of the 30 algorithm scenarios using (1) the two established diagnostics
commonly used in ecological modelling (trace plots, CoV), and (2) a
further six Markov Chain Monte Carlo (MCMC) convergence di-
agnostics. For this assessment, we chose to apply the diagnostics only to
bounded flows (i.e., flows with defined minima andmaxima). Regarding
the network used here, all but 15 of the total 215 defined flows were
bounded, i.e. were assigned maxima according to the function Xranges,
that takes the initial ecological input information into account. For the
15 unbounded flows, the maxima were automatically set to 1e+30

(Soetaert et al., 2009; van Oevelen et al., 2010). These maxima far
exceed any constraint in the input data, so we omitted these flows for
reporting.

For each of the eight convergence diagnostics, we counted the
number of bounded flows (200) that ‘pass’ or ‘fail’ the respective diag-
nostic test (Table 2). First, we assessed algorithm quality with commonly
used diagnostics in ecological modelling: trace plots and CoV. We
visually assessed flows with trace plots and considered that a flow was
‘well-sampled’, thus indicating good algorithm quality, if the trace plot
looked like a ‘hairy caterpillar’ (Roy, 2020). After that, we assessed the
algorithm quality by calculating the CoV (CoV = SD/Mean) on each
bounded flow. Flows were considered adequately representative of the
ecological input data where there was little residual uncertainty (CoV <

1) (e.g., de Jonge et al., 2020) (Table 2).
Next, we assessed algorithm quality using MCMC convergence di-

agnostics. We calculated such on each bounded flow using function
mcmc_diags from autoLIMR (Gerber et al., 2023), which is a conve-
nience function that calculates six MCMC convergence diagnostics at
once, two describing stationarity, two describing mixing, and two
describing sampling efficiency. For details of the diagnostic calculations
for each assessment with the mcmc_diags function, we strongly

Table 1
Summary of ecological indicator formulas and units.

Indicator Formula Units Reference

Total System
Throughflow
(TSTflow)

TSTflow =
∑n

i=1
Ti, where

Tini = zi +
∑n

j=1
fji; Touti =

yi +
∑n

j=1
fij

At steady state, Tini = Touti =

Ti

mgC
m− 2

d− 1
(Patten, 1995)

Finn Cycling Index
(FCI)

FCI =

∑
TSTCi

TSTflow
Where the cycled flow of
node i is:

TSTCi =
(
nii − 1
nii

)

Ti

None (Finn, 1976,
1980)

Detritivory:
Herbivory ratio
(D:H) DH =

∑
Detritivory

∑
Herbivory

None (Kay et al.,
1989)

Average Mutual
Information (AMI)

AMI =

K
∑

ij

(
Tij
T..

)

log
(
TijT..

Ti.T.j

) Bits
(Ulanowicz,
1986)

Flow diversity (H)
H = − k

∑

ij

(
Tij
T..

)

log
(
Tij
T..

) Bits (Ulanowicz,
1986)

Robustness Robustness = − a • ln(a),
where a = AMI/H

None
(Ulanowicz
et al., 2009)
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encourage the reader to consult the relevant cited literature below.
Stationarity was assessed through Geweke Z-scores (Geweke, 1992) and
Heidelberger-Welch (HW) diagnostics (Heidelberger and Welch, 1983).
The Geweke Z-scores test for equality of a Markov chain’s first (10 %)
and last (50 %) part, by calculating the mean of each and comparing
them via a simple two-sample test of means. If the resulting Z-score is
between − 1.96 and 1.96 (corresponding to p = 0.05) (Du et al., 2022),
the means of the two parts of the chain are not significantly different
from one another, and thus it can be inferred that the flow has reached
stationarity.

The Heidelberger-Welch (HW) diagnostic assesses stationarity in two
parts: first, it tests the stationarity of the sampled chain (stationarity
test), and then tests if there are enough iterations to estimate the mean of
the flow values with an acceptable degree of precision (halfwidth test)
(Heidelberger and Welch, 1983). The stationarity test uses the Cramer-
von Mises statistic to test the null hypothesis that sampled values are
derived from a normal distribution (Plummer et al., 2020). The test is
first applied to the whole sample chain, then again after incrementally
discarding the first 10 %, 20 %, … of the chain until either the null
hypothesis is accepted (i.e., that the sampled values come from a normal
distribution), or 50 % of the chain has been discarded. If the stationarity
test is passed, the half-width test is applied. It calculates a 95 % confi-
dence interval (CI) for the mean, using the part of the sample chain that
passed the stationarity test. Then, half the width of the 95 % CI interval
is compared with the mean of the chain. If the ratio between the half-
width and the mean is lower than a specified target value (the default is
0.1), then the halfwidth test is passed. The target value can be manually
changed, but the default is sufficient for most applications. For our
study, we determined that flow values (i.e., sample chains) ‘passed’ the
HW diagnostic if the flow passed both the stationarity and the halfwidth
tests.

We assessed mixing with lag-k autocorrelation (Roy, 2020) and the
Raftery-Lewis dependence factor (I) (Raftery and Lewis, 1992). Auto-
correlation is the degree to which sampled flows in the chain are
correlated, where a low lag-k autocorrelation indicates good mixing and
a better-quality sampling algorithm (Plummer et al., 2020; Roy, 2020).
The lag-k autocorrelation assessment calculates the correlation between
every sample and the sample k steps before (see Plummer et al., 2020;
Roy, 2020 for calculation details). For a well-mixed chain of samples
(indicative of good mixing), autocorrelation should decrease with an
increase in k. Theoretically, one could compare samples across any two
relevant (i.e., sufficiently different) lag-k periods, but this study
considered that flow values ‘passed’ the autocorrelation diagnostic if the
1st and 50th samples (i.e., lag 50, or 50 iterations apart) were less
correlated than the 1st and 5th samples (i.e., lag 5, or 5 iterations apart),
indicating that correlation between samples decreased with an increase
in number of iterations.

