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Northern forests are an important carbon sink, but our understanding of the driving factors is limited
due to discrepancies between dynamic global vegetation models (DGVMs) and atmospheric
inversions. We show that DGVMs simulate a 50% lower sink (1.1 ± 0.5 PgC yr−1 over 2001–2021)
across North America, Europe, Russia, and China compared to atmospheric inversions (2.2 ± 0.6 PgC
yr−1). We explain why DGVMs underestimate the carbon sink by considering how they represent
disturbance processes, specifically the overestimation of fire emissions, and the lack of robust forest
demography resulting in lower forest regrowth rates thanobserved.We reconcile net sink estimatesby
using alternative disturbance-related fluxes. We estimate carbon uptake through forest regrowth by
combining satellite-derived forest age and biomass maps. We calculate a regrowth flux of 1.1 ± 0.1
PgC yr−1, and combine this with satellite-derived estimates of fire emissions (0.4 ± 0.1 PgC yr−1), land-
use change emissions from bookkeeping models (0.9 ± 0.2 PgC yr−1), and the DGVM-estimated sink
from CO2 fertilisation, nitrogen deposition, and climate change (2.2 ± 0.9 PgC yr−1). The resulting
‘bottom-up’ net flux of 2.1 ± 0.9 PgC yr−1 agreeswith atmospheric inversions. The reconciliation holds
at regional scales, increasing confidence in our results.

Terrestrial ecosystems currently play a significant role inmitigating climate
change by acting as a net carbon sink, absorbing between 1.1 and 1.6 PgC
yr−1 (2001–2021 average; as estimated by process-models and atmospheric
constraints)1. To develop robust projections that describe how the land
carbon sink will respond to future environmental change, we need a com-
prehensive understanding of the drivers and processes, and identification of
the regions responsible for contemporary carbon sinks.

Observed large-scale gradients in atmospheric CO2 indicate that
northern ecosystems contribute more to the global net land carbon sink
meanand trend than tropical lands2. The global networkof observations can
be used to constrain atmospheric inversion systems. Inversion systems
combine these CO2 measurements with atmospheric transport model
output to produce gridded estimates of net land-atmosphere carbon

exchange. In general, due to sparse atmospheric monitoring networks, as
well as inherent uncertainties in inversion modelling, confidence in fluxes
starts at aggregates across large ecosystems, and increases to continental and
semi-hemispheric scales3,4.

Process-based models, known as dynamic global vegetation models
(DGVMs), also suggest an increasing northern carbon sink. DGVMs
attribute this trend to long-term warming5,6 and to increased atmospheric
CO2 concentrations and nitrogen deposition7,8, which can increase photo-
synthesis and biomass production9,10. Further, expanding forest area is also a
key driver of increased carbon uptake11. Overall, DGVMs predict CO2

fertilisation to be themain driver of the northern carbon sink12–14. However,
DGVMs simulate a 50% lower land carbon sink (1.1 ± 0.5 PgC yr−1) in
northern lands (defined in this study asNorthAmerica, Europe, Russia, and
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China) compared to atmospheric inversions (2.2 ± 0.6 PgC yr−1), over
2001–2021 (Fig. 1a).

A significant proportion of northern forests are regrowing due to
historical land-use changes, variations in harvesting intensity and other
forest management practices, or due to recovery from natural disturbances.
These factors are estimated to contribute up to 1.3 PgC yr−1 to the observed
northern carbon sink11,15,16, andDGVMspotentially underestimate this sink.
ManyDGVMshave insufficient representationsof disturbanceprocesses, in
particular simulating carbon losses from wildfire, windthrow or pests17.
Likewise, land-cover change and land management (in forests and agri-
cultural lands) are also implemented imperfectly16,18. Further, the sub-
sequent regrowth from disturbance events tends to be underestimated by
some models, leading to lower than expected carbon uptake. In reality, the
area affected by a natural disturbance could initially become a strong carbon
source and later a strong sink during its recovery phase19–21. These short-
comings are partly attributable to most DGVMs missing the role of forest
age structure on disturbance and biomass production15.

The challenges are not only incomplete process-representations in
DGVMs. Two DGVMs here (CABLE-POP and LPJ-GUESS) do simulate
forest demography, but there is a lack of robust historical information about
natural disturbance and land use and land management, which would
enable thesemodels to achievebetter estimates22,23. For example,DGVMsdo
not capture the intense forest management in the early modern period and
thus may underestimate regrowth24. Currently, a large-scale observational
dataset of the northern carbon sink from forest regrowth does not exist for
the period 2001–2021. We therefore pose the questions:

Can we reconcile the inversion and DGVM northern sink estimates
with the inclusion of observationally constrained estimates of disturbance

carbon losses (from fire and land-use change), and subsequent forest
regrowth?

