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H I G H L I G H T S

• We develop SELARU—a spatially explicit capacity expansion optimisation model.
• SELARU incorporates economy of scale consideration in generating model results.
• Grid expansion spatial representation changes technology selection in model output.
• Findings from power sector example also apply to multiple energy carrier systems.
• Computing demand requires trade-off between spatial and temporal resolution.
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A B S T R A C T

Capacity expansion optimisation is a widely used techno-economic analysis particularly on topics related to
climate change mitigation and renewable energy transition. Using optimisation models to investigate capacity
expansion in regions that potentially require significant grid infrastructure development requires incorporation
of grid expansion problem within the optimisation. This study presents the development of SELARU, a spatially
explicit optimisation model that incorporates the economies of scale of grid expansion using contextualized
geographical feature to form the model's high-resolution spatial units. The model is used to investigate the case
study of Indonesia using various spatial treatments to demonstrate the impact of detailed spatial depiction of grid
expansion. Results reveal significant difference in renewable energy deployment trajectory (up to 2272 % in-
crease in new generation capacity) between high-resolution spatial depiction of grid expansion vis-à-vis non
spatially explicit energy system optimisation. Due to its high-resolution, SELARU also generates detailed infor-
mation on the geographical extent of grid expansion requirement, which provides more realistic insights on
governance challenges of renewable energy transition. Careful consideration of spatial representation is crucial
when optimisation model is used to evaluate scenarios that concern technology selection such as renewable
energy deployment or climate change mitigation.

1. Renewable energy transition and grid expansion challenges

Geographical spread of resources and intermittence of power gen-
eration are among the main challenges of scaling up renewable energy.
Renewable energy sources such as solar radiation, wind power,
geothermal power, or hydropower require on-site conversion to elec-
tricity or other carriers to allow transport of energy to demand locations

elsewhere [1]. For instance, hydropower electricity is available in re-
gions where there are substantial water stream or catchment area and
considerable slope and length for head racing the water down to the
powerhouse, which is then transmitted to demand locations via elec-
tricity grid. In contrast, fuel-firing power generation can virtually be
deployed everywhere constrained mainly just by the supply of feedstock
fuels (e.g. coal, gas, oil, biomass). Before entering the combustion
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chamber, fuels start their journey from primary energy extraction to
processing and storage [2]. These journeys include significant amount of
movement that is made available at relatively low-cost by the extent of
accumulated logistics infrastructure of various fossil fuel commodities.

The intermittence of renewables for generating electricity is also
dependent on their location. For instance, wind and solar energy po-
tentials depends on local weather conditions and solar radiation. Periods
of intense solar radiation or high winds—during which solar or wind
power plants can maximize their output—vary from one location to
another. The time-varying and uncertain production of intermittent
renewable electricity require the addressing of potential risks towards
stability and reliability of the power grid [1]. This limitation is not true
for all type of renewables. For example, hydropower or geothermal
power can provide sufficient firm and operating reserves capacities to
ensure service reliability and stability of the power grid.

Expanding the geographical coverage of power grid is usually
required to reach remote renewable energy resources. Under certain
load conditions, such an expansion will also improve grid connectivity
that can help address the intermittence issue of renewables by allowing
electricity to flow from surplus regions to demanding regions. However,
access to low-cost renewable resources may require substantial exten-
sion and upgrade to the power grid [3,4], which require significant in-
vestment and sufficient load flows to make economic sense. In addition,
the expectation of costs and benefits may differ across regions depending
on natural conditions, level and pace of societal development, and
regulatory regime of the region. This leads to the case where building
extensive power grid infrastructure in some regions may become less
financially viable compared to deploying smaller distributed systems or
vice-versa. Therefore, incorporating grid expansion into broader power
generation expansion planning is challenging. In an intermeshed
network, the exact location, size of power line extensions and the costs
required to connect inter-region transfer capacities are specific to the
particular context of resource, supply, and demand in various location
within a certain time horizon. Moreover, power grid technical compo-
nents may also include different configuration of voltage classes, types
of electricity current, and grid topology.

2. Spatial representation in optimisation models

In the field of energy modelling, optimisation models are commonly
used to evaluate system-wide parameters related to the production,
conversion, distribution, storage, and use of energy in a simplified
depiction. These models incorporate detailed, bottom-up information,
and typically utilises linear programming techniques to solve the
optimal configuration of energy technologies that minimises the total
cost of the entire depicted system [5–7]. They have been widely used for
assessing different scenarios of capacity expansion [8], unit commit-
ment [9], grid control and planning [10], market design and pricing
[11,12], social and environmental impacts of energy system [13], and
assessing decisions under future uncertainties [14]. Modelling and
analysis of the energy system provide the integrating framework that
assists policy and industrial decision makers at different levels (i.e.
global, regional, and local) in assessing different strategies and possible
outcomes [15].

Optimisation models typically employ linear programming ap-
proaches, their main component is an objective function that details cost
implications of energy technology application as decision variables. The
objective function is minimised against numerous constraints such as
fulfilment of demand, grid reliability and stability, and emission
reduction requirements. Moreover, the models are informed by systems-
wide information such as energy demand and resource availability, as
well as detailed techno-economic information such as costs of primary
energy, construction, operation and maintenance, as well as conversion
efficiency, capacity factor and emissions factor.