The Raftery-Lewis dependence factor (I) assesses autocorrelation
between samples, where I > 5 indicates strong autocorrelation, poten-
tially due to poor choices of starting solutions, high posterior correla-
tions, or ‘stickiness’ of the sampled chain (Plummer et al., 2020). For
this study, flow values ‘passed’ the Raftery-Lewis dependence factor
diagnostic if I < 5 (Raftery and Lewis, 1992).

We assessed sampling efficiency with the Raftery-Lewis required
number of iterations (N) test (Raftery and Lewis, 1992) and the effective
sample size (ESS) statistic (Robert and Casella, 2004). The N diagnostic
is the required number of samples to meet convergence criteria, where
an adequate number of samples is achieved where N < number of user-
defined iterations. Flow values ‘passed’ the N test if the required number
of iterations (N) was less than the defined number of iterations in the
algorithm, which indicates a good quality algorithm (Raftery and Lewis,
1992). The ESS is the estimated number of independent observations
that the ensemble is equivalent to (given the degree of autocorrelation
between samples within the ensemble). Flow values ‘passed’ the ESS test
if ESS > 10 % of the total number of iterations, indicating that an
adequate number of iterations has been returned (Gabry et al., 2019;
Plummer et al., 2020).

2.3.1. Statistical analyses
For each separate diagnostic (Table 2), Fisher’s Exact Test for Count

Data (stats::fisher.test, R Core Team, 2022) was used to determine sig-
nificant differences in the number of flows that passed and failed each
diagnostic across all 30 algorithm scenarios. After that, we applied post
hoc analysis with function pairwise_fisher_test (rstatix v.0.7.1, Kas-
sambara, 2022) to determine if differences between the number of flows
that passed and failed the diagnostic were due to starting solution, jump
size, or number of iterations. We set statistical significance at a 5 %
threshold (α = 0.05), and all reported p values are two-tailed. While we
conducted statistical analyses on count data, we report the proportion of
bounded flows that passed each diagnostic (%) to aid results
interpretation.

3. Results

3.1. Flow uncertainty analysis

3.1.1. Flow magnitude representation
It is impractical to report the flow values for all 215 food web flows

derived from each algorithm scenario, as there are simply too many
flows to derive any succinct results. Instead, we chose to report how
each algorithm scenario affects select so-called bounded flows (200
flows with defined minima and maxima) of different range magnitudes
(‘small’, ‘medium’, and ‘large’) based on the smallest, median, and
largest flow ranges (Table 3). The underlying methodology for selecting
bounded flows of different range magnitudes is presented in Appendix
B.

3.1.2. Uncertainty of select flows solved with various LIM-MCMC scenarios
All 30 LIM-MCMC algorithm scenarios adequately sampled ‘small’

flows but showed decreasing sampling adequacy for ‘medium’ and
‘large’ flows. For ‘small’ flows (Platyhelminthes, Arachnida_R), flow
values were not significantly different between all 30 algorithm sce-
narios, and their full range of potential flow values were sampled by
each LIM-MCMC algorithm scenario (Fig. 3; Fig. 4).

In contrast, ‘medium’ flows (Gastropoda_EX, susPOC_Q_Nematoda)
were well sampled by all algorithm scenarios except those of the
smallest jump size (0.01 mgC m− 2 d− 1), which only sampled a smaller
proportion of possible flow values (Fig. 3, Fig. 4). There were no sig-
nificant differences between ‘medium’ flow values for algorithm sce-
narios with jump sizes 0.1–100 mgC m− 2 d− 1, nor were flow values
affected by an increase in number of iterations within each jump size.
One notable result is how starting solution affected ‘medium’ flow
values at the smallest jump sizes (0.01 and 0.1 mgC m− 2 d− 1). With

Table 2
Diagnostic tests to assess Markov Chain Monte Carlo convergence aspects: 1)
stationarity, 2) mixing, and 3) sampling efficiency.

Convergence
Criteria

Diagnostic Algorithm quality Test

Stationarity

Coefficient of variation
(CoV)

CoV < 1

Geweke Z-score − 1.96 > Z < 1.96 (p = 0.05)
Heidelberger-Welch
diagnostic

Stationarity test = “Pass”
Halfwidth test = “Pass”

Mixing
Lag-k autocorrelation

Lags between the 1st and 5th
samples are less correlated than the
1st and 50th samples.

Raftery-Lewis dependent
factor (I)

I < 5

Sampling
Efficiency

Effective sample size
(ESS)

ESS > 10 % user-defined number of
iterations

Raftery-Lewis required
number of samples (N)

N < user-defined number of
iterations
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algorithm scenarios of larger jump sizes (1–100 mgC m− 2 d− 1), the
starting solution bares no effect on sampled flow values (Fig. 4). In
contrast, the starting solution significantly impacts the sampled flow
value for algorithm scenarios with the smallest jump size (0.01 mgCm− 2

d− 1). For example, at the smallest jump size, Gastropoda_EX values
returned by the algorithm scenarios with the Central starting solution
were significantly smaller than those of the LSEI starting solution
(Fig. 4). For algorithm scenarios with jump sizes of 0.1 mgCm− 2 d− 1, the
choice of starting solution affected sample flow values only for scenarios
with 5000 iterations, but not for 10,000 or 20,000 iterations. Thus,
‘medium’ flows may be adequately sampled by algorithms of jump size
≥1 mgC m− 2 d− 1, with no differences in sampling efficiency introduced
by differences in starting solutions or number of iterations.