What is the contribution of (1) indirect carbon sink due to rising
atmospheric CO2 concentrations, nitrogen deposition, and climate change,
(2) land-use and land-cover change carbon losses, (3)wildfire carbon losses,
and (4) age-related regrowth, to the northern carbon sink?

In this study, we develop a satellite-based estimate of the forest
regrowth flux by studying region-specific age-biomass relationships
(derived fromMPI-BGC forest age25, and ESA-CCIv4 biomass26 maps which
are representative of the year 2010; see ‘Methods’). Regrowth fluxes are
estimated at 1 km resolution for each year over 2001–2021, explicitly
accounting for the impact of fire disturbance on regrowth using satellite-
derived burned areas for years post-201027. We combine this new forest
regrowth estimate with satellite-derivedwildfire emission data28 and carbon
losses from three bookkeeping models1 to explain the northern carbon sink
difference between DGVMs and atmospheric inversions. We focus on four
regions: North America (USA and Canada), Europe, Russia, and China.
These regions are selected as they are the countries with major transitions
from agriculture to secondary forest in recent decades29.

Results and discussion
Forest age and wildfire are poorly represented in DGVMs
For the four study regions combined, the DGVMs simulate a net carbon
sink of 1.1 ± 0.5 PgC yr−1, much lower than the atmospheric inversion
estimate of 2.2 ± 0.6 PgC yr−1, over the years 2001–2021 (Fig. 1a). We
suggest two of the contributing factors to thismismatch are overestimations
of simulated wildfire emissions in DGVMs, and an underestimation of
carbonuptake in the regrowing forests of thenorthernhemisphere.CABLE-

Fig. 1 | Large discrepancy in northern carbon sink between bottom-up and top-
down estimates can be explained by disturbance processes. aMean net carbon flux
for North America, Europe, Russia, and China combined for dynamic global
vegetation models (DGVMs) (grey), atmospheric inversions (purple), and the two
demography-enabled DGVMs; CABLE-POP (green) and LPJ-GUESS (orange).
Positive values are a net uptake by land. Dashed lines show mean values over the
study period and shading represents 1σmodel spread. bWildfire carbon emissions

for the four regions as estimated by the DGVMs (grey), and by two remote-sensing
products; GFAS (red) and GFED4.1 s (orange). c Net ecosystem production (NEP)
estimates from DGVMs (grey) and upscaled eddy covariance data (EC-Age), which
has been adjusted for tree age (blue). The NEP fluxes are partitioned into forest age
classes. Here we show gridbox mean NEP for the DGVMs, which includes non-
forest fluxes. However, in general, forest NEP has a dominant control on gridbox
NEP in the regions considered in this study (Supplementary Fig. 1).
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POP and LPJ-GUESS (both include explicit forest demography) simulate a
net land carbon sinkbelow theDGVMmean (Fig. 1a).This indicates it is not
sufficient for DGVMs to only include demographic processes, but to also be
constrained with detailed information on historical disturbance and land
management24,29.

DGVMs estimate northern fire carbon emissions of 0.6 ± 0.3 PgC yr−1

over 2003–2021,whereas satellite-derived estimates suggest lower emissions
of 0.3 and 0.4 PgC yr−1 (GFED and GFAS, respectively) (Fig. 1b). This
overestimation is likely driven by issues with modelled burned areas
(ignition and fire spread parameterisations and sensitivity to environmental
conditions17) and combustion completeness in DGVMs30. There is also a
lack of available information on fire control measures that some countries
implement, which does not allow DGVMs to include these in their fire
algorithms. Both 2003 and 2021 experienced anomalously high fire emis-
sions, predominantly driven by warm conditions in Russia31,32, however,
notably, the DGVMs do not simulate a large deviation from mean emis-
sions (Fig. 1).

Next, using a forest age map25, we aggregate the mean net ecosystem
production (NEP, defined as the net flux of carbon into the land in the
absence of disturbances) flux for the DGVMs into various age classes and
compare with upscaled forest NEP derived from eddy-covariance data,
along with climate variables and forest age (EC-Age) (see ‘Methods’)
(Fig. 1c). Many DGVMs do not output forest NEP, as they use a single soil
column for all vegetation. However, in general, forest NEP is highly cor-
related with gridbox NEP in the regions considered here (Supplementary
Fig. 1). Therefore, we use grid-box NEP as a proxy for forest NEP in the
comparison with EC-Age. There is a clear pattern of DGVMs, on average,
underestimating the carbon uptake in lands containing young forests.
DGVMs simulate net rate of carbon uptake of 40 ± 25 gC m−2 yr−1 com-
pared with 98 ± 3 gC m−2 yr−1 for EC-Age in forests younger than 50 years
old, and 48 ± 20 gC m−2 yr−1 compared with 80 ± 4 gC m−2 yr−1 for forests
50–80 years old. The two estimates have good agreement in regions of older-
growth (>80 years) forests (Fig. 1c).