The construct of an energy system is highly influenced by its spatial
detail. Among others, location of primary energy resources vis-à-vis

energy demand will have huge implication towards the selection of
energy technologies, ranging from conversion to transport of energy
carriers. Accordingly, how spatial information is depicted in an opti-
misation model could determine its sensitivity towards certain param-
eters and its behaviour in generating optimal configuration of modelled
system scenarios. There are different ways in how optimisation models
depict spatial information. For the purpose of this study, spatial depic-
tion in optimisation models can be classified into 1) no spatial repre-
sentation, 2) low-resolution spatial representation and 3) high-
resolution spatial representation. Optimisation models that concern
singular region, usually based on administrative boundaries, effectively
has no spatial representation [16–21]. Models with spatial representa-
tion ultimately intend to incorporate transport of energy across multiple
regions within the depicted system. This is achieved through simplifying
regions with certain geographical boundaries into nodes allowing in-
terconnections between them [22]. Optimisation models with no spatial
representation are essentially single-node models. This type of models
uses simplified exogenous assumptions to approximate parameters that
require spatial representation such as transmission and distribution
losses and costs of upgrading the electricity grid for the whole region. In
contrast, optimisation models with spatial representation, either with
low- or high-resolution, are multi-node models that incorporate distance
and accessibility between nodes to better represent different geographic
zones, incidence of distributed energy, interconnection distances, and
transmission bottlenecks [23–32]. In modelling electricity systems, this
information can be further enriched with description of voltage and
current physical properties to determine load flows [33,34].

The majority of studies using optimisation models fall into the
category of low-resolution spatial representation with their use of
administrative regions, or their aggregation, to represent multi-node
systems [23,24,27,35–38]. In global studies, energy system optimisa-
tion models are part of integrated assessment modelling of the broader
human energy-economy-environment systems. Under this setup, the
majority of global models depict the world as 5 to ~40 regions with a
small number of models representing up to 100 regions [39]. These
regions represent regional costs disparities of implementing policies,
technological solutions, and the potential trade between regions. Na-
tional and regional applications of optimisation models vary in spatial
detailing [23,25,37,40–44]. Some studies employ different spatial res-
olutions for different scopes of analysis, for instance: using limited
amount of nodes for long-term planning of infrastructure, and increase
the number of nodes (e.g. China: from 8 nodes to 80 nodes [37], Europe:
from 28 to 224 [3]) for short-term planning of operation that feeds back
transmission infrastructure costs information into the long-term model.
In both multi-node applications, the optimisation process is done at
relatively coarse resolution (8–224 nodes). High-resolution spatial rep-
resentation is characterized by geographical features that are more
contextualized compared to rather high-level administrative boundaries
in determining spatial units within the depicted system. This is done in a
limited number of studies using geographic grid with resolutions
ranging between 0.25 and 0.50◦ (756–3025 km2 at the equator)
[45–48].

3. Indonesia's power sector

Indonesia has a geographically diverse and complex energy system.
The archipelagic nation consists of more than 17,000 islands that stretch
over 5000 km along the equator. In 2020, the country consumed 8.s5 EJ
of primary energy with majority of the supplies coming from fossil fuels
(86 %) and the remaining from renewables (14.4 %) [49]. By the end of
2020, Indonesia had a total installed electricity generation capacity of
70 GW connected to the grid and 2.75 GW of total installed off-grid
generation [50]. More than 60 % of all generation capacity is situated
in the Java-Bali electricity system (> 40 GW), while the rest is distrib-
uted in other islands of Indonesia. Coal-fired power plants accounted for
half of total installed capacity in 2020. Renewables, in contrast,
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accounted for 12 % of the total, with half of it coming from hydropower.
The government of Indonesia (GoI) has pledged to reduce green-

house gasses (GHGs) emissions by 29 % relative to baseline emissions in
2030, or by 41 % with conditions of international support, as stated in
their nationally determined contribution (NDC) [51]. More recently, GoI
announced its intention to enhance the ambition and reach net-zero
emissions by 2060, and as early as 2050 with additional international
support [52,53]. The country has successfully increased the share of
households with access to electricity from 67.15 % in 2010 to 99.2 % in
2020 [54]. Nevertheless, many electrified regions do not receive 24 h of
electricity per day nor have access to other modern sources of energy.
These are the realities, especially in eastern regions, where dilapidated
or non-existent infrastructure impedes the development of public health,
education, and the alleviation of poverty, thus resulting in persistent
regional inequalities [55].

Indonesia has huge untapped renewable resource potential that can
theoretically provide locally available energy to fulfil domestic demand.
However, expanding the necessary infrastructure is challenging due to
the geographic spread and development inequalities across the archi-
pelago. As a general phenomenon, there is huge location disparity be-
tween energy demand (Fig. 1) and resource availability of renewables
(Fig. 2). Indonesia's energy sector is also highly regulated with the State
Electricity Company mainly responsible for power generation and grid
operation throughout the country. Therefore, the necessity of incorpo-
rating grid expansion needs into scenario assessment of high renewable
energy deployment is further underlined in order to provide relevant
and feasible sustainable energy transition insights.