The two ‘large’ flows (Bacteria_R, susPOC_Q_Oligochaeta) were
better sampled by algorithm scenarios of the largest jump sizes (10 and
100 mgC m− 2 d− 1) (Fig. 3, Fig. 4). The large jump size allowed the al-
gorithm to sample the full range of potential flow values, and to negate
effects of starting points and number of iterations on sampling effi-
ciency. The largest jump size (100 mgC m− 2 d− 1) allowed the algorithm
to sample a greater range of potential flow values than any other jump
size. Generally, for algorithm scenarios with jump sizes <100 mgC m− 2

d− 1, the choice of starting solution and number of iterations significantly
affected the sampled flow values. For example, Bacteria_R flow values
calculated from algorithm scenarios with the Central starting solution
were significantly larger than those with the LSEI starting solution
(Fig. 4). Within algorithm scenarios of different starting solutions,
Bacteria_R flow values were often significantly different with an increase
in iterations (5000 to 20,000) (Fig. 3). Similarly, susPOC_Q_Oligochaeta
flow values calculated from algorithm scenarios with the Central start-
ing solution were significantly different than those calculated from al-
gorithm scenarios of the LSEI starting solution at smaller jump sizes, and
showed differences in flow values with increasing number of iterations.

3.2. Algorithm quality assessments

3.2.1. Algorithm assessment with diagnostics commonly used in ecological
modelling

In ecological modelling, often only larger flows are visually assessed
with trace plots (e.g., Nogues et al., 2021). For conciseness, we report
trace plots of one large flow, ‘Bacteria_R’ here, and trace plots for all six
selected flows (Table 3) in Figs. B4–6. Bacteria_R trace plots show that at
the smallest jump size (0.01 mgCm− 2 d− 1), flow values derived from the
Central solution algorithm scenarios are larger than those derived from
the LSEI solution algorithm scenarios (Fig. 5). At jump size 0.1 mgC m− 2

d− 1, flow values derived from both starting solutions begin to converge
after approximately 200 iterations. For jump sizes 1–100 mgC m− 2 d− 1,
flow values derived from both starting points almost immediately
converge to a similar value.

For algorithm scenarios of jump sizes 0.01–10 mgC m− 2 d− 1, Bac-
teria_R trace plots show little mixing (‘stickiness’), i.e., little difference
between values of each iteration due to a limited degree of polytope
exploration (Fig. 5). At these jump sizes, an increase in number of it-
erations did not improvemixing of the flow but did result in an increased
range of sampled flow values. In contrast, flow values derived from al-
gorithm scenarios with the largest jump size (100 mgCm− 2 d− 1) showed

much variability indicative of good mixing (could be described as ‘hairy
caterpillars’). When compared to the potential range of flow values
(7.02–1357.39 mgC m− 2 d− 1, Table 3), algorithms of the smallest jump
size (0.01 mgC m− 2 d− 1) sampled only a small fraction of potential flow
values (7.02–10.45 mgC m− 2 d− 1, starting solutions combined). The
mirror algorithm sampled larger proportions of the potential flow values
with an increase in jump size. Algorithm scenarios of jump sizes 10 and
100 mgC m− 2 d− 1 returned similarly large flow ranges (7.02–1198.50
and 7.02–1357.39 mgC m− 2 d− 1, respectively), with jump size 100 mgC
m− 2 d− 1 fully sampling all potential flow values (7.02–1357.39 mgC
m− 2 d− 1) for both starting solutions and all number of iterations.

For the CoV diagnostic, there was a significant difference between
the number of flows that passed and failed the diagnostic across jump
sizes, number of iterations, and starting solutions (Fisher’s Exact p <

0.001; Table C1). Post hoc comparisons show that for algorithm sce-
narios with a jump size of 1 mgC m− 2 d− 1 or greater, 100 % of the flows
passed the CoV diagnostic (Fig. 6). For Central solution algorithm sce-
narios, there was no statistical difference in the number of flows that
passed the CoV diagnostic (p > 0.05). For LSEI solution algorithm sce-
narios, the number of flows that passed the CoV diagnostic was signif-
icantly different only for one algorithm scenario (0.01 mgC m− 2 d− 1

jump size, 10,000 iterations; p < 0.05).

3.2.2. Algorithm assessment with MCMC convergence diagnostics
For each MCMC convergence diagnostic, there was a statistically

significant difference between the number of flows that passed and
failed the diagnostic test across jump sizes, number of iterations, and
starting solutions (Fisher’s Exact, p < 0.001; Table C1). The number of
flows that passed diagnostic tests of stationarity (Geweke and HW di-
agnostics), mixing (lag-k autocorrelation and I), and sampling efficiency
(ESS andN) were not significantly different between algorithm scenarios
of the Central and LSEI starting solutions (p > 0.05). The proportion of
flows that passed MCMC convergence diagnostics of stationarity, mix-
ing, and sampling efficiency significantly increased with increased jump
size (p < 0.05; Fig. 6).

Within each jump size, the proportion of flows that passed MCMC
convergence diagnostics were generally not significantly different with
an increase in number of iterations (p > 0.05), except in a few key cases.
At the smallest jump size (0.01 mgC m− 2 d− 1), there was a significant
decrease in the proportion of flows that passed the I diagnostic with an
increase in number of iterations (p < 0.05). Conversely, at the smallest
jump size there was a significant increase in the proportion of flows the
passed the N diagnostic (p < 0.05).

3.3. Ecological network analysis

All ecological indicators were significantly different between algo-
rithm scenarios (Fig. 7). Total System Throughflow (TSTflow) and Finn
Cycling Index (FCI) significantly increased with increasing jump sizes.
Within each jump size, TSTflow significantly increased with an increase
in number of iterations, and there was usually no significant difference
in FCI at increasing number of iterations. At the smallest jump sizes
(0.01 and 0.1 mgC m− 2 d− 1), TSTflow and FCI were significantly larger
for ensembles solved with algorithm scenarios with the Central starting
solution than LSEI (Fig. 8). In comparison, D:H significantly decreased

Table 3
Select flows representing flowmagnitudes of ‘large’, ‘medium’ and ‘small’ in the June 2015 uMdloti food web network, and their theoretical minimum, maximum, and
ranges (mgC m− 2 d− 1) calculated with function Xranges (van Oevelen et al., 2010).