The relatively uniform distribution of carbon uptake across age classes
is expected for the DGVMs that do not represent demography. These
models simulate average plants, rather than multiple age cohorts, with
different growth rates. Therefore, when a forest is disturbed, a portion of

biomass is removed from the grid average forest. This generally reduces the
average forest biomass slightly below its equilibrium old-growth value, and
therefore the subsequent regrowth is relatively slow. If an entire gridcell was
deforested, one could expect the DGVMs to capture the correct regrowth
rates. Therefore, it may not be regrowth rates, per se, that are wrong in
DGVMs, but that they are not able to simulate disturbance in ecosystems
correctly, due to simulating average plants, running at coarse spatial reso-
lution, and not accurately simulating the actual year of natural disturbance.

The DGVMs do suggest a minor decline in net carbon uptake over
time,which could bedrivenby increased respiratory costs of larger trees33, or
self-thinning and canopy packing constraints34 leading to increased losses
for the models that include this stand-level process. An alternative expla-
nation is that many old-growth forests are concentrated in regions with
worsening climate conditions (e.g. drought-prone areas of the North
American west coast and fire-prone regions in Eastern Siberia35), which
could result in reduced carbon uptake in DGVMs36.

Forest age limits carbon accumulation over large regions
Aspace-for-time analysis (see ‘Methods’) comparing forest age andbiomass
maps (both for 2010), shows clear regrowth patterns, with biomass
increasing with age, and levelling off after several decades (Fig. 2a–d).
Temperate forests of North America and Europe approach aboveground
carbon densities of 123 [104,138] MgC ha−1 and 107 [80,130] MgC ha−1

(maximum 50th [25th, 75th] biomass percentiles across all years), whereas
the boreal forests of Eurasia peak lower at 85 [69,97] MgC ha−1 (Fig. 2).
Forests in China have relatively low aboveground carbon densities of 58
[48,64] MgC ha−1. These maximum values are consistent with a recent
meta-analysis of forest plot carbon accumulation, whereby boreal forests
peak below100MgCha−1, and temperate species can reach carbon densities
>100 MgC ha−1 after 100 years of growth37.

We fit region-specific regrowth curves (Chapman-Richards model38)
to estimate changes in biomass over time. The derivative of biomass vs. age
curves gives us the biomass carbon sink from forest growth at a given age.
Peak growth (maximumderivative)occurs before trees are 50 years old in all
regions, and there is an abundance of these young trees across northern
lands (Supplementary Fig. 2). For North America, temperate Europe, and
Eurasia, growth rates peak at approximately 2MgCha−1 yr−1 when trees are

Fig. 2 | Satellite-derived regrowth curves for northern forests. a–dPanels show the
effect of forest age (years) on aboveground biomass (MgCha−1 yr−1) in a subset of the
four regions; a Boreal Eurasia, bNorth America, c Temperate Europe, and d China.
Points indicate the 25th, 50th, and 75th percentile of satellite-based biomass values
across all pixels for each year. Best fit lines (dashed and shading) are shown and are
used to calculate annual growth increment. e–h Panels depict the annual growth

increment for the four regions. Dashed lines and shading represent the 25th, 50th,
and 75th percentile estimates. The solid green horizontal line is the mean growth for
the first 30 years. The black point and range show in situ observations (ref. 37) of
growth rates for trees younger than 30 years. Note, we have truncated the y-axis in
(h), the upper limit for in situ growth rates in China is 4.9 MgC ha−1 yr−1.
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~40years old. ForChina, peak growthoccurs earlier,when trees are younger
than 20 years. Average growth rates for trees younger than 30 years agree
well with in situ observations across all regions (Fig. 237).We combine these
growth rates with the forest age map to predict regrowth carbon uptake for
each 1 kmpixel for each year 2001–2021. The largest cumulative changes in
biomass due to forest regrowth are located along the east coast of the USA,
central Canada, western Russia, central/northern Europe, and southeast
China (Fig. 3). Across central and eastern Russia, there are many localised
regions of regrowth following fire disturbance.Wildfire-induced losses and
recovery have previously been shown to strongly influence carbon cycle
dynamics in this region35.