Modelling based studies on Indonesia's energy system utilise single-
node or coarse resolution multi-node models. Single-node models are
employed to maintain model tractability for cross-sector analysis that
include macro-economic details [60] or studies that address topics with
temporal variability [61]. Multi-node model applications on Indonesia
[62] [63] [64] [65] describe regional geographical conditions, power
grid network, and cross-borders trade to assess scenarios of transitioning
to renewables. The highest resolution among these multi-node analyses

occurs in a recent study commissioned by the International Renewable
Energy Agency (IRENA) and Indonesia's Ministry of Energy and Mineral
Energy Resources (MEMR) [65]. The study utilises PLEXOS energy
market modelling and simulation software [66] to analyse Southeast
Asia in 35 regions, with Indonesia covering 18 of these regions.

4. Knowledge gaps and research objectives

Using optimisation model to explore scenarios of renewable energy
capacity expansion can be problematic without the adequate spatial
detail representation. Theoretically, solutions of optimum energy tech-
nology configuration could be misled by distorted costs of grid infra-
structure requirements to connect on-site power generation to demand
locations. The optimisation process in single-node models virtually as-
sume equal cost for transmitting different types of electricity generation
in the region that the models address [60,61,67–72]. In reality, distances
to existing grid infrastructure, and therefore transmission costs, vary
between fossil-based power generation and on-site renewable electricity
generation. Multi-node models incorporate information on resource
disparities among regions and required grid infrastructure for energy
transfers among regions [3,23,25,37,41–48,62,73]. However, the use of
low-resolution spatial representation may underestimate grid network
requirement within each of the nodes. Moreover, the spatial averaging
effects might have ruled out the extreme points in designing the system;
misidentifying high potential resource locations that are separated in
short distances.

Formulation of grid expansion problem in optimisation model also
need to consider the economies of scale. In situations where significant
grid investments are required, the selection of distributed systems as
optimum solution might be favourable instead of expanding the grid to
remote areas. This is possible despite its higher unit electricity genera-
tion cost, mainly because remote areas typically also have low energy
demand. However, combining these areas may result in sufficient de-
mand that justifies the use of lower-cost bulk power generation tech-
nologies even after taking grid expansion costs into account. From a

Fig. 1. Map of population distribution for year 2019 as proxy of energy demand and overlay of existing transmission lines.
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long-term perspective, incremental grid expansion can also result in
future competitiveness of low-cost bulk power generation technologies
due to accumulation of economies of scale over certain fraction of the
modelled time horizon. Allowing optimisation models to depict incre-
mental grid expansion and its contribution to accumulation of econo-
mies of scale requires explicit formulation for deploying transmission
lines and transformer substations.

As previously mentioned, literature review reveals that high-
resolution multi-node applications using geographical grid are rather
limited. Moreover, both high-resolution as well as low-resolution multi-
node analyses only address grid expansion in terms of capacity increase
and not the geographical extent [3,23,25,37,40–44,74]. To address this
research gap, this study aims to develop high-resolution spatially
explicit optimisation model that addresses economies of scale of
geographical grid expansion into power system optimisation. The study
also explores the impact of such an addressing of the grid expansion
problem, especially in regions that potentially require significant
geographical expansion of grid infrastructure due to e.g. sparse distri-
bution of available resources, or having development trajectories that
indicate significant shift of future energy demand locations regardless of
the presence of new grid development plans.

We present the development of spatially explicit optimisation model
that is applied to Indonesia's power sector at varying spatial resolutions
to address the aforementioned research objectives. The methodology for
model development and other key elements to the modelling framework
are first presented. We then summarize results and discuss key insights
from model application for Indonesia's energy system with non-spatial
treatment, as well as coarse- and high-resolution spatially explicit
application. Finally, we conclude by evaluating the usefulness of the
approach and deriving recommendations for future studies.

5. Methodology

We develop a spatially explicit optimisation model called SELARU.

The model has the unique feature of high-resolution multi-nodes spatial
representation with the capability of incorporating the economies of
scale of geographical grid expansion into its optimisation process. We
employ SELARU to investigate the case study of Indonesia's electricity
sector in accordance with our earlier hypothesis that high-resolution
spatially explicit optimisation model is particularly relevant to assess
geographically diverse systems with a developing trajectory for future
energy demand in new locations. The model is used in various spatial
treatments to demonstrate the impact of different spatial depictions of
grid expansion.

5.1. SELARU modelling framework

We limit the application of SELARU to the electricity sector for this
study in anticipation of the high computational demand due to the sheer
size of the optimisation problem (see Table 1). In this study, SELARU
generates optimal configuration of technology application for power
generation, transmission lines and substations that minimises cumula-
tive total system cost throughout the planning horizon, while meeting

Fig. 2. Distribution of solar in daily average of Global Horizontal Irradiance (GHI) [56], wind in Wind Power Density [57], geothermal [58] and hydropower [59]
resource potential.

Table 1
| GAMS execution summary of Non-Spatial, Low-Res and High-Res SELARU
applications. The solver is set to return best found solution when total solve time
exceeds 100,000 s or processed over 1 million nodes in CPLEX's Branch and Cut
algorithm.