Flow Name Flow Description Minimum Maximum Range Magnitude

Bacteria_R Bacteria respiration to external CO2 sink 7.02 1357.39 1350.37
Large

susPOC_Q_Oligochaeta Oligochaeta consumption of susPOC 0.00 818.71 818.71
Gastropoda_EX Gastropoda Export across the system boundary 0.00 5.05 5.05 Medium
susPOC_Q_Nematoda Nematoda consumption of susPOC 0.00 4.04 4.04
Platyhelminthes_R Platyhelminthes respiration to external CO2 sink 0.08 0.18 0.11

SmallArachnida_R Arachnida respiration to external CO2 sink 0.11 0.17 0.06
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with increasing jump sizes and number of iterations (Fig. 7). At smaller
jump sizes, D:H values resulting from algorithm scenarios of the Central
starting solution were significantly smaller than with the LSEI starting
solution (Fig. 8).

Average Mutual Information (AMI) significantly decreased with
increased jump size for both starting solutions (Fig. 7). Within the larger
jump sizes (10 and 100 mgC m− 2 d− 1), there was no difference in AMI

with increased number of iterations. At smaller jump sizes (0.01 and 0.1
mgC m− 2 d− 1), AMI calculated from the Central solution algorithm
scenarios were significantly larger than those calculated with LSEI. Flow
diversity (H) significantly increased from jump size 0.01 to 1 mgC m− 2

d− 1, but then significantly decreased with increasing jump size (10–100
mgC m− 2 d− 1). Within jump sizes, H values significantly decreased with
increased number of iterations. Flow diversity values calculated with the

Fig. 3. Select food web flows (mgC⋅m− 2⋅d− 1) of large (Bacteria_R, susPOC_Q_Oligochaeta), medium (Gastropoda_EX, susPOC_Q_Nematoda), and small (Platy-
helminthes_R, Arachnida_R) range magnitudes of the June 2015 uMdloti Estuary food web network, calculated from thirty LIM-MCMC algorithm scenarios of varying
starting points (LSEI and Central solution), jump sizes, and number of iterations. Boxplots show flow median (line inside box), interquartile ranges (IQR), error
variance (± 1.5 * IQR), and outliers (filled circles). Grey indicates the potential flow ranges calculated from the input food web inequalities (van Oevelen et al.,
2010). Lowercase letters indicate statistically significant differences between number of iterations within each jump size. Uppercase letters indicate statistically
significant differences between jump sizes (Cliff’s |δ| ≥ 0.33).
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Central solution algorithm scenarios were significantly smaller for jump
sizes 0.01–10 than those calculated from the LSEI starting solution
(Fig. 8).

Robustness calculated from Central solution algorithm scenarios
showed no significant differences between the smallest (0.01 mgC m− 2

d− 1) and largest (100 mgC m− 2 d− 1) jump sizes (Fig. 7). However,
robustness calculated from LSEI solution algorithm scenarios signifi-
cantly differed between all jump sizes. For both starting point algorithm

scenarios, at the largest jump size (100 mgC m− 2 d− 1), there was no
significant difference in robustness with an increase in number of iter-
ations. However, at smaller jump sizes (0.01–10 mgC m− 2 d− 1), flows
derived from algorithm scenarios of the Central solution returned
significantly larger robustness values than flows derived from algorithm
scenarios of the LSEI solution (Fig. 8).

Fig. 4. of Cliff’s δ pairwise comparisons of select uMdloti Estuary June 2015 food web flows (mgC⋅m− 2⋅d− 1) of large (Bacteria_R, susPOC_Q_Oligochaeta), medium
(Gastropoda_EX, susPOC_Q_Nematoda), and small (Platyhelminthes_R, Arachnida_R) range magnitudes, calculated with different mirror algorithm scenarios of
starting solutions central (x-axis) and LSEI (y-axis) at various jump sizes and number of iterations. Red tiles indicate a greater likelihood of larger flow values in group
1 (x-axis) than in group 2 (y-axis), and blue tiles indicate a greater likelihood of larger flow values in group 2 (y-axis) than in group 1 (x-axis). White tiles indicate a
complete overlap of flow values between groups (δ = 0). Statistically significant differences (|δ| ≥ 0.33) are outlined in black.
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4. Discussion

4.1. Flow uncertainty analysis

Our results show that the mirror algorithm parameter selection
(starting points, jump sizes, number of iterations) significantly affects
LIM-MCMC sampled values of large andmedium food web flows, but not
smaller flows (Fig. 3). In particular, we found that jump size is a crucial
parameter for algorithm quality, where larger jump sizes allowed for
adequate solution space sampling to return food web ensembles that are
representative of the ecological input data variability. Smaller jump
sizes were too small to adequately sample the potential flow ranges. This
can be conceived as the algorithm taking small ‘steps’ in the Euclidean
space, exploring only a small area and thus sampling a small fraction of
the potential flow ranges. In contrast, the small flows (Platyhelmin-
thes_R, Arachnida_R) were well-sampled by all jump sizes because all
jump sizes were large enough to fully sample the small range of potential
flow values. These findings corroborate previous suggestions that high
dimensional food web problems require larger jump sizes to adequately
sample the solution space (Hogg and Foreman-Mackey, 2018; Nemeth
and Fearnhead, 2021). Therefore, we propose an enhancement to the
initial jump size recommendation (van den Meersche et al., 2009): in
ecological models, an adequate jump size is the same as the magnitude
of the largest flow inequalities.