Reconciling the northern carbon sink and attribution of drivers
Wereconcile the atmospheric inversion andDGVMestimates of net carbon
uptake across the four study regions by combining DGVM net ecosystem
productionwith independent estimates of disturbance-related carbonfluxes
(Fig. 4). First,DGVMNEP (from the simulationwithout land-use and land-
cover change (S2; see ‘Methods’) and only fire-enabled DGVMs) is esti-
mated to be 2.2 ± 0.9 PgC yr−1, and is primarily driven by rising CO2

concentrations and nitrogen deposition12, and regional impacts of climate
change (warming and subsequent lengthening of the growing season39,40).
Second, emissions such as from deforestation by clearing or fire or decay of
woodproducts, aswell as peat drainage are 0.9 ± 0.2PgCyr−1 across the four
regions. The majority of these emissions occur from wood harvest (gross
losses of 0.5 ± 0.2 PgC yr−1), and the remainder from deforestation and
other land-use changes (0.2 ± 0.03 PgC yr−1), and peat drainage (0.1 ± 0.02
PgC yr−1). Wood harvest forcing data is taken from FAO, and associated
carbon losses are a relatively well-constrained component of the net carbon
balance. Third, fire emissions amount to 0.4 ± 0.1 PgC yr−1. Fourth, In
response to past disturbances, forest regrowth across northern lands

sequesters 1.1 ± 0.1 PgC yr−1, over 2001–2021. The sum of the four com-
ponent fluxes (DGVMNEP, bookkeeping LULCC, satellite fire losses, and
satellite regrowth) indicates a net carbon sink of 2.0 ± 0.9 PgC yr−1, in-line
with the top-down constraint of 2.2 ± 0.6 PgC yr−1.

Using only non-fire DGVMs, the NEP is 1.1 ± 0.2 PgC yr−1 and the
sum of component fluxes is only 1.0 ± 0.3 PgC yr−1, and therefore these
models cannot be reconciled with atmospheric inversions (Fig. 4a, black
crosses). The number of disturbance processes and their particular for-
mulation included in DGVMs has a major impact on NEP. This is simply
because carbon is released to the atmosphere via fire or land management
before being respired naturally, as part of the heterotrophic respiration flux.
Further, subsequent regrowth following disturbance can enhance NEP.
Therefore, in models with more disturbance processes included, the NEP
values are generally larger. We argue that models that do not include any
major disturbance processes likely underestimate NEP, as they are closer to
equilibrium than reality (Fig. 4a). In other words, by using non-fire models
in conjunction with the satellite-based fire emission products, we double
count some carbon losses to the atmosphere, and hence arrive at a lower net
land flux.We therefore placemore trust in the NEP and sum of component
values from fire-enabled DGVMs.

The reconciliation between DGVMs and inversions also holds at
regional scales. For North America and Russia, both wood harvest and fire
disturbance have an important role in regional carbon dynamics (Supple-
mentary Figs. 3 and 4). LULCC gross losses (including peat emissions) are
0.28 ± 0.06 PgC yr−1 and 0.19 ± 0.06 PgC yr−1, and fire losses are 0.11 ± 0.02
PgC yr−1 and 0.18 ± 0.03 PgC yr−1, respectively. Therefore, net disturbance
losses are similar (~0.4 PgC yr−1) in the two regions, however, North
America has a larger regrowth sink; 0.5 ± 0.01 PgC yr−1, compared to
0.3 ± 0.1 PgC yr−1 for Russia. Combining the disturbance fluxes with the
NEP from fire-enabledDGVMs, we estimate net land sinks of 0.9 ± 0.3 PgC
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Fig. 3 | Substantial regional carbon uptake due to forest regrowth over the last
two decades.Maps depict the cumulative carbon sink due to forest regrowth over
2001–2021 based on satellite-derived regrowth curves (MgC ha−1). For each pixel,
the growth depends on regional growth curves (Fig. 2) and the inferred forest age25

starting in 2001. Each year, the forest age increases and a new growth value is
calculated. In the years 2010–2021, the age of a pixel is set to 1 if disturbance is
detected. Non-forest pixels are removed from the analysis.
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yr−1, and 0.6 ± 0.3 PgC yr−1, for North America and Russia. Our estimates
agree well with the inversion sinks of 0.8 ± 0.4 PgC yr−1 and 0.7 ± 0.3 PgC
yr−1, respectively.

For Europe andChina, the disturbance-related fluxes are similar.Most
disturbance losses are due to wood harvest (total LULCC losses of ~0.2 PgC
yr−1), with limited emissions from fire disturbance (<0.04 PgC yr−1), likely
due to fire prevention measures, to the exception of extreme fire years in
Southern Europe. Both regions have a regrowth flux of 0.2 PgC yr−1, and
overall a small net loss of carbon due to disturbance processes. Combining
thedisturbancefluxeswithDGVMNEP leads tobottom-upnet land carbon
flux estimates of 0.2 ± 0.2 PgC yr−1 and 0.3 ± 0.1 PgC yr−1, again in agree-
ment with the inversion estimated sinks of 0.3 ± 0.2 PgC yr−1 and 0.4 ± 0.3
PgC yr−1. It is important to note that our analysis does not include carbon
losses fromall disturbanceprocesses. There are increasing incidences of pest
and pathogen outbreaks across northern forests41–43, which are reducing the
land sink. However, wood harvest, deforestation, and fire (which are all
included here) together currently still account for the majority of the forest
disturbance flux in northern forests43,44.