Non-Spatial Low-Res High-Res

MILP Solve (total system cost)
in billion US$ (constant 2020)

398.4 359.8 359.19

Theoretical best solution 398.2 350.36 348.56
Gap 0.05 % 2.62 % 2.96 %
Average run time (hh:mm:ss) 0:00:01 0:00:18 7:37:18
Number of rows 31,930 1,090,108 13,197,680
Number of columns 29,326 993,986 12,183,266
Number of non-zeroes 76,279 2,354,638 28,757,565
Number of integers 135 5405 69,380
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demand and other technical constraints (illustrated in Fig. 3).
SELARU is based on Mixed Integer Linear Programming (MILP) and

developed using the General Algebraic Modelling System (GAMS) [75].
Varying SELARU applications in this study were executed in GAMS using
CPLEX solver [76]. SELARU endogenously determines the capacity
expansion decisions for all 20-year timesteps from 2020 to 2100. Model
outputs, i.e. generation, voltage transformations, and transmission
flows, are solved to ensure annual balance of energy supply and demand
at each node for all the timesteps.

Existing and planned infrastructure are taken into account in the
modelling horizon of this study. The data is obtained from the ESDM
One Map developed by MEMR [58] and General Electricity Supply Plan
by PLN [77], which includes electricity generation facilities, trans-
mission lines, and transformer substations. As the aim of the study is to
investigate the impact of detailed spatial representation, climate miti-
gation scenarios are not considered. This approach is adopted to avoid
potential effect of scenario interventions that might influence the
model's solution beyond the formulated objective function and energy
system constraints.

Further details of MILP formulation and input data used in this study
are available in the supplementary information. The study can also be
reproduced using information in the GitHub repository mentioned in
Data availability.

5.2. Spatial representation

As in other optimisation models, SELARU uses nodes and lines to
represent the spatial context of energy systems. The nodes represent
geographic areas within which selection of technologies for power
generations, storages, transmission lines and substations will be solved
as decision variables. The nodes also contain information such as po-
tential of renewables, energy demand, and area of exclusion zones
originating from spatial aggregation within the regions that the nodes
represent. The lines connecting different nodes represent eligible con-
nections or transmission corridors along which electricity can be
transported.

For this study, SELARU is applied in three spatial resolutions. We
apply SELARU first as a single-node model (henceforth “Non-Spatial”

application) and as low resolution multi-node model (henceforth “Low-
Res” application) to represent existing approaches summarised in pre-
vious sections. The Low-Res application uses 34 nodes based on
administrative boundaries of Indonesian provinces. These 34 nodes are
connected with 90 lines representing possible inter-province connec-
tions (many of the provinces comprise of islands that are separated by
ocean). Note that the number of nodes in the Low-Res application is
about twice the number of nodes of the IRENA-MEMR study [65] which
has the highest spatial resolution to date.

Finally, we apply the default mode of SELARU Indonesia application
with 516 nodes and 1624 lines that connect the nodes (henceforth
“High-Res” application, see Fig. 4). The nodes in High-Res application
are generated through clustering villages as the lowest administrative
unit in Indonesia. This selection assumes that village map is a suitable
proximation for the geographic distribution of socio-economic activities.
In contrast, higher level administrative boundaries, for example prov-
ince or sub-province level administrative maps, are highly influenced
with geographic conditions or political justification instead. 83,458
villages are aggregated to 500 clusters using k-Clusters algorithm [78]
performed in QGIS software [79]. Under the algorithm, mean co-
ordinates of villages that belong to a unique cluster—weighted using
their population density and distances to neighbouring villages—are
used as the basis for Voronoi Tessellation [80] to generate polygons
describing the clusters' bounding area. Clustered zones that include
different islands or separated by water body are further divided,
resulting in 516 nodes that represent areas ranging from 0.15 to 11,634
ha, with an average of 3782 ha which is comparable to 0.55◦ geographic
grid resolution. International electricity trade with neighbouring coun-
tries is not considered in all three applications (i.e. Non-Spatial, Low-Res
and High-Res).

5.3. Incorporating grid expansion

Total system cost (Z) in SELARU is formulated as total system costs
(TSC[…]

y ) of all deployed generation (EG), transformer-substation (TS),
transmissions (TL) infrastructures, of all vintages v, in all nodes (ℕ) or in
all corridors connecting two-nodes (ℕℕʹ), in all modelled years (y) along

Fig. 3. Schematic overview of SELARU modelling framework used in this study.
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the planning horizon (Y)..

Z =
∑

y∈Y

(
∑

n∈ℕ,eg∈EG,v≤y
TSCEG

n,eg,v,y +
∑

n∈ℕ,ts∈TS

TSCTSn,ts,y +
∑

nnʹ∈ℕℕʹ,tl∈TL

TSCTL
nnʹ,tl,y

)

The TSC for each technology class comprises of costs of capacity
investment annuities and operational expenses (i.e. operation and
maintenance, input feedstock, and emissions penalty), given for each
node n and planning period y (by)

TSCEGn,eg,v,y =CAPn,eg,v,y*CAPEXn,eg,v*CRFeg +CAPn,eg,v,y*FOMeg

+OUTelyn,eg,v,y*VOMeg +
∑

f∈F
FUELn,eg,v,f ,y*Pn,f ,y

TSCTS
n,ts,y = CAPn,ts,y*CAPEXn,ts,y*CRFts

TSCTL
nnʹ,tl,y = CAPnnʹ,tl,y*dnnʹ*CAPEXnnʹ,tl,y*CRFtl

The annuity of investment for each technology is computed by the
quantity of deployed capacities CAP, their overnight-capital costs per
unit of capacity (CAPEX), their capital recovery factor (CRF), and their
length of connection between node n and n’ (dnnʹ). Technology-specific
interest rates and economic lifetime determines the CRF for each tech-
nology. The fixed operation and maintenance costs are based on a factor
FOM of installed capacity (CAP). Variable operation and maintenance
costs are based on a factor VOM of output production (OUT). For fuel-
firing power generation technologies, input feedstock costs are deter-
mined by the sum of all fuels F multiplied by the price of that fuel f
available at node n in year y (Pn,f ,y). For this study, price of feedstock
fuels changes along the planning horizon and adjusted with applicable
spatial cost correction to account for logistic costs to different nodes and
annual price changes along the planning horizon.