We noted increased computational time with increased jump size
(Fig. B9). Large jump sizes can lead to many proposal rejections and
computational inefficiency (van den Meersche et al., 2009). A decrease
in jump size allowed the ensembles to be solved quicker (Fig. B9) with

the trade-off of a less adequately sampled solution space (Fig. 3, Fig. 4).
As researchers are often limited by time and computational power,
trade-offs between time and algorithm performance are warranted.
However, even at smaller jump sizes, the computational efficiency can
be improved by selecting an appropriate starting solution and number of
iterations.

In addition to jump size, our results show that the starting solution,
or where the algorithm starts sampling in the solution space, may impact
the algorithm quality at smaller jump sizes. For example, at the smallest
jump size (0.01 mgC m− 1 d− 1), medium-sized flow Gastropoda_EX
values calculated from algorithm scenarios using the Central starting
solution were significantly smaller than those of the LSEI starting solu-
tion (Fig. 3). The LSEI starting solution (Haskell and Hanson, 1981) is
often solved at the intersection of the inequalities (van Oevelen et al.,
2010), representing the extreme ecological input data values (minima,
maxima) (Stukel et al., 2012; Stukel and Landry, 2010). The Central
solution returns a starting point in a more central region of the solution
space (Soetaert et al., 2009), allowing the mirror algorithm to begin
sampling the solution space from less extreme ecological data values. In
such cases where a small jump size is required due to computational
limitations, starting the algorithm in a more representative region of the
solution space may benefit modellers more than using the default LSEI
solution.

The choice of the number of iterations may impact algorithm quality
to a lesser extent than jump size and starting solution. Theoretically,
increasing the number of iterations allows the algorithm to ‘explore’
more of the solution space by taking more ‘steps’ (Roy, 2020; van
Ravenzwaaij et al., 2018). We found that at larger jump sizes, an

Fig. 5. Trace plots of ‘Bacteria_R’ flow values (mgC m− 2 d− 1) at each iteration derived from thirty mirror algorithm scenarios. Each scenario consists of combinations
of different starting solutions (Central and LSEI), jump sizes (0.01–100 mgC m− 2 d− 1), and number of iterations (5000, 10,000, 20,000).
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increased number of iterations does not have a significant impact on
flow values (Fig. 3).

With small jump sizes, we found that the degree of polytope explo-
ration somewhat depends on the starting solution. For example, Bac-
teria_R flow values sampled by the algorithmwith the smallest jump size
(0.01 mgC m− 1 d− 1) and LSEI starting solution were significantly
different between 5000 and 20,000 iterations, with 20,000 iterations
sampling a larger proportion of the potential flow values. In contrast,
Bacteria_R flow values sampled by the same jump size, but different
starting point (Central), showed no significant difference with an in-
crease in number of iterations or range of potential flow values sampled.
This may have implications for data management of large datasets, as it
is more practical to handle, wrangle, and store 10,000 values per flow (e.
g., Bentley et al., 2019; Tecchio et al., 2016; Zhang et al., 2022) than, for
example, 200 million values per flow (e.g., Kelly et al., 2019).

This study found that the choice of starting solution and number of
iterations may be insignificant if the selected jump size is large enough
to sample areas further away from the initial solution within the solution
space. For example, for algorithm scenarios of jump sizes 0.1–100 mgC
m− 1 d− 1, there were no significant differences in Gastropoda_EX flow
values between the Central and LSEI starting solutions, nor between
increasing number of iterations within each jump size.

Thus, in cases where smaller jump sizes are required due to

computational limitations, we make three suggestions to enhance al-
gorithm quality. First, modellers should assess a few different ‘small’
jump sizes to find a jump size that is computationally efficient, yet large
enough to sample areas further away from the initial solution. Secondly,
the Central solution should be used instead of the LSEI solution as the
initial starting point to allow the algorithm to start sampling from a
more ‘central’ region of the solution space (van den Meersche et al.,
2009). This allows plausible food webs to be sampled from a more
‘central’ region, rather than at the intersections of the inequalities rep-
resenting extreme ecological input data (e.g., Stukel et al., 2012; Stukel
and Landry, 2010). Thirdly, we suggest increasing the number of iter-
ations to improve the algorithm’s solution space exploration (Roy, 2020;
van Ravenzwaaij et al., 2018), thereby returning solutions more repre-
sentative of the ecological input data. In all cases, we suggest applying
appropriate diagnostics to assess whether the selected parameters were
adequate to return ensembles of food webs representative of the
ecological input data variability.

Progress towards improving computational efficiency to return
ecologically representative food web ensembles includes parallel
computation of multiple plausible food webs (Nemeth and Fearnhead,
2021). For example, de Jonge et al., 2020 employed a parallelisation
approach to solve 100,000 plausible food webs through twenty-five
parallel computations of 4000 iterations each. In the broader Markov

Fig. 6. Proportion (%) of bounded flows (n = 200) that passed the coefficient of variation (CoV) criteria (CoV <1) and various Markov Chain Monte Carlo (MCMC)
convergence diagnostics. MCMC diagnostics assessed 1) stationarity with the Geweke and Heidelberger-Welch (HW) diagnostics, 2) mixing with autocorrelation and
Raftery-Lewis independence factor (I), and 3) sampling intensity with effective sample size (ESS) and Raftery-Lewis required number of samples (N). Lowercase
letters indicate Fisher’s Exact post hoc significant differences between algorithm scenarios for each diagnostic.
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Chain Monte Carlo statistical method research, there are ongoing efforts
towards optimising sampling efficiency, including progress towards
finding more appropriate algorithm starting points (van Ravenzwaaij
et al., 2018), subsampling optimisation and scaling (Hu and Wang,
2021; Nemeth and Fearnhead, 2021), and sequential proposal frame-
works (Park and Atchadé, 2020). While these statistical methods have
not yet made their way into food web modelling, we recommend that
ecological modellers should keep in touch with these statistical tech-
niques to potentially improve the incorporation of empirical data un-
certainty in ecological modelling in future.