Overall, our results indicate it is important to accurately capture
disturbance-related losses and gains in order to quantify themagnitude and
successfully attribute processes and drivers of the northern carbon sink. In
particular, we provide further evidence of the substantial role that age-
relateddisturbance and regrowthhas on the contemporarynorthern carbon
sink11,45–49. In general, the DGVMs may capture some forest regrowth flux
following agricultural abandonment, wood harvest, and fire disturbance.
However, this is likely underestimated due to the lack of representation of
age classes in most DGVMs, and hence the fast growth of multiple young

trees following disturbance11,50. Ecosystem demography is an active area of
research and some DGVMs are starting to include the relevant processes to
capture age-related dynamics (e.g. refs. 45,51). However, these models are
still in the development stage and are not readily available for large-scale
simulations. Somemodels do include demography (CABLE-POP and LPJ-
GUESS in this study). CABLE-POP simulates higher carbon uptake in
young forests compared to old-growth forests (Supplementary Fig. 5),
whereas LPJ-GUESS shows amore evenNEP across ages. However, it is not
possible to isolate the regrowthflux fromotherdrivers (e.g.CO2 fertilisation,
nitrogen deposition, or changes in climate) with the current modelling
protocol. In general, to simulate the large-scale regrowth sink, DGVMs
would also need to be informed about the correct disturbance and land
management regimes and how they have changed over recent decades, e.g.
how forestmanagement has impacted dynamics and stand density, through
fire management practices, harvest extraction rates, or historical forest
grazing and litter raking24.

Implications for the global carbon budget
The global net land sink (1.6 ± 0.7 PgC yr−1 over 2001–2021) is relatively
well constrainedby thedifference of fossil fuel emissions (9.0 ± 0.5PgCyr−1)
and the sumof the atmospheric growth ofCO2 (4.7 ± 0.02PgCyr−1) and the
global ocean carbon sink (2.6 ± 0.5 PgC yr−1). The DGVMs estimate a
similar net global sink of 1.4 ± 0.4 PgC yr−1, butwe argue here that this is the
right (global) answer for the wrong reasons. In this study, we have provided
a bottom-up estimate of the northern land carbon sink that corroborates
atmospheric inversion estimates. Further, an alternative set of inversion
estimates, that are also constrained with OCO-2 observations of
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Fig. 4 | Reconciliation and attribution of the northern land carbon sink. aMean
carbon flux over the period 2001–2021 for individual components, for all four
regions combined. The carbon sink from rising atmospheric CO2, nitrogen
deposition, and climate change is estimated by the DGVMs (only using fire-enabled
DGVMs) from the S2 simulation (grey bar). NEP for non-fire-enabled DGVMs is
shown as a cross. Land-use and land cover change gross losses (including peat
drainage) are estimated from three bookkeeping models, BLUE, OSCAR, and HN
(orange bar). Fire carbon losses are estimated by two satellite-derived products;
GFAS and GFED4.1s, for the period 2003–2021 (red bar). The forest regrowth
carbon flux is estimated from this study (green). The sum of the four components

(DGVMNEP, Regrowth, LULCC losses, and fire losses) represents our new estimate
of the net land sink (light blue bar). The cross on top of the blue bar shows the sum of
four components but with NEP from the non-fire enabledmodels. The net land sink
as estimated by atmospheric inversions is also shown (purple). b, c Annual mean
carbon fluxes for b the four component fluxes; NEP (fire-enabled DGVMs only),
Regrowth, LULCC losses, and fire losses (positive valuesmean flux from atmosphere
to land), and c the sum of the four components (blue), and the net land sink as
estimated by the inversions (purple). Shading in all panels represents 1σ uncertainty
across the models or inversion datasets, respectively.
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atmospheric columnCO2, also strongly suggest a northern land carbon sink
that is in line with the estimate in this study29,52. Therefore, if we accept that
the DGVMs underestimate the northern sink, to maintain a global balance,
they must overestimate net tropical carbon uptake. DGVMs suggest a net
carbon sinkof 0.4 ± 0.3PgC/yr in tropical lands (between30°S and30°N), in
contrast to the inversions which estimate a carbon loss of 0.1 ± 0.6 PgC/yr29.