Explicit formulation of transmission system requires the application
of energy balance and transfers constraints. Supply and demand must
match at any time, voltage level must be kept within physical limits, and
current flows have to stay below the thermal limits of components. In
this SELARU version, power generation is solved to ensure annual bal-
ance of energy supply and demand, voltage classes are aggregated, and

physical limits of transmission components are simplified using line
losses and capacity factors. The basic framework of the energy system
model is given by the energy balance and transfers at nodes in all times.
Nodal supply-demand balance and transfers constraints ensure the
fulfilment of demand for electricity and firm capacity at all nodes ℕ for
all voltage classes kv in all planning periods Y, given by

∀[ely | plrsv] =, n ∈ ℕ, kv ∈ kv, y ∈ Y,

Selyn,kv,y ≥ Dely
n,kv,y*

(
1+ lossdl

)
*
(
1+ ownuseds

)

Splrsvn,kv,y ≥ D̂
ely
n,kv,y*

(
1+marginplrsvn,y

)
*
(
1+ lossdl

)
*
(
1+ownuseds

)

S[…]

n,kv,y =
∑

eg∈(kv,eg),v≤y

OUT[…]
n,eg,v,y +

∑

nʹn∈ℕʹℕ,kv

FLOW[…]

nʹn,kv,y*
(
1 − losstl∈(kv,tl)*dnʹn

)

−
∑

nʹ∈ℕℕʹ,kv
FLOW[…]

nnʹ,kv,y +
∑

kv́ ≤kv

Vup[…]

n,kvʹ,kv,y*
(
1 − lossts∈(kv,ts)

)

+
∑

kv́ ≥kv

Vdo[…]

n,kv́ ,kv,y −
∑

kv≤kv́

Vup[…]

n,kv,kvʹ,y*
(
1 − lossts∈(kv,ts)

)

−
∑

kv≥kv́

Vdo[…]

n,kv,kvʹ,y

(With) OUTplrsvn,eg,v,y ≤ CAPn,eg,v,y*capcredplrsveg

Planning reserves (plrsv) allow the system to ensure sufficient firm
capacity to meet the forecasted demand peak load plus a reserve margin.

The supplied firm capacities must exceed the peak demand (D̂
ely
n,kv,y) plus

a margin for planning reserve (marginplrsvn,y ) at all supply-demand
balancing node n. At specific node n, voltage class kv, and planning
period y electricity demand and firm capacity is supplied (Selyn,kv,y or

Splrsvn,kv,y) with all in-situ the power generated (OUTelyn,eg,v,y
)
and firm ca-

pacity reserved (OUTplrsvn,eg,v,y), plus all incoming transmission from all

other nodes nʹ (FLOW[…]

nʹn ), minus all outgoing transmission to all other

nodes nʹ (FLOW[…]

nnʹ ), and plus the net-change of voltage classes step-up
(Vup[…]

n,kv,kvʹ>kv) and step-down (Vdo
[…]

n,kv,kvʹ<kv) to and from other voltage

Fig. 4. Spatial representation in High-Res SELARU application comprises 516 nodes of supply-demand balancing regions (green dots with associated bounding area
outlined in black) and 1624 possible inter-nodal connections (lines in green).
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classes kv́ .The efficiency of the power grid is mainly influenced by the
rate of transmissions line losses (losstl) and distance (dnʹn). Fulfilment of
demand and firm capacity requirements are factored to include distri-
bution line losses (lossdl) and substation own use (ownuseds). Reserva-
tion of firm capacity from specific generation facility (OUTplrsvn,eg,v,y) is
capped by the size of installed capacity (CAPn,eg,v,y) and firm capacity
credits or effective load-carrying capability (capcredplrsveg ). Capcredplrsveg

reflects the expected availability when power is needed [81], in this case
in period of peak demand.

Flows of electricity (FLOWely
nnʹ,kv,y), firm capacities (FLOWplrsv

nnʹ,kv,y), and

voltage transformations (Vup[…]

n,kvʹ,kv,y, Vdo
[…]

n,kv,kvʹ,y) in the power grid are
capped by installed capacity energy infrastructures (CAP) and maximum
and minimum thresholds of capacity factor (ĈF and ČF), given by

∀[ely | plrsv], FLOW[…]

nnʹ,kv,y =
∑

tl∈kvtl

(
CAPnnʹ,tl,y +CAPnʹn,tl,y

)
*CF[…]

tl *hleng
[…]

With ČFtl ≥ CF[…]

tl ≥ ĈFtl, hlengely = 8760, and hlengplrsv = 1

∀[ely | plrsv], kv ∈ {EHV,HV},
∑

ts∈(kv,ts)

CAPn,ts,y*ĈFts*hleng[…]