4.2. Algorithm quality assessments

While visual diagnostics such as trace plots are not precise estimates
of convergence, they provide an interesting starting point to examine
algorithm quality. In this study, we show that trace plots of a large flow
(Bacteria_R) can subjectively indicate differences in algorithm quality
(Fig. 5). Trace plots of Bacteria_R at the larger jump sizes show that the
flow is integrating effectively over the posterior distribution and the
algorithm samples the full range of potential flow values (Roy, 2020).
Therefore, at the larger jump sizes, the selection of starting solution and
number of iterations is irrelevant. Trace plots further show that the
choice of starting solution is more important at smaller jump sizes than
larger jump sizes. For example, at the smallest jump size (0.01 mgC m− 1

d− 1), Bacteria_R flow values derived from algorithm scenarios of the
Central starting solution are larger than those derived from algorithm
scenarios of LSEI starting solution but rapidly converge at increasing
jump sizes. Even though the algorithm may begin at different points in
the solution space, the jump sizes are large enough to move away from
the starting solution. These findings suggest that trace plots can be
valuable tools for quick visual diagnostics of flow stationarity, mixing,
and if the sampled flow is derived from the full input data range.
Together, such findings can assist modellers with adequate algorithm

parameter selection. The trace plot comparisons presented in this study
(Fig. 5, Figs. B4–6) can be a helpful reference point for future ecological
modelling studies aiming to use trace plots to diagnose algorithm
quality.

Previously, visual assessments have been applied to only the larger
flows to assess algorithm quality, assuming that if larger flows are well-
sampled, the smaller flows will be too (e.g., Nogues et al., 2021). The
findings of this study support this assumption. Therefore, we recom-
mend that trace plots of the larger flows can be used as a quick indica-
tion of algorithm quality using base R functions or several R packages,
including autoLIMR (Gerber et al., 2023), coda (Plummer et al., 2006,
2020), and mcmcplots (McKay Curtis, 2018).

In this study, algorithm quality assessment with CoV shows that
almost all flows are well-sampled. The CoV has previously been inter-
preted as an indicator of algorithm quality by assessing residual uncer-
tainty in the flow solutions (e.g., Bell et al., 2017; de Jonge et al., 2020;
van Oevelen et al., 2011). However, little uncertainty around a flow
value mean (CoV < 1) could also result from the algorithm sampling a
small proportion of the solution space, neglecting other potential values.
For example, flow Bacteria_R values derived from all 30 algorithm sce-
narios had a CoV < 1 (Fig. B10), indicating ‘good quality’. Between
algorithm scenarios, the CoV of Bacteria_R was smallest at algorithm
scenarios of the smaller jump sizes, and larger at increased jump sizes. In
this case, if a smaller CoV is indicative of ‘good quality’, then Bacteria_R
flow values derived from algorithm scenarios of the smallest jump size
would be of better quality than algorithm scenarios of larger jump sizes.
In contrast, MCMC convergence diagnostics show that Bacteria_R was
poorly sampled at smaller jump sizes and better sampled at the largest
jump size (Fig. 6), suggesting that CoV may not be an appropriate
diagnostic of algorithm quality. Instead, MCMC convergence diagnostics
may provide a more robust assessment of algorithm quality.

Using MCMC convergence diagnostics, we show that most flows
(92.5%) sampled with algorithms scenarios of the largest jump size (100

Fig. 7. Select Ecological Network Analysis (ENA) indicators describing the June 2015 uMdloti Estuary food web network derived from different mirror algorithm
starting points (Central, LSEI) at increasing jump sizes and number of iterations. Lower and upper error lines represent ±1.5 * IQR (Interquartile Range). Boxplots
show flow median (line inside box), interquartile ranges (IQR), error variance (± 1.5 * IQR), and outliers (filled circles). Lowercase letters indicate statistically
significant differences between number of iterations within each jump size. Uppercase letters indicate statistically significant differences between jump sizes (Cliff’s
|δ| ≥ 0.33).
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mgC m− 2 d− 1) passed all diagnostics of stationarity, mixing, and sam-
pling efficiency (Fig. 6). This infers that the sampled food webs had
reached stationarity (Geweke and HW diagnostics), were well-mixed
(autocorrelation and I), and that enough samples had been returned to
adequately describe the solution space distribution (ESS and N). Most
flow values sampled with algorithm scenarios of the smallest jump size
(0.01 mgC m− 2 d− 1) did not pass MCMC convergence diagnostics,
inferring poor convergence and poor algorithm quality. Poor

convergence potentially results from, among others, poor choices of
starting solutions, high posterior correlations, or the ‘stickiness’ of the
sampled chain (Plummer et al., 2020).

Different proportions of flows ‘passed’ each separate diagnostic of
stationarity, mixing, and sampling efficiency for the same algorithm
scenarios, highlighting the methodological differences in how each
diagnostic assesses convergence. For example, Geweke stationarity as-
sessments of flows derived from the algorithm scenarios of the smallest

Fig. 8. Cliff’s δ pairwise comparisons of select Ecological Network Analysis (ENA) indicators describing the June 2015 uMdloti Estuary food web network between
different mirror algorithm starting points (Central, LSEI) at increasing jump sizes and number of iterations. Red tiles indicate a greater likelihood of larger flow values
in group 1 (x-axis) than in group 2 (y-axis), and blue tiles indicate a greater likelihood of larger flow values in group 2 (y-axis) than in group 1 (x-axis). White tiles
indicate a complete overlap of flow values between groups (δ = 0). Statistically significant differences (|δ| ≥ 0.33) are outlined in black. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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jump size showed that a greater proportion had ‘passed’ the diagnostic
(35.5–52 %) in comparison to the HW diagnostic tests (15–30 %; Fig. 6).
For the same algorithm scenarios, mixing assessments showed that none
of the flows passed the lag-k autocorrelation diagnostic (0 %), whereas a
larger proportion passed the I diagnostic (12.5–46 %). Sampling effi-
ciency assessments show that none of the flows passed the ESS diag-
nostic (0 %), whereas a larger proportion passed the N diagnostic test
(3–23.5 %). Such differences between diagnostic tests were expected as
each diagnostic estimates convergence in a different method (Du et al.,
2022; Hogg and Foreman-Mackey, 2018; Mengersen et al., 1999).
Therefore, the findings of this study corroborate previous recommen-
dations to use multiple MCMC convergence diagnostics to assess an
aspect of stationarity, mixing, and sampling efficiency (Du et al., 2022;
Hogg and Foreman-Mackey, 2018; Mengersen et al., 1999).