There are a multitude of possibilities for why the DGVMs could
overestimate the tropical net carbon sink. Tropical forests are known to be
phosphorus limited. As no models used here include this limitation, they
could overestimate the CO2 fertilisation effect in tropical forests53. Further,
there is growing evidence of increased mortality in tropical forests54,55,
however, DGVMs do not contain drought-mortality formulations56,
simulate the impact of insect outbreaks56, or consider growth-lifespan
tradeoffs57, and so likely underestimate climate-induced carbon losses. In
addition, DGVMs do not fully capture forest degradation processes, which
may be as significant as deforestation for total carbon losses58,59.

In summary, it is highly likely that the global land carbon sink is
predominantly located in the young forests of northern regions. The
regrowth sink is inherently transient, and so there is potential for the carbon
sink to saturate in the future—although a sink can be maintained with
sustainable land management practices60. Tropical regions could well be a
net source of carbon, and tropical carbon losses are likely underestimated by
DGVMs. These results could reduce trust we have in current climate pro-
jections, as the land carbon sink in Earth System Models (ESMs) is likely
overestimated(no age structureor explicitmortality processes). This implies
climate-carbon feedbacks are likely underestimated in ESMs, which indi-
cates the remaining carbon budgets (as estimated by ESMs) for a given
temperature target are overestimated.

Methods
DGVMs
In this study, we used the net carbon flux from 17DGVMs that were part of
the TRENDY (v11) MIP1. The models included are CABLE-POP, CLAS-
SIC, CLM5.0, DLEM, IBIS, ISAM, JSBACHv3.2, JULES-ES, LPJ-GUESS,
LPJ, LPX-Bern, OCN, ORCHIDEE, SDGVM, VISIT, VISIT-NIES, and
YIBs (see ref. 1 for full model description and setup). Themodels are driven
with a merged monthly Climate Research Unit (CRU)61 and 6-hourly
Japanese 55-year Reanalysis (JRA-55)62 dataset. The models are also forced
with atmospheric CO2

63, gridded nitrogen deposition64 and nitrogen
fertiliser65. CABLE-POP, CLM5.0, DLEM, ISAM, JSBACHv3.2, JULES-ES,
LPJ-GUESS, LPX-Bern, OCN, ORCHIDEE, and SDGVM include carbon-
nitrogen interactions. CLASSIC, CLM5.0, JSBACH, JULES-ES, LPJ-
GUESS, LPJ, LPX-Bern, SDGVM, VISIT, and VISIT-NIES all simulate fire
impacts. The net land sink (as shown in Fig. 1) is estimated with the
S3 simulation from GCB2022. This includes transient atmospheric CO2,
transient climate, and transient industrial land-use. We use the
S2 simulation (transient atmospheric CO2, transient climate, and fixed pre-
industrial land-use) when reconciling the DGVMestimates with inversions
as this has no LULCC flux. Note, all acronyms used in this paper are
described in the supplementary information (Table S1).

Atmospheric inversions
For the ‘top-down’ atmospheric constraint on the northern carbon sink, we
used eight atmospheric inversion systems from GCB2023 that covered the
period 2001–2021; Copernicus Atmosphere Monitoring Service (CAMS
v22r1), Jena CarboScope (nbetEXToc_v2023), CarbonTrackerEurope
(CTE2023), NISMON-CO2 v2023, CT-NOAA CT2022+CT-
NRT.v2023-3, University of Edinburgh (UoE), IAPCAS, and MIROC (see
system description and setups in ref. 29,66). Atmospheric inversion meth-
ods estimate ocean and land carbon exchange from atmospheric CO2

observations.UsingBayesianmethods, they optimise carbonfluxes using an
atmospheric transport model driven by wind fields from meteorological
analyses, prior fluxes and uncertainty fields. The systems impose fossil fuel
and cement carbon emissions and small remaining differences between the
used emission datasets are adjusted to the common set of GridFED

v2023_167 CO2 emissions (which includes fossil fuel emissions, carbon
emissions from cement, and the cement carbonation sink). To allow com-
parison of these top-down estimates with theDGVMs, a further adjustment
for lateral transport of carbon by rivers is needed (see also Section 2.5 in
ref. 29). We have applied this lateral adjustment on 1 × 1 degree resolution
rather than for the 3 latitude bands as in ref. 29. The lateral riverflux is based
on GlobalNEWS2 for organic C and the CO2 sink due to chemical
weathering68,69, with rescaling of the organic C loads to the latitudinal
pattern70 and to a synthesis of global estimates of organic C exports of about
500 Tg C/yr71.

Wildfire carbon emissions
We use two satellite-derived estimates of wildfire emissions: the Global Fire
Emissions Database (GFAS, operated by the Copernicus Atmosphere
Monitoring Service72) and the Global Fire Emissions Database
(GFEDv4.1s28). These datasets are two of themost widely applied global fire
emissions products based on satellite remote sensing of fire. GFAS relies on
the detection of thermal energy release during active fires. GFED relies on
the post-fire detection of burned areas combined with fuel consumption
factors. As data is only available from 2003 onwards, we use the 2003–2021
mean values for 2001–2002, when calculating means over the whole time
period, 2001–2021.