≥
∑

kv>kv́

Vup[…]

n,kvʹ,kv,y∣
∑

kv<kv́

Vdo[…]

n,kvʹ,kv,y

∀kv ∈ {MV},CAPn,ts∈(kv,ts),y ≥
∑

nʹ
CAPnnʹ,tl∈(kv,tl),y +

∑

nʹ
CAPnʹn,tl∈(kv,tl),y

Transformer-substation maximum capacity limit determines the
maximum voltage transformation and reserves for extra high voltage
(EHV) and high voltage (HV). Meanwhile, medium voltage (MV) sub-
station capacity must cover all incoming and outgoing transmission
lines' capacity. This ensures a must built MV substation for each MV line-
connected neighbouring nodes. Decoupling of transmission line and
substation deployment decisions enables the analysis of different grid
topology, from using mini grids, in case of short-range small-capacity
transmission, or extending from the main grids afar, in case of long-
range high-capacity transmissions.

5.4. Resource constraints

The potential deployable capacity and geolocation of geothermal and
hydropower resources are obtained from ESDM One Map [58] and World
Bank Indonesia Hydropower Study [59]. Both geothermal and hydro-
power potential generation are capped by nation-wide technology spe-
cific maximum capacity factor. Deployment of utility scale photovoltaic
(PV), concentrated solar power (CSP) and wind power generation facil-
ities are limited to available land with less than 16 degree incline slope
[82], excluding protection areas [83] as well as water body and settle-
ment areas [84]. PV, CSP, and wind farms are assumed to have density of
41–77 [85], 31–49 [86], and 6–8 MW km− 2 [85]. In addition, distributed
small-scale PV systems can be built over 5 % of the buffered settlement
areas. Deployment of large-scale (≥10 MW) fossil-based power genera-
tion facilities are only allowed in nodes representing areas larger than
100 km2. The maximum-built capacity of power generation is limited by
the technical potential to deploy different group of power generation
facilities (greg) aggregated at node n (potCAPn,greg), given by
∑

eg∈greg,v≤y
CAPn,eg,v,y ≤ potentialCAPn,greg

Wind and hydropower power generation EGWIND|HYDRO is capped by

the annual average capacity factor (CF[…]

n,eg) that are geographically
distributed and classified based on resource-technology groups obtained
from Global Wind Atlas [57] and World Bank Indonesia Hydropower
Study [59]. The availability of wind and hydropower resources are given
by,

∀eg ∈ EGWIND|HYDRO,OUTelyn,eg,v,y ≤ CAPn,eg,v,y*CF
[…]

n,eg

For photovoltaic-based electricity generation EGPV, solar resource
potential is calculated based on zonal daily average of global horizontal
irradiance (GHI); and for concentrating solar power EGCSP, direct
normal irradiance (DNI) obtained from Global Solar Atlas [56]. The
availability of solar resources are given by,

∀eg ∈ EGPV, INPUTn,eg,v,y ≤ CAPn,eg,v,y*surfacePVeg *GHIn*365.25

∀eg ∈ EGCSP, INPUTn,eg,v,y ≤ CAPn,eg,v,y*surfaceCSPeg *DNIn*365.25

5.5. Exogenous demand

Spatially explicit projections of electricity demand are exogenous
input to the model. Demand information is obtained from national de-
mand projection and its downscaling to take into account regional dis-
parities in accordance with the spatial resolution of the analysis. Non-
Spatial application uses national electricity demand that is projected
using linear regression throughout the modelling time horizon with
dependent variables including historical data for electricity consump-
tion [50], population [87], gross domestic product (GDP) [88], and
population projection from the Shared Socioeconomic Pathways “Mid-
dle of the road” scenario (SSP2) [89].

For Low-Res application, the same projection method is applied, but
substituting national-level data with province-level data, except for the
SSP2 population projection. The results are then harmonized with na-
tional electricity demand projection to ensure comparability. For High-
Res application, province-level electricity demand are first downscaled
according to district-level GDP data (the most detailed breakdown of
publicly available data). The resulting district-level electricity demand is
further downscaled according to village level population. This down-
scaling process results in village electricity demands that are then
aggregated to 516 nodes of the High-Res application.

6. Results and discussion

Three SELARU applications for Indonesia were provided with the
same input data, except for different levels of spatial aggregation of
resource availability and demand. As expected, high spatial resolution
increased solving complexity exponentially (Table 1). Use of personal
computer, with Intel Core i7-6800K processor (3.4 GHz, 4 cores, 8
threads) and 16 GB of installed memory, was sufficient for solving Non-
Spatial and Low-Res applications. However, the hardware failed to
generate feasible solutions for High-Res application. High-Res applica-
tion was solved using a server with four Intel Xeon 5217 processors (3.0
GHz, 16 cores, 32 threads) and a total of 767 GB of installed memory. It
is important to note, however, that actual utilization of computing re-
sources cannot be determined as the server was shared with other users
via randomized access. Applying high spatial resolution greatly in-
creases computational requirement due to the dramatically increased
number of variables considered in the model.