While true MCMC convergence is impossible to test (Hogg and
Foreman-Mackey, 2018), to confidently state that a sampling algorithm
is ‘good’ quality (i.e., fully samples the solution space), most flows of the
sampled plausible food webs should meet convergence criteria (Roy,
2020). Therefore, we recommend applying multiple MCMC diagnostics
on all flows to assess MCMC convergence and algorithm quality. This
allows for greater confidence in the model outputs and their represen-
tation of the empirical system. When reported, these diagnostics can
enhance model reporting and reproducibility, thus enabling improved
ecosystem assessments and comparisons between studies. Statistical
MCMC convergence diagnostics are available in several R packages,
including autoLIMR (Gerber et al., 2023), coda (Plummer et al., 2006,
2020), and boa (Smith, 2007).

4.3. Ecological indicators and inferences of ecosystem status

Ecological indicators calculated on flow values sampled by the
various algorithm scenarios significantly differed despite using the same
a priori food web model and parameters. This highlights the importance
of the mirror algorithm to adequately sample the solution space, as the
difference in ecological indicators calculated from different algorithm
scenarios can be large enough to make different inferences about
ecosystem status.

For example, the ENA indicators derived from flow values calculated
with a good quality algorithm (Central starting solution, 100 mgC m− 2

d− 1 jump size, and 20,000 iterations) suggest greater system activity,
cycling (FCI = 0.27 ± 0.09), and reliance on primary producers to fuel
the food web via herbivory (Fig. 7). More productive systems have
higher activity and indicate more favourable conditions for primary
production (Patten, 1995). The higher cycling indicates a decreased
dependency on external energy inputs to maintain system function (de
Jonge and Schückel, 2019). The low D:H indicates a high availability of
primary producers as a food source, potentially from high primary
production (e.g., Chrystal and Scharler, 2014).

In contrast, the ENA indicators derived from flow values calculated
with a poor-quality algorithm (Central starting solution, 0.01 mgC m− 2

d− 1 jump size, and 20,000 iterations) suggest lower system activity,
cycling, and reliance on primary producers to fuel the food web (Fig. 7).
Lower system activity can be interpreted as decreased system produc-
tivity (Patten, 1995). Low cycling indicates a reliance on boundary in-
puts to sustain system function (de Jonge and Schückel, 2019). The large
D:H ratio suggests increased detritivory, and together with low cycling,
infers system dependency on detritus inputs from upstream to maintain
system function (Heymans et al., 2002).

The only similarities between the two algorithm ecological indicator
outputs are the Robustness indicators. Robustness incorporates AMI and
H into one metric and, therefore, does not increase linearly but instead
peaks on a ‘robustness curve’ (Ulanowicz et al., 2009). Robustness in-
dicators from both above-mentioned algorithm scenarios are similar in
value to one another and describes both systems as existent within the
‘window of vitality’ (Fig. B11), a theoretically narrow Robustness range
where the system displays an optimal balance between flow efficiency

and redundancy (de Jonge et al., 2019).
As there is increasing effort to include ecosystem models and

ecological indicators in management and policy (de Jonge and Schückel,
2021; Fath et al., 2019; Schückel et al., 2022), it is important to highlight
how such differences in described ecosystem status of the same model
may influence future specific management actions. For example, outputs
from the first scenario may lend towards management decisions of
nutrient input management (to manage excessive primary production
and potential eutrophication), whereas the second may suggest that
freshwater input flow management is an important tool in maintaining
adequate inputs of detritus into the system. However, while the linkages
between ecological indicators of emergent ecosystem function and
management are outside the scope of this study, we show that the
methodological decisions of LIM-MCMC algorithm parameters can lead
to different interpretations of ecosystem function from the same model.
This underscores the importance of (1) selecting adequate LIM-MCMC
parameters to ensure that the model outputs adequately represent the
empirical system, and (2) the importance of adequate model quality
diagnostics to provide more realistic inferences of ecosystem status, with
the potential to better inform management decisions.

4.4. Limitations

One significant limitation to this study findings is that the LIM-
MCMC algorithm parameters used here to adequately sample the solu-
tion space are not directly transferable to another case study. For this
case study, LIM-MCMC algorithms of jump size 100 mgC m− 1 d− 1 were
adequate to return ensembles of plausible food webs representative of
the input ecological data, but this is case study dependent (Harrington
et al., 2021; van Oevelen et al., 2010). For example, Nogues et al. (2021)
used 500,000 iterations and a 0.5 gC m− 2 jump size to sample the so-
lution space of a 19-compartment, 144 flow food web model of the
Courseulles-sur-Mer offshore wind farm, and Zhang et al. (2022) used
10,000 iterations with an unreported jump size to “sample the feasible
region of energy flow” of five Baiyangdian Lake food web models, each
consisting of 14 compartments and 69 flows. Thus, we cannot make any
direct recommendations of adequate algorithm parameters. Instead, we
suggest that future research uses MCMC convergence diagnostics to
determine adequate algorithm parameters on a case by case basis, to
determine if the user-defined algorithm parameters adequately sampled
the solution space to return ensembles representative of the ecological
input data variability.