ESA-CCI biomass map
To produce age-dependent regrowth carbon fluxes, we start with a high-
resolution (100m)abovegroundbiomassproduct for the year 2010 fromthe
ESA-CCI biomass project (version 4)26, which is based on remote-sensed
synthetic aperture radar, optical, and LiDAR data. We next use the Hansen
forest covermask73 to isolate forest pixels, and then calculate themean forest
biomass in 1 km grid areas. We convert the original aboveground biomass
units of Mg ha−1 toMgC ha−1 by multiplying by 0.5 (assuming a biomass C
content of 50%).

Forest age map
Weuse the forest agemapproducedby refs. 25,74which is representative for
the year 2010. This 1 km global map is created by upscaling plot-level forest
age data using a random forestmodel. The forest age data is in part based on
the ‘GlobBiomass’ biomass map75, along with climate variables as model
regressors in the upscaling procedure. To ensure non-forest pixels are
excluded, we use the dataset with a 30% tree cover threshold for each
1 km pixel.

Calculating net ecosystem production (NEP)
Eddy-covariance NEP data. We combined multi-years annual NEP
data observed from a harmonised dataset of 119 eddy covariance sites in
forests where the forest age is known, with age maps from ref. 25 and site
specific NEP-age curves from chronosequence locations to scale up
regional forest NEP in two steps. The first step is using age. The second
step is using the difference between NEP predicted from age only and
observed NEP at the 119 locations, and upscaling it using temperature,
GPP and age with a random forest model at a spatial resolution of 0.5°.
ThemeanNEP pattern is representative of the last decade. This upscaling
accounts for the fact that very young forests are net CO2 sources to the
atmosphere, middle-aged and young forests are sinks and old forests can
be small sinks or sources. We call this product EC-Age.

DGVM NEP. The EC-Age data is for forest NEP. We cannot directly
estimate forest NEP from DGVMs, as most models have a single soil
column for all plant types. Therefore, modelled NEP is calculated as the
difference between Net Primary Productivity and Heterotrophic
Respiration (NPP-Rh).Here, we add grazing and crop harvest respiration
fluxes to Rh. These land management practices are effectively grassland
carbon losses inDGVMs, and so simply divert a portion of Rh to separate
carbon loss terms. 5 out of 17models include grazing and/or crop harvest,
and so it is important to include these separate loss terms in Rh, to ensure

https://doi.org/10.1038/s43247-024-01827-4 Article

Communications Earth & Environment |           (2024) 5:705 6

www.nature.com/commsenv


all 17 DGVMs are aligned. For the reconciliation with inversions (Fig. 4),
we use NEP from the S2 simulation, as this does not include
LULCC fluxes.

The S2 simulation fixes land cover and land-use at 1700 values, and
therefore the NEP fluxes may be biassed. We can quantify this bias by
combining the plant-level NEP output from the S2 simulation (transient
CO2, nitrogen deposition, and climate) with present day (we choose 2010 as
a reference year) land cover from the S3 simulation. Only one model
(ORCHIDEE) has the required detailed output (Supplementary Fig. 6). For
NorthAmerica andChina, there has been a net conversion of forest to short
vegetation between 1700 and 2010, hence a lower NEP when using 2010
land cover. The opposite is true for Europe andRussia, where there has been
a net gain in forest area, and hence NEP, with present land cover, compared
to 1700. Overall, however, the differences in regional NEP are relatively
small. Our North America and China NEP estimates are overestimated by
~0.02 PgC yr−1, with an underestimation in Europe of ~0.01 PgC yr−1. We
make the assumption other models will have a similar bias (same order of
magnitude), and therefore this bias does not have a substantial impact on
our results.

Estimating regional regrowth
To estimate carbon uptake from forest regrowth over the past two decades,
we regressed biomass against forest age. We selected four regions in North
America [75°W–95°W, 30°N–36°N], boreal Eurasia [30°E–75°E,
55°N–60°N], temperate Europe [12°W–30°E, 44°N–50°N], and China
[106°E–122°E, 24°N–33°N] as training regions. For each age class (we use
single years), we calculate the 25th, 50th, and 75th percentiles for all grids
that age. We then fit curves to each of the three percentiles, based on
Chapman-Richardsmodels38. The regrowth curves approach an asymptote,
which we defined as the maximum 25th, 50th, 75th percentiles for each age
class (single year) across all grids in the region. The best fit model is of the
formBt ¼ A 1� e�kt

� �c
± ε;A; k; c > 0, where Bt is the biomass in year t,A

is the asymptote, k is the growth rate, and c determines the shape of the
curve76. We then produce regional tree growth rates by calculating annual
differences in the biomass curves. For boreal Eurasia and temperate Europe
there is limited data for the youngest forests.We only kept ages with at least
1000 pixel values in our estimation of growth curves. The youngest ages for
the two regions in our analysis are therefore 23 and 28 years, respectively.
For the relatively few trees younger than this, we assume they have a similar
growth rate to these values (Fig. 2e, g). ForNorway, Sweden, andFinland,we
use the growth rates calculated for boreal Eurasia.