High-Res application resulted in the lowest total system cost for all
timesteps (~359.19 Billion US$) with differences of 9.84 % and 0.17 %
lower compared to total system costs in Non-Spatial and Low-Res ap-
plications respectively. A significant proportion of these differences is
mainly caused by the execution parameter of the CPLEX solver, where a
solution is returned after the Branch and Cut algorithm reaches a certain
complexity threshold (> 1 million nodes). However, looking into opti-
mum technology selection gives a different story. For power generation,
High-Res application generated 466 GW of newly installed capacity with
28 % coming from renewables—compared to 521 GW with 8 % re-
newables and 524 GW with 1 % renewables from Non-Spatial applica-
tion and Low-Res application respectively. The majority of additional
newly installed capacity occurred due to the selection of renewable
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power generation technologies, increasing the contribution of renew-
ables to the national electricity generation mix to more than doubled
(204 %) and over one-third (138 %) compared to Non-Spatial and Low-
Res applications respectively. However, generated electricity outputs
are relatively similar among all three applications with 3764 TWh
generated in Non-Spatial, 3629 TWh generated in Low-Res and 3664
TWh generated in High-Res applications respectively. This reflects that
the spatially explicit optimisation makes it possible for renewable
electricity generation in remote areas to still be the most cost-effective
despite their intermittent property. Fig. 5 shows further details of
these patterns.

6.1. Influence of grid expansion requirement towards optimum solution

Without adequate representation of the energy system's spatial fea-
tures, optimum configuration of power generation technologies is
mainly driven by their unit generation costs. As a common approach in
single-node modelling exercises, Non-Spatial application generates
transmission and distribution costs (Fig. 5a) ex-post by applying a
general assumption of unit grid expansion requirement to generation
capacity addition from the optimisation. Note that the costs exert no
influence towards the selection of power generation technologies within
the optimisation process, despite resulting in higher grid infrastructure

costs compared to spatially explicit approach in Low-Res and High-Res
applications. Similarly, if the assumption is changed to generating
lower grid infrastructure costs, the model result will remain unchanged.

On the other hand, grid expansion requirement influences optimi-
sation result greatly in High-Res application as demonstrated by Fig. 5c.
Power generation technologies for solar and wind power could
outcompete fossil-based power generation without the application of
any climate change mitigation measures (i.e. no carbon price and no
emission reduction targets), and despite their low-capacity factor as they
require less grid expansion. However, it is also important to note that
such a selection only took place beyond certain amount of power gen-
eration (Fig. 5d). This indicates that the High-Res application in-
ternalises non-linear trade-off dynamic between unit generation cost-
efficiency of e.g., large-scale thermal power plants vis-à-vis flexible
deployment of smaller scale renewable generation. As high-resolution
spatial representation of grid expansion led to increased renewable en-
ergy contribution, cumulative carbon dioxide (CO2) emissions of the
energy system is also lower (2.7 GtCO2 in High-Res versus 2.84 GtCO2 in
Non-Spatial or by 5.2 % less for all timesteps). These behaviours are
further confirmed by sensitivity analysis results (Fig. 6b and 6c) that
demonstrate the sensitivity of power generation technology selection
and the resulting CO2 emissions as key model outputs towards incre-
mental changes in key model input of unit grid expansion cost.

Fig. 5. Summary of execution of Non-Spatial, Low-Res and High-Res SELARU applications results for a) Total system cost in 2020 value for each timestep, b) length
of newly installed transmission line, c) newly installed power generation capacity, and d) annual electricity output. Note that zero km of installed transmission line in
Non-Spatial application is due to non-existence of transmission line as modelling result. The very low length of installed transmission line in Low-Res application
reflects how coarse spatial resolution underestimates grid expansion requirement by not considering grid expansion within each province.
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Fig. 6. Sensitivity analysis graphs showing the impact of incremental change of input unit grid expansion cost (x-axis) towards relative changes in models outputs (y-
axis): a) newly installed generation capacity by connection and proximity to existing grid; b) newly installed generation capacity by type of primary energy; and c)
cumulative CO2 emissions.

Fig. 7. Map visualisation of High-Res application result for a) installed power generation capacities and b) transmission lines for year 2020, 2060, and 2100.
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6.2. Economies of scale and grid expansion

Cost-competitiveness of different power generation technologies is
also influenced by regional disparity for demand, energy resource po-
tential and accessibility. Building a low-cost generation option near
existing grid infrastructure to meet demand within the proximity of the
power plant will result in most cost-competitiveness. Conversely,
building multiple distributed system with higher unit cost of power
generation in area with sparsely distributed demand may be more cost-
efficient compared to building a large-scale power plant as the latter
requires grid expansion. However, it should also be possible that the
most cost-efficient solution is obtained from connecting multiple regions
with independent grid infrastructure (i.e. enhancing the economies of
scale) to allow the use of low-cost generation option. As previously
mentioned, building the ability to examine all these illustrative sce-
narios in generating the solution for optimum energy technology
configuration is a key research gap that SELARU development aims to
tackle.

The ability to address the issue of economies of scale is demonstrated
by results from the High-Res application, which is the default spatial
resolution for SELARU. Fig. 7 demonstrates that flexible internal com-
bustion engines (least location-bound technology) is the main type of
selected new generation capacity prior to grid expansion (i.e. the first
time-step). Overtime, power generation technologies which are more
location-bound (i.e. renewables or large-scale fossil-firing power plants)
became selected in locations that match their requirements towards grid
connectivity.