Further, in empirical applications of this studies recommendations,
using adequate LIM-MCMC algorithm sampling parameters may not be
practically possible given computational and time constraints. In these
cases, the calculated ecological indicators will not give a comprehensive
overview of empirical ecosystem function. Until such time as more
efficient LIM-MCMC algorithms are introduced into ecological model-
ling, we recommend that future studies use a combination of algorithm
parameters that maximise algorithm performance, balanced by time and
computation constraints. In future cases of complex food webs, where
algorithm performance will not be comprehensive, it is important to
robustly assess and report the model quality (e.g., with MCMC conver-
gence diagnostics) along with the model outputs, so that interpretations
of ecological function uncertainty can be reviewed within the limita-
tions of model quality.

5. Recommendations and conclusions

We provide a novel assessment of how user-defined LIM-MCMC
mirror algorithm parameters (starting solution, jump size, number of
iterations) capture ecological input data variability in food web en-
sembles of a case study food web. Algorithm parameter selection
significantly influences how much ecological data variability is incor-
porated into the ensembles, and these differences propagate into
ecological indicators describing ecosystem function, leading to different
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ecological interpretations of the same a priori parameterised model.
Therefore, selecting algorithm parameters that adequately capture
ecological data variability is essential to quantify the uncertainty of the
empirical flow values.

We show that jump size is the most critical algorithm parameter
influencing algorithm quality, and therefore recommend selecting a
jump size within the range of the larger food web flows to return
ecologically representative ensembles. In situations where jump size is
limited to smaller values due to computational inefficiencies, we
recommend selecting a starting solution in a more ‘central’ region of the
solution space, and increasing the number of iterations to improve al-
gorithm quality to return ecologically representative food web models.
In all cases, the output ensembles should be assessed post hoc to
determine whether the selected algorithm parameters allow the LIM-
MCMC algorithm to sufficiently capture the input data variability.

We found that currently established post hoc assessments of algo-
rithm quality with trace plots and coefficient of variation (CoV) can be
improved with additional MCMC convergence diagnostics of statio-
narity, mixing, and sampling efficiency. Statistical MCMC convergence
diagnostics are not only more robust assessments of algorithm quality
than trace plots and CoV, they also assess convergence in different ways.
Therefore, we recommend using multiple MCMC convergence di-
agnostics to assess each aspect of stationarity, mixing, and sampling
efficiency.

We trust that these novel recommendations of LIM-MCMC mirror
algorithm parameter selection and robust quality diagnostics will
facilitate improved representation of ecological input data into network
models. Thereby, uncertainties in empirical flow values and of
ecosystem function can be quantified with greater precision, enhancing
confidence in interpretations of empirical ecosystem function.
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Breugel, P., Sweetman, A.K., Soetaert, K., van Oevelen, D., 2020. Abyssal food-web
model indicates faunal carbon flow recovery and impaired microbial loop 26 years
after a sediment disturbance experiment. Prog. Oceanogr. 189, 102446. https://doi.
org/10.1016/J.POCEAN.2020.102446.
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David, V., Vézina, A.F., Niquil, N., 2015. Trophic networks: how do theories link
ecosystem structure and functioning to stability properties? A review. Ecol. Indic. 52,
458–471. https://doi.org/10.1016/J.ECOLIND.2014.12.017.
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sections of the Nazaré canyon. Deep-Sea Res. II Top. Stud. Oceanogr. 58, 2461–2476.
https://doi.org/10.1016/j.dsr2.2011.04.009.

van Ravenzwaaij, D., Cassey, P., Brown, S.D., 2018. A simple introduction to Markov
Chain Monte–Carlo sampling. Psychon. Bull. Rev. 25, 143–154. https://doi.org/
10.3758/s13423-016-1015-8.

Zhang, X., Yi, Y., Yang, Z., 2022. The long-term changes in food web structure and
ecosystem functioning of a shallow lake: implications for the lake management.
J. Environ. Manag. 301, 113804. https://doi.org/10.1016/j.jenvman.2021.113804.

G. Gerber and U.M. Scharler Ecological Informatics 84 (2024) 102865 

16 

https://doi.org/10.1520/STP29016S
https://doi.org/10.1520/STP29016S
https://doi.org/10.1016/j.ecocom.2008.10.005
https://doi.org/10.18637/jss.v030.c01
https://doi.org/10.18637/jss.v030.c01
https://doi.org/10.1016/j.ecolmodel.2020.109129
https://doi.org/10.2989/16085914.2019.1685934
https://doi.org/10.2989/16085914.2019.1685934
https://doi.org/10.1007/s10021-009-9297-6
https://doi.org/10.1016/j.dsr2.2011.04.009
https://doi.org/10.3758/s13423-016-1015-8
https://doi.org/10.3758/s13423-016-1015-8
https://doi.org/10.1016/j.jenvman.2021.113804

	Jump around: Selecting Markov Chain Monte Carlo parameters and diagnostics for improved food web model quality and ecosyste ...
	1 Introduction
	2 Materials and methods
	2.1 Model construction
	2.2 Flow & ecological indicator uncertainty analysis with LIM-MCMC algorithm scenarios
	2.2.1 Algorithm scenario development
	2.2.2 Calculating multiple plausible food webs
	2.2.3 Ecological network analysis
	2.2.4 Statistical analyses

	2.3 Algorithm quality assessments
	2.3.1 Statistical analyses


	3 Results
	3.1 Flow uncertainty analysis
	3.1.1 Flow magnitude representation
	3.1.2 Uncertainty of select flows solved with various LIM-MCMC scenarios

	3.2 Algorithm quality assessments
	3.2.1 Algorithm assessment with diagnostics commonly used in ecological modelling
	3.2.2 Algorithm assessment with MCMC convergence diagnostics

	3.3 Ecological network analysis

	4 Discussion
	4.1 Flow uncertainty analysis
	4.2 Algorithm quality assessments
	4.3 Ecological indicators and inferences of ecosystem status
	4.4 Limitations

	5 Recommendations and conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	datalink4
	References