We compare our regrowth rates with those from a meta-analysis of
in situ observations37. Specifically, we compared the growth rates for North
America with North American subtropical humid forest, temperate con-
tinental forest, and temperate oceanic forest (mean = 1.4 MgC ha−1 yr−1,
minimum= 0.6MgC ha−1 yr−1, maximum= 2.7MgC ha−1 yr−1). For boreal
Eurasia, we use the Asian boreal coniferous forest (1.1 [0.7,1.4] MgC ha−1

yr−1). For Europe, we compare with the European temperate oceanic forest
(1.6 [0.8,2.9] MgC ha−1 yr−1) data. Finally, for China we use the values
specifically for Chinese forests (1.9 [0.6,4.9] MgC ha−1).

For each year in 2001–2021,we calculate the expected biomass increase
for each 1 km pixel, depending on the forest age. For the period 2010–2021,
we account for disturbances from fire by using the European Space Agency
Climate Change Initiative (ESA CCI) burned area product (version 5.1)27,
and reset the age of a pixel to 1 year if any disturbancewasdetected. In afinal
step, wemultiply each 1 km pixel by the tree cover fraction (ranging from 0
to 1; from ref. 77) to remove non-forest areas (Supplementary Fig. 7). The
number of fire disturbed forested pixels in the 2011–2021 period is 3.4%,
1.3%, 6.6%, and 1.3% for North America, Europe, Russia, and China,
respectively. The estimateduncertainty inour regrowthestimate stems from
the use of quartiles of biomass in the growth curve estimates. The data is
approximately distributed equally around the median estimate (Fig. 2), so
we convert this IQR range to a standard deviation by multiplying by 1.36
(=68/50) to estimate the±1σ spread.As afinal step,we convert aboveground

to total biomass by using previously published aboveground and below-
ground carbon densities78.

LULCC losses
To estimate gross losses from LULCC, we use three bookkeeping models
(BKMs) from GCB202329; BLUE, OSCAR, and H&C2023.We exclude any
regrowth from the BKMs, to only include gross losses from the land to the
atmosphere.

Thesemodels simulate carbon stocks in vegetation and soils before and
after land-use change events, such as transitions between natural vegetation
types, croplands, and pastures. They incorporate literature-based response
functions that account for the decay of vegetation and soil carbon, including
transfers to product pools with varying lifespans, along with carbon uptake
from regrowth processes. Furthermore, the models simulate long-term
reductions in carbon stocks of primary forests (by degradation), reflected in
lowered carbon levels in both vegetation and soils of secondary forests, and
account for forest management activities like wood harvesting.

In addition, we factor in emissions from peatland drainage by using
FAO-derived peat drainage emissions79, emissions from simulations using
the DGVM ORCHIDEE-PEAT80, and estimates from the DGVM LPX-
Bern v1.5 model81.

The three bookkeepingmodels are driven by different land-use change
datasets. H&C2023 derives its estimates from the FAO’s Forest Resource
Assessment (FRA), which provides forest area and management data at
5-year intervals82. Changes in non-forest land uses are derived from FAO’s
annual national data on cropland and pasture. In contrast, BLUE uses
LUH2-GCB202329, a harmonized land-use change dataset covering the
period 850–2022, with 0.25° spatial resolution, and considers subgrid
transitions between different land cover types83,84. OSCAR was run with
both LUH2-GCB2023 and FAO/FRA data, with the latter extrapolated to
2022 basedon trends from2015–2020.TheprimaryOSCARestimate in our
study is a combination of both data sources.

Data availability
DGVM and BKM output is available at: https://globalcarbonbudgetdata.
org/. Atmospheric inversion data is available at: https://meta.icos-cp.eu/
objects/FHbD8OTgCb7Tlvs99lUDApO0. Wildfire data is available at:
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-fire-
emissions-gfas and https://gwis.jrc.ec.europa.eu/apps/country.profile/
downloads. Eddy-covariance NEP data is available at: https://doi.org/10.
5281/zenodo.13828536. Regrowth data is available at: https://doi.org/10.
5281/zenodo.13844372.
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