To further evaluate SELARU's ability to address grid expansion
economies of scale issue, we also conducted sensitivity analysis towards
the selection of new installed capacity based on their connection (on-
grid versus off-grid) and proximity to existing grid (nearby versus
distant). The result (Fig. 6a) demonstrates a trend of decreasing selec-
tion of on-grid generation capacity expansion that are far away from
existing grid instead of off-grid generation capacity expansion as unit
cost of grid expansion cost increases. This confirms SELARU's effective
addressing of grid expansion economies of scale, as distant on-grid se-
lection will instead be substituted by multiple off-grid options under
increased unit cost of grid expansion cost if the economies of scale are
not considered.

6.3. Limitations and further development opportunities

The optimisation approach in energy system modelling allowed the
depiction of a ‘perfectly executed’ system where investment and oper-
ation decisions follow a singular centralized logic. While this provides
normative insights that are useful for policy recommendations [5],
optimization comes with hefty computational requirement especially
when a big number of decision variables are involved. As shown in
Table 1, the use of high-resolution spatial representation dramatically
increases computing requirement due to the sheer number of decision
variables. Such a barrier can be highly problematic if we consider the
need for numerous model runs involved in scenario analysis, dealing
with uncertainties, sensitivity analysis etc.

Hence, the use of high-resolution spatial representation may require
trade-off from simplification of other elements of the investigated sys-
tem. It is therefore important to ensure that the benefits of using high-
resolution spatially explicit representation outweigh the consequential
disadvantages from simplification elsewhere. This consideration will be
dependent on the research objectives and the context of the investigated
system. As previously mentioned, this study limits the scope of the en-
ergy system into the electricity sector. Moreover, the temporal resolu-
tion over the 80 years of the modelling period is 20-year timesteps in
which generation, voltage transformations, and transmission flows, are
solved to ensure annual balance of energy supply and demand. These
simplifications follow practical adequacy principle, as they still provide
methodological robustness in investigating the implication of different

spatial representations in an optimisation based assessment that in-
volves geographical grid expansion. Clearly, these simplifications can be
problematic for different research objectives such as examining the
impact of electrification in the transport sector. In considering the trade-
offs that eventually led to the scope and spatio-temporal resolution of
SELARU modelling framework in the investigation, the study benefits
from guiding principles for ESOM-based analysis [5], particularly in
allowing the tool to be driven by the problem and to make the analysis as
simple as possible while as complex as necessary.

SELARU modelling framework shares the advantage of optimisation
models in that they have flexible formulations that are capable of
addressing a wide range of energy and environmental topics. Therefore,
future developments of SELARU modelling framework could include
modular expansion to address topics that require enhancement in areas
that are currently simplified such as sector coupling and higher temporal
resolution.

7. Conclusions and recommendations

Through the development of SELARU and its application in three
spatial resolutions for Indonesia, we demonstrated how handling of
spatial representation influences results of power sector capacity
expansion optimisation. Optimisation models that use single-node (Non-
Spatial), multi-node with coarse resolution (Low-Res) and multi-node
with high resolution (High-Res) for spatial representation could
generate different results for energy technology selection. However,
incremental improvement to coarse resolution may not deliver signifi-
cantly different results compared to single-node modelling approach.

Careful consideration of spatial representation is crucial when opti-
misation models are used to evaluate scenarios that concern technology
selection such as renewable energy deployment or climate change
mitigation. Moreover, the spatial context of the energy system is also an
important consideration. Indonesia's energy system is characterized by
vast amount and diverse location of fossil and renewable energy re-
sources, with sparsely located demands and limited reach of existing
grid infrastructure. The fact that Indonesia is an archipelago further
highlights the need for optimisation-based analysis that allows the
possibility of selecting multiple independent grid networks in its solving
for optimum energy technology selection. The need for high-resolution
spatial representation is understandably more relevant compared to
relatively more homogenous systems such as those with highly con-
nected grid infrastructure or limited geographic spread of renewable
resources.

Applying high-resolution spatial representation increases computing
requirement for optimisation greatly. Hence, trade-off between
enhancing spatial resolution versus temporal resolution may be neces-
sary. For issues of intermittent or uncertain rate of production of
renewable energy generations, enhancing spatial resolution may be a
necessary prerequisite to make high temporal resolution representation
meaningful.

Finally, potential insights that can be derived from modelling results
is also an area where the use of high-spatial resolution optimisation
models needs to be considered carefully. For example, result on length of
newly installed transmission line is a good indicator of the imple-
mentation complexity of the scenario that is being evaluated. Moreover,
the spatially explicit addressing of energy demand and supply balancing
also opens the opportunity to address multiple objectives, particularly
under the context of sustainable development goals. For example,
SELARU approach could allow the evaluation of intervention scenarios
that incorporate protection of areas with high conservation values or the
addressing of regional inequality.

Code availability

Datasets and GAMS codes required to reproduce the study results can
be accessed at https://doi.org/10.5281/zenodo.14045250.
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[36] Brinkerink M, Gallachóir BÓ, Deane P. Building and calibrating a country-level
detailed global electricity model based on public data. Energ Strat Rev 2021;33:
100592. https://doi.org/10.1016/j.esr.2020.100592.

[37] He G, et al. SWITCH-China: a systems approach to decarbonizing China’s power
system. Environ Sci Technol 2016;50(11):5467–73. https://doi.org/10.1021/acs.
est.6b01345.
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